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ON THE DIOPHANTINE EQUATIONS
dix? +2¥md, = y" AND d\x*+d, = 4y"

LE MAOHUA

(Communicated by William W. Adams)

ABSTRACT. Let d|, d, be coprime positive integers, which are squarefree, and
let A denote the class number of the imaginary quadratic field Q(\/—d,d>) .
Let m, n be integers such that m > 0, n > 1, and gcd(n, 22) = 1. In this
paper we prove that if n > 8.5+ 10, then the equations d)x2 + 22"d, = y"
(2ty) and d;x? + d, = 4y" have no positive integer solutions (x, y) with
ged(x,y)=1.

Let d,, d, be coprime positive integers, which are squarefree, and let &
denote the class number of the imaginary quadratic field Q(1/—dd2). Let
m, n be integers such that m >0, n > 1, and ged(n, 2h) = 1. There have
been many papers concerned with the solvability of the diophantine equations:

(1) dix? +2¥"d, =y, x>0, y>1, 2y, ged(x,y) =1,
and
(2) dix*+dy = 4y", x>0, y>1, ged(x,y)=1.

The known results include the following:

1 (Blass [1]). If dy =1, d, #19 or 341, m=0,and n =35, then (1) has
no integer solution (x, y).

2 (Blass and Steiner [2]). If d; =1, m =0, and n = 7, then (1) has no
integer solution (x, ).

3 (Nagell [16, 17], Ljunggren [9, 12], Cardell [3]). If dj =1, m<1,and d,
satisfies some congruence conditions, then (1) has no integer solution (x, y).

4 (Ljunggren [10-12], Krohonen [4-7]). If min(d;,d;) > 1, m < 1, and
dy, d, satisfy some congruence conditions then (1) has no integer solution
(x, ).

5 (Persson [18], Stolt [19]). If d; =1 and n is a fixed odd prime, then there
exist only a finite number of d> for which (2) has integer solutions (x, y) and
the number of solutions is finite.

6 (Ljunggren [13, 14]). If d; = 1 and d, satisfies some congruence con-
ditions, then there exist only a finite number of n for which (2) has integer
solutions (x, y).

In this paper we prove a general result as follows:
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Theorem. If n > 8.5-10%, then (1) and (2) have no integer solution (x, y).

In order to prove the theorem, we now introduce a result concerned with the
linear forms in logarithms, which was derived by Mignotte and Waldschmidt
[15]. Let a be a nonzero algebraic number with the defining polynomial

@z +az7 '+ +a,=ay(z - 010)- - (z - 6,0), ap >0,

where oja, ..., g,a are all the conjugates of a. Then

h(a) = % (Logao + Er:Logmax(l , laial))

i=1
is called Weil’s height of «.
Lemma [15, §10]). Let loga be any nonzero determination of the logarithm of
a.Ifr=2 and A=bynv—-1/b; —loga # 0 for some positive integers b, and
b,, then

|A] > exp(—206004(1.35 + Log B + Log Log 2B)?),

where A =max(1/2, h(a)), B =max(b;, by).

Proof of Theorem. Let (x, y) be an integer solution of (1). Then, according to
the analysis in [10], we have

(3) xVdy +2"V-d, = (aVdi + bV-dy)",
where a, b are integers, which satisfy
(4) dia’? +dyb* =y, ged(a, b) =1.
Let ¢ = a\/?d_l+ b\/—-dy, & = a\/d_l— by/—d,. We get from (3) that
en —¢f e — ¢
5 m= L Lopl L
) 2y/—d, & — &

By Waring’s formula [8, Formula 1 - 76],

en — " (n—-1)/2 n . - (a=D)2 n .
8] -El — Z [l] (81 _El)n—Zt—l(glEl)l — Z [ l] (_4d2b2)(n—1)/2—1y1 ,
1= i=0 i=0
where
nl (n—i-1)n i=0 n-—1
i~ (n=20)4 ° A T

are positive integers. This implies that (e} —2])/(e; — ;) is an odd integer.
From (5), we get

(6)

Similarly, if (x, y) is an integer solution of (2), then we have

er — &
&1 — &

=n
83—82
82—52

a'\/dy +b'\/—d _ _ayd-b\-d,
2 ’ - 2 ’

2

(7 =1,

where

™

&) =
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and a', b’ are integers, which satisfy
(8) dia? + dy)b? = 4y, b ==+1.

Let

{sl, for equation (1), _ {
& = &=

€, for equation (1),
&, for equation (2); 3

€, for equation (2).

Then (6) and (7) can be written as

9) le" — "] = |e 2.

For any complex number z, we have either |e? — 1| > 1/2 or |e? — 1| >

|z — knv/—1|/2 for some integers k. Hence

-\ n
Log|e" —&"| =nLog|e|+Log‘<§) - 1’
(10)
> nLlogle| + Log

nlogg—kn\/—l' —Log2,

where k is an integer with |k| < n. By (4) and (8), &/¢ satisfies

&

2 —
(11) y(g> — 2da? - dyb?)E

~+y=0,  god(y, 2(dia* - dyb?)) =1,

or

-\ 2 -

z dlaIZ_dszZ z B ( d]alz_d2b12>_
(12) y(;) —(—2—)E+y—0, ged Vo — =1.

Since y > 1, €/¢ is not a root of unity. Therefore A = nlog(¢/e)—knv—1#0.
By (11) and (12), the degree of Q(¢/¢) is equal to 2 and h(g/e) = Log./y . By
the Lemma,

(13) |A| > nexp(—20600(Log /y)(1.35 + Logn + Log Log 2n)?).

Substituting (13) into (10),

(14) Log %Ie" —&"| > nLog|e| — 20600(Log /¥)(1.35 + Log n + Log Log2n)?.

Notice that |¢| = ,/y and |e — €| < 2,/y. If (9) holds, then from (14) we get
Log g\/fz +20600(Log /y)(1.35 + Logn + LogLog2n)? > nLog /y .

This is impossible for n > 8.5-10%. The theorem is proved.
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