ON THE DIOPHANTINE EQUATIONS $d_1x^2 + 2^{2m}d_2 = y^n$ AND $d_1x^2 + d_2 = 4y^n$

LE MAOHUA

(Communicated by William W. Adams)

ABSTRACT. Let d_1 , d_2 be coprime positive integers, which are squarefree, and let h denote the class number of the imaginary quadratic field $\mathbb{Q}(\sqrt{-d_1d_2})$. Let m, n be integers such that $m \geq 0$, n > 1, and $\gcd(n, 2h) = 1$. In this paper we prove that if $n \geq 8.5 \cdot 10^6$, then the equations $d_1x^2 + 2^{2m}d_2 = y^n$ $(2 \nmid y)$ and $d_1x^2 + d_2 = 4y^n$ have no positive integer solutions (x, y) with $\gcd(x, y) = 1$.

Let d_1 , d_2 be coprime positive integers, which are squarefree, and let h denote the class number of the imaginary quadratic field $\mathbb{Q}(\sqrt{-d_1d_2})$. Let m, n be integers such that $m \geq 0$, n > 1, and $\gcd(n, 2h) = 1$. There have been many papers concerned with the solvability of the diophantine equations:

(1)
$$d_1x^2 + 2^{2m}d_2 = y^n$$
, $x > 0$, $y > 1$, $2 \nmid y$, $gcd(x, y) = 1$,

and

(2)
$$d_1x^2 + d_2 = 4y^n$$
, $x > 0$, $y > 1$, $gcd(x, y) = 1$.

The known results include the following:

- 1 (Blass [1]). If $d_1 = 1$, $d_2 \neq 19$ or 341, m = 0, and n = 5, then (1) has no integer solution (x, y).
- 2 (Blass and Steiner [2]). If $d_1 = 1$, m = 0, and n = 7, then (1) has no integer solution (x, y).
- 3 (Nagell [16, 17], Ljunggren [9, 12], Cardell [3]). If $d_1 = 1$, $m \le 1$, and d_2 satisfies some congruence conditions, then (1) has no integer solution (x, y).
- 4 (Ljunggren [10-12], Krohonen [4-7]). If $\min(d_1, d_2) > 1$, $m \le 1$, and d_1, d_2 satisfy some congruence conditions then (1) has no integer solution (x, y).
- 5 (Persson [18], Stolt [19]). If $d_1 = 1$ and n is a fixed odd prime, then there exist only a finite number of d_2 for which (2) has integer solutions (x, y) and the number of solutions is finite.
- 6 (Ljunggren [13, 14]). If $d_1 = 1$ and d_2 satisfies some congruence conditions, then there exist only a finite number of n for which (2) has integer solutions (x, y).

In this paper we prove a general result as follows:

Received by the editors September 12, 1991.

¹⁹⁹¹ Mathematics Subject Classification. Primary 11D41, 11R29.

68 LE MAOHUA

Theorem. If $n \ge 8.5 \cdot 10^6$, then (1) and (2) have no integer solution (x, y).

In order to prove the theorem, we now introduce a result concerned with the linear forms in logarithms, which was derived by Mignotte and Waldschmidt [15]. Let α be a nonzero algebraic number with the defining polynomial

$$a_0 z^r + a_1 z^{r-1} + \cdots + a_r = a_0 (z - \sigma_1 \alpha) \cdots (z - \sigma_r \alpha), \qquad a_0 > 0,$$

where $\sigma_1 \alpha, \ldots, \sigma_r \alpha$ are all the conjugates of α . Then

$$h(\alpha) = \frac{1}{r} \left(\text{Log } a_0 + \sum_{i=1}^r \text{Log max}(1, |\sigma_i \alpha|) \right)$$

is called Weil's height of α .

Lemma [15, §10]. Let $\log \alpha$ be any nonzero determination of the logarithm of α . If r=2 and $\Lambda=b_1\pi\sqrt{-1}/b_2-\log\alpha\neq 0$ for some positive integers b_1 and b_2 , then

$$|\Lambda| > \exp(-20600A(1.35 + \log B + \log \log 2B)^2),$$

where $A = \max(1/2, h(\alpha)), B = \max(b_1, b_2).$

Proof of Theorem. Let (x, y) be an integer solution of (1). Then, according to the analysis in [10], we have

(3)
$$x\sqrt{d_1} + 2^m\sqrt{-d_2} = (a\sqrt{d_1} + b\sqrt{-d_2})^n,$$

where a, b are integers, which satisfy

(4)
$$d_1a^2 + d_2b^2 = y$$
, $gcd(a, b) = 1$.

Let $\varepsilon_1 = a\sqrt{d_1} + b\sqrt{-d_2}$, $\overline{\varepsilon}_1 = a\sqrt{d_1} - b\sqrt{-d_2}$. We get from (3) that

(5)
$$2^{m} = \frac{\varepsilon_{1}^{n} - \overline{\varepsilon}_{1}^{n}}{2\sqrt{-d_{2}}} = b \frac{\varepsilon_{1}^{n} - \overline{\varepsilon}_{1}^{n}}{\varepsilon_{1} - \overline{\varepsilon}_{1}}.$$

By Waring's formula [8, Formula 1 · 76],

$$\frac{\varepsilon_1^n - \overline{\varepsilon}_1^n}{\varepsilon_1 - \overline{\varepsilon}_1} = \sum_{i=0}^{(n-1)/2} \begin{bmatrix} n \\ i \end{bmatrix} (\varepsilon_1 - \overline{\varepsilon}_1)^{n-2i-1} (\varepsilon_1 \overline{\varepsilon}_1)^i = \sum_{i=0}^{(n-1)/2} \begin{bmatrix} n \\ i \end{bmatrix} (-4d_2b^2)^{(n-1)/2-i} y^i,$$

where

$$\begin{bmatrix} n \\ i \end{bmatrix} = \frac{(n-i-1)!n}{(n-2i)!i!}, \qquad i = 0, \dots, \frac{n-1}{2},$$

are positive integers. This implies that $(\varepsilon_1^n - \overline{\varepsilon}_1^n)/(\varepsilon_1 - \overline{\varepsilon}_1)$ is an odd integer. From (5), we get

(6)
$$\frac{\varepsilon_1^n - \overline{\varepsilon}_1^n}{\varepsilon_1 - \overline{\varepsilon}_1} = \pm 1.$$

Similarly, if (x, y) is an integer solution of (2), then we have

(7)
$$\frac{\varepsilon_2^n - \overline{\varepsilon}_2^n}{\varepsilon_2 - \overline{\varepsilon}_2} = \pm 1,$$

where

$$\varepsilon_2 = \frac{a'\sqrt{d_1} + b'\sqrt{-d_2}}{2}, \qquad \overline{\varepsilon}_2 = \frac{a'\sqrt{d_1} - b'\sqrt{-d_2}}{2},$$

and a', b' are integers, which satisfy

(8)
$$d_1 a'^2 + d_2 b'^2 = 4y, \qquad b' = \pm 1.$$

Let

$$\varepsilon = \begin{cases} \varepsilon_1, & \text{for equation (1),} \\ \varepsilon_2, & \text{for equation (2);} \end{cases} \quad \overline{\varepsilon} = \begin{cases} \overline{\varepsilon}_1 & \text{for equation (1),} \\ \overline{\varepsilon}_2 & \text{for equation (2).} \end{cases}$$

Then (6) and (7) can be written as

$$(9) |\varepsilon^n - \overline{\varepsilon}^n| = |\varepsilon - \overline{\varepsilon}|.$$

For any complex number z, we have either $|e^z-1|>1/2$ or $|e^z-1|\ge |z-k\pi\sqrt{-1}|/2$ for some integers k. Hence

(10)
$$\log |\varepsilon^{n} - \overline{\varepsilon}^{n}| = n \log |\varepsilon| + \log \left| \left(\frac{\overline{\varepsilon}}{\varepsilon} \right)^{n} - 1 \right|$$

$$\geq n \log |\varepsilon| + \log \left| n \log \frac{\overline{\varepsilon}}{\varepsilon} - k\pi \sqrt{-1} \right| - \log 2,$$

where k is an integer with $|k| \le n$. By (4) and (8), $\bar{\epsilon}/\epsilon$ satisfies

$$(11) \quad y\left(\frac{\overline{\varepsilon}}{\varepsilon}\right)^2 - 2(d_1a^2 - d_2b^2)\frac{\overline{\varepsilon}}{\varepsilon} + y = 0, \qquad \gcd(y, 2(d_1a^2 - d_2b^2)) = 1,$$

or

$$(12) \quad y\left(\frac{\overline{\varepsilon}}{\varepsilon}\right)^2 - \left(\frac{d_1a'^2 - d_2b'^2}{2}\right)\frac{\overline{\varepsilon}}{\varepsilon} + y = 0, \qquad \gcd\left(y, \frac{d_1a'^2 - d_2b'^2}{2}\right) = 1.$$

Since y > 1, $\overline{\varepsilon}/\varepsilon$ is not a root of unity. Therefore $\Lambda = n \log(\overline{\varepsilon}/\varepsilon) - k\pi\sqrt{-1} \neq 0$. By (11) and (12), the degree of $\mathbb{Q}(\overline{\varepsilon}/\varepsilon)$ is equal to 2 and $h(\overline{\varepsilon}/\varepsilon) = \log\sqrt{y}$. By the Lemma,

(13)
$$|\Lambda| > n \exp(-20600(\text{Log }\sqrt{y})(1.35 + \text{Log } n + \text{Log Log } 2n)^2).$$

Substituting (13) into (10),

(14)
$$\operatorname{Log} \frac{2}{n} |\varepsilon^n - \overline{\varepsilon}^n| > n \operatorname{Log} |\varepsilon| - 20600 (\operatorname{Log} \sqrt{y}) (1.35 + \operatorname{Log} n + \operatorname{Log} \operatorname{Log} 2n)^2$$
.

Notice that $|\varepsilon| = \sqrt{y}$ and $|\varepsilon - \overline{\varepsilon}| < 2\sqrt{y}$. If (9) holds, then from (14) we get

$$\operatorname{Log} \frac{4}{3} \sqrt{y} + 20600 (\operatorname{Log} \sqrt{y}) (1.35 + \operatorname{Log} n + \operatorname{Log} \operatorname{Log} 2n)^{2} > n \operatorname{Log} \sqrt{y}.$$

This is impossible for $n \ge 8.5 \cdot 10^6$. The theorem is proved.

ACKNOWLEDGMENT

The author would like to thank the referee for his valuable suggestions.

70 LE MAOHUA

REFERENCES

- 1. J. Blass, On the diophantine equation $Y^2 + K = X^5$, Bull. Amer. Math. Soc. 80 (1974), 329.
- 2. J. Blass and R. Steiner, On the equation $y^2 + k = x^7$, Utilitas Math. 13 (1978), 293-297.
- 3. L. Cardell, Some results on the diophantine equation $x^2 + D = y^n$, Dep. Math., Chalmers Univ., Techn. Univ. Göteborg 1984-06, 1984.
- 4. O. Korhonen, On the diophantine equation $Ax^2 + 8B = y^n$, Acta Univ. Oulu Ser. A Sci. Rerum. Natur. Math. 16 (1979).
- 5. ____, On the diophantine equation $Ax^2 + 2B = y^n$, Acta Univ. Oulu Ser. A Sci. Rerum. Natur. Math. 17 (1979).
- 6. ____, On the diophantine equation $2Ax^2 + B = y^n$, Acta Univ. Oulu Ser. A Sci. Rerum. Natur. Math. 21 (1980).
- 7. ____, On the diophantine equation $Cx^2 + D = y^n$, Acta Univ. Oulu Ser. A Sci. Rerum. Natur. Math. 25 (1981).
- 8. R. Lidl and H. Niederreiter, Finite fields, Addison-Wesley, Reading, MA, 1983.
- 9. W. Ljunggren, On the diophantine equation $x^2 + D = y^n$, Norske Vid. Selsk. Forh. Trondheim 17 (1944), 37-43.
- 10. ____, On a diophantine equation, Norske Vid. Selsk. Forh. Trondheim 18 (1945), 125-128.
- 11. ____, New theorems concerning the diophantine equation $Cx^2 + D = y^n$, Norske Vid. Selsk. Forh. Trondheim **29** (1956), 1-4.
- 12. ____, On the diophantine equation $Cx^2 + D = y^n$, Pacific J. Math. 14 (1964), 585-596.
- 13. _____, On the diophantine equation $x^2 + D = 4y^9$, Monatsh. Math. 75 (1971), 136-143.
- 14. ____, New theorems concerning the diophantine equation $x^2 + D = 4y^n$, Acta Arith. 21 (1972), 183–191.
- 15. M. Mignotte and M. Waldschmidt, Linear forms in two logarithms and Schneider's method. III, Ann. Fac. Sci. Toulouse (1990), 43-75.
- 16. T. Nagell, Sur l'impossibilité de quelques équation à deux indéterminées, Norsk Mat. Forenings Skrifter Ser. 1 13 (1923), 65-82.
- 17. _____, Contributions to the theory of a category of diophantine equations of the second degree with two unknowns, Nova Acta Soc. Sci. Upsal. (4) 16 (1955).
- 18. B. Persson, On a diophantine equation in two unknowns, Ark. Mat. 1 (1949), 45-57.
- B. Stolt, Die Anzahl von Lösungen gewisser diophantischer Gleichungen, Arch. Math. 8 (1957), 393-400.

RESEARCH DEPARTMENT, CHANGSHA RAILWAY INSTITUTE, CHANGSHA, HUNAN, PEOPLE'S REPUBLIC OF CHINA