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Abstract. We discuss the relation between the single-valued extension prop-

erty (that is, Dunford's property (A)) and spectral manifolds Xj{F) of a

bounded linear operator. In particular, we prove that Dunford's property (C)

implies the property (A). We also prove that if T £ B(X) has the property

(/?*) introduced by Fong, then Xj.(F) = Xri^F)1- for every closed set F

in the complex plane C .

In the spectral decomposition theory of bounded linear operators the single-

valued extension property is an elementary and important property. All spectral,

decomposable, and hyponormal operators have this property, but there are some

ordinary operators which do not have this property, for example, the adjoint

of the unilateral shift on a Hilbert space. For an operator T £ B(X) without

the single-valued extension property we may also define the spectral manifold

Xt(F) . In this case the properties of XT(F) are different than ones of operators

with the single-valued extension property. In the first part of this paper we

discuss some dependent relations between the single-valued extension property
and spectral manifolds Xj(F). In particular, we prove that Dunford's property

(C) implies his property (A), that is, the single-valued extension property, and

so we strengthen an essential and important result in the theory of spectral

operators due to Dunford and Schwartz [2]. In the second part of the paper we

prove that if for every open covering {Gx, ... , Gn} of a(T),

X = XT(Gx) + --. + XT(Gn),

then Xj. (F) = Xp^XF)1- for each closed set F in the complex plane C . So

we generalize and deepen a main result in the duality theory due to Frunza [4].

In this paper C denotes the complex plane, X the complex Banach space,

and B(X) the Banach algebra of all bounded linear operators on X. If T £

B(X) and F is a closed set in C, we define

Xt(F) = {x £ X; there exists an analytic ^-valued function

/: C\F -+ X such that (k - T)f(k) = x,k£ C\F}.

XT(F) is said to be the spectral manifold of T. If G is an open set in C, we
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define
XT(G) = \^{XT(F) ;FcGandFis closed},

where " (J " denotes the linear span. If T has the single-valued extension prop-

erty, then the above definition is identical with Dunford and Schwartz's original

definition
XT(F) = {x£X; oT(x)cF},

where aj(x) is the local spectrum of T at x .

1

It is well known that if T £ B(X) has the single-valued extension property,

then the following propositions are true:

(1) For arbitrary closed sets Fx and F2 in C,

XT(Fx)nXT(F2) = XT(FX DF2).

(2) If XT(F) is closed for a closed set F in C, then

o(T\XT(F))ca(T)nF.

(3) If Xt(F) is closed for a closed set F in C, then XT(F) is an analytic

invariant subspace of T, that is, XT(F) is an invariant subspace of T and

f(X) £ Xt(F) for an arbitrary analytic X-valued function /: G —> X on some

open set G in C satisfying (A - T)f(k) £ XT(F), A 6 G.
(4) If Xt(F) is closed for a closed set F in C, then XT(F) is the spectral

maximal space of T, that is, Xt(F) is an invariant subspace of T and for an

arbitrary invariant subspace Y of T,

o(T\Y) c o(T\XT(F))   implies    K C XT(F).

If r does not have the single-valued extension property, then these propo-

sitions are false.

Example 1. Let 77 be a separable complex Hilbert space, {en}n^-oo the or-

thonormal basis of 77, and T £ B(H) a bilateral weighted shift on 77:

Ten = wnen+x,        n = 0, ±1, ±2, ... ,

where {Wn}*^.^ is a monotone decreasing sequence of positive numbers and

w„ / 1 as tz —► -co, w„ \ j as n —> +co. It follows from [5] that T* is a

hyponormal operator and

o(T) = {k£C;  i<|A|<l}.

It follows from [6] that T does not have the single-valued extension property.

We write

F, = {AeC;  |A| = 1},        F2 = {AeC;  |A| = £},

+oo k

Hk+=\J{en},        Hf=   \/  ie»h
n=k n=-oo

where " V " denotes the closed linear span.

Proposition 1. For arbitrary integer k,

Hk-CXT(FX),        H+CXT(F2).
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Proof. Since 77^ is an invariant subspace of T, T\H£ is a unilateral weighted

shift with the weight sequence {wn}Jf^k , and wn \ \ as n —> +co, it follows

from [5] that

o(T\Hk+) = {k££; |A|<±}.

For arbitrary x £ H£, (A - r|77^")_1x is an analytic X-valued function on

{AeC; |A|> \} and

(k-T)(k-T\H+)~xx = x,        \M>j.

Because o(T) = {A 6 C; ^ < |A| < 1} , we can define

[(A-r)-ix, |A|<I,

M)     \(X-T\H+)-xx,       |A|>I;

then /c(A) is an analytic X-valued function on C\F2 and

(A-T)fx(X) = x,        k£C\F2.

So x £ XT(F2), that is, 77+ C XT(F2).

For the first inclusion we note that T is invertible and

T~xen = w-\£>„_i,        n = 0, ±1, ±2, ... ,

so for arbitrary integer k , Hf is an invariant subspace of T~x. Analogously

we can prove 77^ C XT-i(Fx). It follows from the definition of the spectral

manifold that XT-i(Fx) = XT(FX), since Fx is the unit circle. Hence 77^ C

XT(FX), so the proof is complete.

It follows from Proposition 1 that XT(Fx)nXT(F2) ^ {0}. But XT(Fxf\F2) =
{0} , since Fx n F2 = 0 . Therefore statement (1) is false.

Choosing F = Fx U F2, it follows from Proposition 1 that

XT(F) = XT(FX) + XT(F2) = 77.

Hence o(T\Xj(F)) = o(T) <L F , that is, statement (2) is false.

For statement (3) we choose F = 0 . Then Xj(F) = {0} is not an analytic

invariant subspace of T.

Example 2. Let Tx be the bilateral weighted shift in Example 1, T2 = \ U,
where U is the bilateral shift (nonweighted) on 77, and X = 77 © 77, T =
TX®T2, F = FxliF2, where Fx, F2 are the closed sets in Example 1. Then T £
B(X) does not have the single-valued extension property, ^(T^) = 77 © {0},

and o(T\XT(F)) = o(Tx). Note that a(T) = o(Tx) U o(T2) c o(Tx), that is,
o(T) C o(T\XT(F)), but X = 77 ©77 3 XT(F). Hence XT(F) is not the

spectral maximal space of T.

Regardless of whether a bounded linear operator T has the single-valued

extension property, the following propositions are true.

Proposition 2. For an arbitrary closed set F in C, Xp(F) is a hyperinvariant

manifold ofi T. In particular, if XT(F) is closed, then it is a hyperinvariant

subspace of T.

Proof. Suppose x £ Xp(F). Then there exists an analytic Z-valued function

/: C\F -» X such that

(X-T)f(X) = x,        k£C\F.
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So Sf(X) is also an analytic X-valued function on C\F for each S € B(X)

commuting with T, and

(A - T)Sf(X) = S(X - T)f(X) = Sx,        k£C\F.

Hence Sx £ Xj(F), so the proof is complete.

Proposition3. If XT(F) is closed for a closed set F in C, then

a(T\XT(F))Ca(T)r\F,

where F is the union of F and all bounded components in C\F .

Proof. Suppose Ao ^ F . To show Ao ^ o(T\Xj(F)), it is sufficient to prove

that Ao - T\Xt(F) is bijective. According to the definition of XT(F), it is
surjective. If x £ XT(F) satisfies (A0 - T)x = 0, then there exists an analytic

X-valued function /: C\F -> X such that

(k-T)f(X) = x,        AeC\F.

Let

gW = J^T/-*'        k ̂  ^° •

Then g(X) is an analytic ^-valued function on {A e C; A ̂  Ao} and

(X-T)g(X) = x,       A^A0.

We define
|/(A),        X£C\F,

\g(X),        A^A0.

Note that each component of C\F is connected with p(T), the resolvent set of

T, and both f(X) and g(X) are analytic continuations of 7?(A, T)x , A e p(T);

hence

fi(X) = g(X),        X £ (C\F)\{X0}.

It shows that G(X) is well defined. Because G(X) is analytic on the whole

complex plane and

(A-T)C7(A) = x,        AeC,

x £ Xt(0) = {0} , that is, x = 0. The proof is complete.

Theorem 1. Suppose that Fx and F2 are two disjoint closed sets in C. Then

XT(FXUF2) = XT(FX) + XT(F2).

Proof. We may assume without loss of generality that Fx U F2 C o(T). If x £

XT(Fxl)F2), then there exists an analytic .Y-valued function /: C\(FxuF2) -> X

such that

(X-T)f(X) = x,        X£C\(FXUF2).

For two arbitrary disjoint smoothed closed curves Cx and C2 in the interior of

the curve C = {A 6 C; \X\ = \\ T\\ + 1} such that Cj surrounds Fj, j =1,2,
respectively, we have

'wIcfWM+4nif»di-
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Let Xj = (l/2ni) Jc f(X) dX. Because f(X) is analytic, the Xj are independent

of the selection of the curves C}■, j = 1, 2. It is sufficient to prove x;- £

XT(Fj), 7 = 1,2.
For arbitrary p e C\FX there exists a smoothed closed curve / surrounding

Fx such that both p and F2 are outside J. Let

Then g(/7) is independent of the selection of the curve J . It is easily seen that

the function g is analytic on C\FX and

=   1    f(T-X)f(X)du    1    j
2ni J j      X - p 2ni Jj

= -z-- / i-dX + xx = xi,       /i e C\Fi.
27TZ JjX-p

So xi e Xt(F\) . The proof that x2 £ Xt(F2) is analogous. The proof is

complete.

In the case that T has the single-valued extension property and Xt(Fx l)F2)

is closed, this result is well known. Now we have proved the result without any

assumption.

Theorem 2. Suppose that T £ B(X) and XT(F) is closed for every closed set F

in C. Then T has the single-valued extension property.

Proof. Let /: G -* X be an analytic X-valued function on some open set G
in C such that

(X-T)fi(X) = 0,       X£G.

We may assume without loss of generality that G is connected. Choose an open

disc U in G suchjthat U QG; then U = U. According to the supposition of
the theorem, Xt(U) is closed, it follows from Proposition 3 that

o(T\XT(U)) QU.

For arbitrary X0 £ U let x0(A) = f(Xf)/(X-Xf), X^ Xq. Then xn(A) is analytic
on C\{Ao} and

(A - T)xo(A) =/(Ao),        A#A0.

Hence /(Ao) € Xt({Xq}) c Xt(U) . Because C7 is connected and Xt(U) is

closed, it follows by means of analytic continuation that

f(X)£XT(U),        X£G.

Hence we have

(X-T\XT(U))fi(X) = 0,        X£G.

If A € G\U, then A £ o(T\XT(T7)); thus fi(X) = 0. It follows again by means
of analytic continuation that

/(A) = 0,       X£G.

The proof is complete.
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From Theorem 2 we know that Dunford's property (C) implies his property

(A). In the theory of spectral operators due to Dunford and Schwartz [2] there

is the following essential and important result.

Theorem D-S. Let T be a bounded linear operator in a weakly complete space.

Then T is a spectral operator if and only if T has properties (A), (B), (C), and

(D).

According to our Theorem 2 the property (A) in this theorem may be dropped,

and this theorem can be strengthened as follows.

Theorem 3. Let T be a bounded linear operator in a weakly complete space.

Then T is a spectral operator if and only if T has properties (B), (C), and (D).

2

Frunza [4] proved that if T £ B(X) is decomposable, then for every closed

set F in C

Zf.(F)=Xr(C\F)x,

where

X^CXF^ = {u£X*;  (x, tz) = 0, for each x 6 XT(C\F)}.

In the following we will prove this result under a weaker condition. First we

introduce the following notion due to Fong: T £ B(X) is said to have the

property (fi*) if for every open covering {Gx, ... , Gn} of a(T),

X = XT(Gl) + --- + XT(Gn).

Here Xr(Gk), k = I, ... , n , are not necessarily closed. If, in addition, all

Xr(Gk) > k = 1,..., n, are closed, then T is decomposable.

Fong [3] proved that the property (fi*) is the duality property of Bishop's
property (fi), that is, T £ B(X) has the property (fi) if and only if T*, the
adjoint of T, has the property (fi*). It is easily known that all decomposable

operators have properties (fi) and (fi*). The operator T in Example 1 has the

property (fi*), but it is not decomposable. In fact, because T* is hyponormal,

T* has the property (fi). It follows from the result due to Fong that T has

the property (fi*). In addition, T is not decomposable, since T does not

have the single-valued extension property. Thus the property (fi*) is weaker

than decomposable. The following theorem is a nontrivial generalization of the

above result due to Frunza.

Theorem 4. Let T £ B(X) have the property (fi*). Then for every closed set F

in C

XT.(F) = *r(C\fy .

Proof. First we prove ^7-(C\F)-L C Xj*-.(F). Because A'7-(C\F)-1- is an invari-

ant subspace of T*, it is sufficient to prove

o(T*\XT(C\F)±)CF.

Let Ao £ C\F. It is easy to show that A0 - r*|^7-(C\F)J- is injective. In
fact, if u £ Ar7-(C\7r)-L such that (Ao - T*)u - 0, then we can show tz = 0 as

follows: Suppose that {Gx, G2} is an open covering of o(T) such that

Ao i G,,       A0 € G2 c G2 c C\F.
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According to the property (fi*) of T,

X = XT(GX) + XT(G2).

Thus for each x £ X there are xk £ Xr(Gk), k = 1, 2, such that

X = X) + x2 •

Because xi 6 Xt(Gx), there exists an analytic ^-valued function fiXx(X) on

C\C7. such that

xx = (X-T)fiXx(X),       AeC\GV

Note that x2 6 XT(G2) C XT(C\F) and A0 £ C\GX. Then we have

(X , 77) = (X! + X2 , 77) = (X, , U) = ((A0 - T)fx, (A0) , W)

= (A,(Ao),(Ao-r)M) = 0.

Hence zz = 0.
Before proving that A0 - r*|^r7-(C\7r)-L is surjective we give some primary

knowledge. Choose an open covering {Gx, G2} of C such that

A0 i Gx,       X0£G2CG2C C\F.

Choose again another open covering {Dx, D2} of C which satisfies

F CDXCDXCGX,        X0£D2CD2CG2.

Because T has the property (fi*), we have

(1) X = XT(DX) + XT(D2) = XT(GX) + XT(G2).

Since the above four manifolds Xp(-) are not necessarily closed, we need the

following discussion. For an arbitrary closed set E in C, let

Xj-(E) = {x £ X; there exists a uniformly bounded analytic A'-valued

function fx on C\E such that (A - T)fx(X) = x, X £ C\E}.

For x £ Xj-(E) we define

||x||f = inf{sup{||/c(A)||; A £ C\E}; fx is a uniformly bounded analytic

X-valued function on C\E such that (A - T)fix(X) = x, X £ C\E}.

It is easy to verify that || • \\f is a norm on X^-(E) and X^-(E) is complete

under this norm; hence it is a Banach space. For a fixed Xx £ C\E, for every
x £ XbT(E),

\\x\\ = \\(Xx-T)fx(Xx)\\<\\Xx-T\\\\fx(Xx)\\

<\\Xx-T\\suo{\\fx(X)\\; X£C\E}.

So ||x|| < ||Ai - T|| ||x||f, that is, there is a constant ME such that ||x|| <

M£||x||f for every x £ Xj(E). According to the selection of {Gx, G2} and

{7>i, Dx}, we have

XT(Dk) C XbT(Gk) C Xr(C7,),        k = 1, 2.
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It follows from (1) that

(2) X = XbT(Gx) + Xb(G2).

We introduce a new Banach space

Xb = X*r(Gx)®Xb(G2).

The norm in Xb is defined as

11*11* = INli + ll*2|l2

for x = X! ©x2, xk £ Xjl(Gk), k = 1, 2, where \\Xj\\Jb = \\xj\\^j , j = 1,2.

Let /: Xb -> X be defined as

Jx = Xi + x2

for x = Xi © x2, xk £ X^-(Gk), k = 1, 2. Evidently, J is linear and

||/x|| = ||xi+x2|| < ||x,|| + ||x2||

KM^Wx.Wl + M^Wx^lKMWxU,

where M = max{A7- , A/^ }.  This shows that J is a bounded linear map

from Xb to X. It follows from (2) that J is surjective. According to the open

map theorem there is a constant M/, > 0 such that for every x £ X there are

xk £ Xjl(Gk), k = 1, 2, satisfying

x = Xi©x2   and   ||xj.||£ < Af/j||x||,        /c = l,2.

Now we can prove that A0 - r*|Xr(C\7?)x is surjective. Suppose u £

X7-(C\7r)-L. We define v as follows: For every x £ X there are xk £ Xj(Gk),

k = 1, 2, such that x = Xi+x2 . Because Xi £ Xj(Gx), there exists a uniformly

bounded analytic X-valued function fXx on C\GX such that

(X-T)fiXl(X) = xx,        X£C\GX.

Note that Ao e C\Gi. We can define

(x,v) = (fiXx(X0), u);

v is well defined. In fact, suppose that there again are yk £ X^Gf), k =
1,2, such that x = y_x + y2 and another uniformly bounded analytic X-valued

function fyx on C\C7i such that

(X-T)fyx(X) = yx,        X£C\GX.

(Note: it is possible that xk = yk, k = 1,2, but fXx and fyx are different.)
Then

yx-xx=x2-y2£Xb(Gx)nXb-(G2)cxT(Gx)nXT(G2).

Note that fiyx - fiXx is an analytic -Y-valued function on C\c71 and

(A - T)(fiyx (X) - fiXx (X)) = yx - xx,        A € C\t7,.

Because yx - xx £ Xj(G2), there exists an analytic A"-valued function g on

C\C72 such that

(A - T)g(X) =yx-xx,       X £ C\G2.
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Since {Gx, G2} is an open covering of C, (C\Gi) n (C\C72) = 0 . So we can
define

GU) = {fyi{X)~fxi{Xh      AgC^''

\gW, X£C\G2.

Then G(X) is an analytic X-valued function on (C\GX)U(C\G2) = C\(GxriG2),
and

(X - T)G(X) = yx - xx,        X£C\(GxnG2).

This_shows that yx - xx  £ XT(GX n Gf), so  G(Xf) = /,,(A0) - /c,(A0) £

XT(GX n G2) C XT(C\F). Therefore

(fyi(Xo)-fXl(XQ),u) = 0,

that is,

</y,(A0), U) = (/x,(A0), U).

This shows that i> is well defined.
Evidently, v is linear. According to the above argument, there is a constant

Mb > 0 such that for every x £ X there are xk £ X^(Gk), /c = 1, 2, satisfying

x = x, + x2, ||x,t||£ < Mb\\x\\, k = 1, 2. So

|(x,7j)| = |(/X|(Ao),M)|<||/x,(Ao)||||77||

^supfll/cWH; A€C\rJ,}||M||.

Thus

K-^. «>l < ll-x-ilUII«ll < Jk#»||3c-H H«lt-
This shows that v is bounded, that is, v £ X*.

Suppose x 6 XT(C\F). It follows from (2) that there are xk £ X^lfik) C

XT(Gk), k = 1, 2, such that x = Xi +x2. Thus xi = x-x2 e Xt(<C\F) . Then
there is a closed set E C C\7r such that x, € AV(£). Noting C\G, C C\F,
we may assume without loss of generality that E D C\GX . Let g: C\E -> X

be an analytic A'-valued function such that

(X-T)g(X) = xx,        X£C\E.

There also exists an analytic X-valued function fXx on C\GX such that

(X-T)fXx(X) = xx,        X£C\GX.

Noting that C\GX and C\E are disjoint, we can define an analytic X-valued

function on (C\G,) U (C\E) = C\(GX n E) as

G(X) = lfx>W'       ^C\G,,
\g(X), X£C\E,

and it satisfies

(A - T)G(X) = Xi,        AeC\((/in£).

So x, e At(Gi n £). Then G(X0) = /Xl(A0) € ^(Gi n E) C ^(CVr7). Hence

(X,7J) = (/X|(Ao),ZZ) = 0.

This shows v £ ^r(C\7r)-L.
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For every x £ X there are xk £ X^(Gk), k = 1, 2, such that x = Xi + x2 ,

and there exists an analytic X-valued function fXx on C\Gi such that

(X-T)fXx(X) = xx,        X£C\GX.

Note that (A0 - T)xk £ X^(Gk), k=l,2, such that

(A0 - T)x = (A0 - T)xx + (A0 - T)x2

and that (A0 - T)fXx(X) is also an analytic X-valued function on C\Gi such

that

(A - T)(X0 - T)fXx (X) = (A0 - T)xx,       A e C\G,.

So

(x, (Ao - T*)v) = ((A0 - T)x, v) = ((A0 - T)fXx (A0), u)

= (Xi , u) = (Xi +x2,u) = (x,u).

Because x is arbitrary, (Xq-T*)v = u, that is, Ao-r*|X7-(C\7r)-J- is surjective.

Finally, we prove X*..(F) C XHCYF)1-. Suppose u £ X$.(F). Then there
exists an analytic X* -valued function fi*: C\F -» X* such that

(X-T*)f:(X) = u,        X£C\F.

For every x £ XT(C\F), there is a closed set E c C\77 such that x e X7-(£');

that is, there exists an analytic X-valued function fix: C\E -* X such that

(A-7U(A) = x,        X£C\E.

We define an analytic complex function on C as

F(X) = l{fxW,U)'        AeC\£>
U     \(x,/;(A)),        X£C\F.

Note that if A € (C\E) n (C\F), then

(/x(A),77) = (/,(A),(A-r)/;(A))

= ((A-r)/x(A),/;(A)) = (x,/;(A));

hence, F(X) is well defined.  Because E C C\.F, then (C\E) U (C\F) = C;
hence, F(X) is analytic on the whole plane and

\F(X)\ = \(fix(X),u)\<\\fix(X)\\\\u\\

= \\(X-T)-xx\\\\u\\^0

as \X\ -* +co.  According to Liouville's theorem, F(X) = 0.  Hence for A £

C\F,
(x,f:(X)) = F(X) = 0.

Since Tx £ XT(C\F),

(Tx,f:(X)) = 0,    forX£C\F.

So for A e C\F ,

(x, u) = (x, (A - r*)y?(A)> = ((A - T)x, fu*(X))

= A(x,/;(A))-(rx,/;(A)) = o,

that is, tz £ X7-(C\F)-L. The proof is complete.



single-valued extension property 87

References

1. E. Bishop, A duality theorem for an arbitrary operator, Pacific J. Math. 9 (1959), 379-394.

2. N. Dunford and J. Schwartz, Linear operators, Part III, Wiley-Interscience, New York,

1971.

3. C K. Fong, Decomposability into spectral manifolds and Bishop's property (/?), Northeast.

Math. J. 5(1989), 391-394.

4. St. Frunza, A duality theorem for decomposable operators, Rev. Roumaine Math. Pures

Appl. 16(1971), 1055-1058.

5. A. L. Shields, Weighted shift operators and analytic function theory, Topics in Operator

Theory, Math. Surveys Monographs, vol. 13, Amer. Math. Soc, Providence, RI, 1974.

6. S. L. Sun, Decomposability of weighted shift and hyponormal operators on Hilbert space,

Chinese Ann. Math. Ser. A 5 (1984), 575-584.

Department of Mathematics, Jilin University, Changchun, 130023 The People's Re-

public of China


