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Abstract. A complete set of numerical quasi-isomorphism invariants is given

for a class of torsion-free abelian groups containing all groups of the form

§\sf\, where sf = (Ax, ... , A„) is an n-tuple of subgroups of the additive

rationals and 3?[£f] is the cokernel of the diagonal embedding f| A,- —► © Aj.

This classification and its dual include, as special cases, earlier classifications of

strongly indecomposable groups of the form S?[srf] and their duals.

The purpose of this note is to show that the complete sets of quasi-isomor-

phism invariants for strongly indecomposable torsion-free abelian groups of

the form &(sf) or ^/[j/] given in [AV3, AV4] actually classify these groups

without the strong indecomposability assumption and, in fact, classify a strictly

larger class of groups. Let sf = (Ax, ... , A„) be an 77-tuple of subgroups

of the additive rationals Q. Then 2?(s/) is the kernel of the summation map

Ax®- • -©^„ —► 2~lAi != Q and &W] is the cokernel of the diagonal embedding
f\A,: -> A\ ©• • -®An . Groups of the form 2?(sf) are dual to groups of the form

3?[sf] via a quasi-homomorphism duality for Butler groups, which is detailed

in [AV4]. Thus it suffices to work with just one of these classes. We choose to

focus on the S?[sf] 's for the relatively minor reason that this class is usually

studied in terms of pure subgroups, while the 2?(sf) 's are studied in terms of

homomorphic images; the latter seem to be marginally more difficult to handle.

The known invariants for these groups are the ranks of a relatively small col-
lection of subgroups, which we describe following some additional definitions.

Our treatment utilizes basic tools developed in [AV1-7] and summarized and

refined in [HM]. Fuchs and Metelli [FM] have obtained similar results using

different techniques. The paper [AV8] provides a survey of existing literature

on the subject.

In contrast to the usual definition, we define a type as an isomorphism class

of subgroups of Q. A subgroup X of Q can then be identified with the type

{aJf|0 / a £ Q} to which it belongs, and we will do this whenever the context

leaves no room for confusion. If g is an element of a torsion-free group G,

then type(g) — {a £ Q\ag £ G}. If X and Y are subgroups of Q, we write
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X < Y to indicate their relationship as types. Thus X c Y implies X < Y,

but not conversely. If G is a torsion-free group and X is a subgroup of Q (or

a type), denote G(X) = {g £ G\type(g) > X}; G[X] = D{ker/|/: G - X},
and for ^# a set of types, C7(^f) = Y,{G(X)\X £ Jf}. In our notation,

capital letters always denote groups, while script capitals denote «-tuples or
sets of subgroups of Q. The only exception is the symbol &, which is used

to denote the formation of a group from an 77-tuple, as in &[sf]. Keeping in

mind these conventions should help in avoiding the confusion inherent in the

established notational use of [ ] and () for our particular groups. For example,

3?(sf) denotes a group formed from the 77-tuple sf , while G(Jf) denotes the

subgroup of G defined above.
Denote by T the class of all Butler groups quasi-isomorphic to a direct sum

of the form G = &\3X\ © &[92] © • • • © &[9m] for 9x,...,9m tuples of
subgroups of Q, such that:

(Tl)   Each &[9fi] is strongly indecomposable; and

(T2)   If rank^[^,] > 2, then Y\G(Ak)\Ak £ 9t} is quasi-isomorphic to
^[9X] © C, with C completely decomposable.

Note that Y is closed under quasi-summands. We show in Proposition 6 that

r contains all groups of the form %?[sf]. The main theorem of the paper is

the following.

Theorem 7. Let G and 77 be Butler groups in the class T. Then G is quasi-

isomorphic to H if and only if rank (?(./#) = rank 77 (Jf) for each set of types

J£ from the type lattice generated by typeset G U typeset 77.

This theorem, with the stronger hypothesis that G and 77 are strongly inde-

composable groups of the form Z?[sf ], appears in various forms in [AV4, FM,

HM]. The rest of the paper is devoted to its proof.
An 77-tuple sf = (A\, ... , An) of subgroups of Q is called cotrimmed [Le]

provided that for each i, Ai = At + fKy Aj. Equivalently, the canonical

image of each A\ in S?[sf] is pure. It will be convenient to view S?[sf]

as a sum of these pure subgroups. Since multiplying the 77-tuple sf by a

nonzero rational does not change the isomorphism class of &[sf} (see [R]),

we can assume 1 e Aj and denote by a, the image in 3/[sf] of the element
(0, ... , 1, ... , 0) 6 Ax © • • • © Ai■ ® ■ ■ ■ © An (that has a 1 in the /th position

and 0's elsewhere). Then S"[sf] = XM/a; an^ ax + ■■■ + a„ - 0, while any
proper subset of the a, 's is linearly independent. Our first two results are well

known.

Lemma 1. Let G be a Butler group and X a type.

(a) rank(G(X) + G[X]) - rankC7[X] is the rank of a maximal X-homogen-

eous completely decomposable quasi-summand of G.

(b) If L is the lattice of types generated by typeset G, then G[X] is the pure

subgroup generated by G(Jf), where Jf' = {Y £ L\Y £ X} ■
(c) With Jf as in (b), ran\.(G(X)+G[X])-ran\.G[X] = rankC7(^U{X})-

rank G(Jt).

Proof. For (a), see [AV1, Corollary 2.2]; Corollary 1.4 of [ARV] contains a

version for representations of finite posets. Part (b) is due to Lady [La]. Part

(c) follows from (b).
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Theorem 2 (see [AV3] or [AV6]). Let sf = (Ax, ... , A„) be a cotrimmed n-

tuple of subgroups of Q and G = *&[sf]. The following are equivalent.

(a) G is strongly indecomposable.

(b) rankG(y4,-) = I for 1 < i < n .
(c) End(G) is isomorphic to a subring of Q.

An easy corollary of Theorem 2 will be used in the proof of the main theorem.

Corollary 3. Let sf = (Ax, ... , A„) be a cotrimmed n-tuple ofi subgroups of Q

such that G = ^[sf] is strongly indecomposable. If 77 is a torsion-free group

such that ran\.H(Jf) = rank G(Jf) for each subset Jf of {Ax,... , A„}, then
G is quasi-isomorphic to a subgroup of 77.

Proof. Write G = Y^^iOi with ax + ••• + an = 0 in G. Theorem 2 and
the hypothesis on ranks imply that there are elements />, £ H(A{) such that

bx + • • ■ + b„ = 0, but any proper subset of the />, 's is independent. Then

Oj —► bj defines a monic quasi-homomorphism of G into 77.

We complete the preliminaries with an additional known result. If sf =

(A\, ... , An) is an 77-tuple of subgroups of Q and X is a subgroup of Q,

we obtain an equivalence relation on the elements of sf by calling Ai X-

equivalent to Aj provided X £ A,+ Aj and by extending via reflexivity and

transitivity. Note that {Ai} is always an .4,-equivalence class. The utility of

this equivalence notion is indicated by the next theorem. To avoid cumbersome

notation, we will frequently treat 77-tuples as sets and vice versa. We also use

~ to denote quasi-isomorphism.

Theorem 4 (see [AV2] or [AV6, Proof of Theorem 2.4]. Let sf = (Ax, ... , An)
be an n-tuple of subgroups of Q and G = ^[sf].

(a) If X is any subgroup ofi Q, then rank G(X) + 1 75 the number of X-
equivalence classes in sf .

(b) If sf is cotrimmed and §0 = {^7}> ^1 > • • ■ , ^r are the Aj-equivalence

classes in sf , then G ~ &[%[] © • • • ®&[%r'], where, for each 1 <j<r,

g\ = Zj U {At} .

We are now ready to give an explicit description of the quasi-decomposition

of &[sf] into strongly indecomposable summands.

Decomposition Algorithm for G = "S[A]. Assume sf = (Ax, ... , A„) is an

77-tuple of subgroups of Q and G = 2>[sf].

Let {^1} = £o, %>\, ■■■ , ^r be the Ax-equivalence classes in sf . By The-

orem 4(b), "§[sf] = &[%[] © ••• ®&[&r'] (up to quasi-isomorphism), where

%! = g]; u {Ax}. Assume A2 £ %! for some (unique) 1 < i < r. Write

{A2} = 9q,9x, ... ,9S for the ^-equivalence classes in %!, with 5 > 1.

Again by Theorem 4(b), &\%{\ ~ S\3[\© • • -Q&l&j], where 3] = 3} U {A2}.
This in turn produces a further quasi-decomposition of G. Note that each of

the summands 77, = ^[9[] satisfies rank 77,(Af) = 1 by Theorem 4(a). Iterate

this procedure with Ay, ... , An. At the start of the /cth stage we have decom-

posed G into quasi-summands of the form "§[38] where each 38 is a subtuple

of sf and the group Ak belongs to precisely one of these tuples, say 3§§ . We

then further decompose G by decomposing ^[38f\ via Theorem 4(b), using

Ak -equivalence classes. After 77 iterations, we obtain a quasi-decomposition of

&[sf] with some strong properties, as summarized in the next result.
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Proposition 5. Assume sf = (AX, ... , A„) is a cotrimmed n-tuple of subgroups

of Q and G = ^[sf]. The decomposition algorithm above produces a quasi-

decomposition

G~&[3i]®---@&[3m]

with the tuples 3n satisfying the following properties:

(a) Each 3n is a subtuple ofi sf (not necessarily cotrimmed) with at least

two components.

(b) If h ± i, then 3^ n3j is a subset ofi{Ax, ... , A„} containing at most
one element.

(c) If Ak £ 3h and Gh = &[3h], then rankGh(Ak) = 1.
(d) Each &[3n] is strongly indecomposable.

(e) For each 1 < h < m there is a strictly decending chain of tuples

3^ = sfD3rlD---D rm = 3n,

with 3^+x = {Ak}\j% forsome Ak £3j and some Ak-equivalence class

%±{Ak} in^J.

Proof. Properties (a) and (b) follow readily from the construction of the algo-

rithm. Property (c) is a consequence of Theorem 4: when the group Ak is

used to decompose the unique tuple to which it belongs at the start of the kth

stage, the resulting summands 77 in which Ak appears have rank77(Ak) =

1, as noted in the description of the algorithm. Subsequent decompositions

preserve this condition: each summand 77 in which Ak appears will have

rank 77^) equal to one.  Property (d) is a consequence of (c) via Theorem

2. Since the tuples 3j are not necessarily cotrimmed, to apply Theorem 2
we need to observe that if (Bx, ... , Bk) is the cotrimmed version of a fc-tuple

{Au..., Ak) (Bi = Ai + C\j¥i Aj), then At C Bt. Thus, if 77 = $\AX ,...,Ak]
and rank77(A) = 1, then rank77(5,) = 1 since 77 = &[BX, ... , Bk] and
77(7?,) C H(Ai). Property (e) is a direct consequence of the design of the algo-

rithm.

Proposition 6. Let G = "§[sf] for some n-tuple sf of subgroups of Q. Write

G ~ &[3X] © • • • ®&[9m] as in Proposition 5. If Gh = &[3n], then, for k ^ h ,
rank Y^{^h(Ai)\Ai e 3k} is either 0 or 1. In particular, G belongs to the class
r.
Proof. Fix k ± h between 1 and 777 and abbreviate f)9h - f]{Ai\Aj £ 3n}.
Using Proposition 5(e), the tuple 9n is obtained via a sequence of tuples 3q -

sf , 3\, ... , 3^ = 3n , with 3j obtained as a subtuple of 3j- 1 by taking, for
Aj(n) £ 3]-X, an Aj^-equivalence class in 3r/-X and adjoining Aj^ . We will

abbreviate Aj = Aj^). There is an analogous sequence {Vf} for the tuple 3k .

Let /(I) > 1 be the smallest index i such that £?[ ± 3*1'. The subtuples 3n
and 3k of ^(i)-i belong to different ^/(^-equivalence classes, since 3i(X) ±

&l/v, are formed from different /l,(i)-equivalence classes as in Proposition 5(e).

Thus, f]3h + f)3k > Am) by the definition of equivalence. Next let i(2)
be the smallest index i > i(l) (if one exists) such that 31 does not contain

At(\). Then Ai(X) and 3n are in distinct A,;(2)-equivalence classes in ^(2)-i

(where Ai(2) £ 3[(2)-X), so that Ai{2) < f)3h + A^X). Continuing in this way,

we obtain an increasing sequence of indices  i(l) < ■■■ < i(t) < p such that
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Ai(j+X) < At(j) + C]3n and A^ belongs to 3\\ = 3n. Thus, we obtain the
chain of inequalities

f]3h + f]3k> Am + f]3h > Am + f]3h > ■■■> Ai(t).

Now suppose A/ is an element of 3k . Then

f\3h+Ai>f]3h + f)3k>Am.

If <§i and %?2 are two ^/-equivalence classes in 3n , then f| ^1 + D ̂ 2 > At by

the definition of equivalence. Since f]^ + f]^2 > f\9n , it follows that

[\%x+[\%2>[\3h + At> Am.

Thus, every ^/-equivalence class in 3n is a union of ,4,(,)-equivalence classes.

However, by Proposition 5(c) and Theorem 4, there are only two ^/(^-equiva-

lence classes in 3n , namely, {A^t)} and 3/,\{Ai(t)} • Consequently, there are

at most two ^/-equivalence classes in 3n . Moreover, if there are exactly two

^/-equivalence classes, they must be {A^} and 3n\{A^t)} . In this case, by

4(a), rankGn(Ai) = 1, where 67, = &[3n]. Moreover, by the definition of

^/-equivalence, Gn(Af) is the pure subgroup generated by the image of A^t)

in Gn , namely, G^A^)). As we let At range over the elements of 9k , we

see that Y,{Gn(Ai)\At £ 3k} C Gn(A^t)). Since the group Gh(A^t)) has rank
one by 5(c), the proof of the first assertion of the proposition is complete. To

verify the assertion that G belongs to T, note that condition (Tl) holds for
G by Proposition 5(d) and that condition (r2) is a direct consequence of the
first part of Proposition 6.

By Proposition 6, T contains all Butler groups quasi-isomorphic to groups

of the form &[sf]; however, there are many groups in Y which are not quasi-

isomorphic to a group of the form &[sf]. For example, if px, ... , p6 are

distinct primes and Aj is the smallest subring of Q containing p~x, then

the group G = *§[AX, A2, Ay] © ff[A^, A5, A(j] is not quasi-isomorphic to a
S?[sf] (see [FM, Example 2.5]). But G belongs to Y because, for instance,

Hom(^,, &[AA, A5, A6]) = 0 if 1 < / < 3, so that G(AX) + G(A2) + G(Ay) =
&[AX, A2, Ay] and (r2) is satisfied.

We are ready for the main theorem.

Theorem 7. Let G and 77 be Butler groups belonging to the class Y. Then G

is quasi-isomorphic to 77 if and only if rankc7(^#) = rank 77 (Jf) for each set

ofi types Jf from the type lattice generated by typeset G U typeset 77.

Proof. The only if direction is clear. For the converse, by definition of T, we

have G ~ &[3X]®- ■ ■®^'[3m] with the 3t tuples of subgroups of Q such that

(YI) and (r2) are satisfied. It is easy to check that, without loss of generality,
we may take the 3t 's to be cotrimmed. In this case, the lattice generated by

typeset G is the same as the lattice generated by the entries of the 3t 's ([Le] or
[FM]). Abbreviate G, =2?[9i]. By (YI) each G, is strongly indecomposable.
Let C be the direct sum of the G, 's which have rank one. By Lemma 1 (c) and
the hypotheses, for each type X we have

rank(G(X) + G[X]) - rankG[^] = rank(77(*) + H[X]) - rank77[X].
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It follows from Lemma 1(a) that C is quasi-isomorphic to the direct sum of

the rank one summands in a quasi-decomposition of 77 into strongly indecom-

posable groups. As a consequence we may write G ± G' ®C and 77 ~ 77' © C
where G' and 77' are again in Y and have no rank one quasi-summands. In

addition, since rankG(Jf) = ranYG'(Jf) + rankC(Jf) for each set of types

Jif, the groups G' and 77' inherit the hypotheses of the theorem. Thus we

may reduce to the case where G and 77 have no rank one quasi-summands. In

particular, rankS?[3j] > 2 for each i, so that the quasi-isomorphism in (Y2)

holds for each i.
Write 3X = (AX,... ,Ak) and denote G' = G(3X) = £JL, G(At) and 77' =

H(3X) = £*=ii*L4,-). By hypothesis, the ranks of G and 77' are equal.
Moreover, by (r2), G' ~ GX@C, where C is a completely decomposable group.

We will show that 77' ~ TTj © C for some subgroup 77[ of 77'. Let X be the
type of a nonzero rank one summand of C . The group G' is a homomorphic

image of ®f=1 G(A{), so for some I < i < k there is a nonzero map from

G(Ai) to X. For convenience take i = 1. Then X > Ax, so that G'(A') c

G(X) = G(Ax)nG(X) C G'(X) and G(X) = G'(X). Similarly, H(X) = H'(X).

Clearly, G'[X] contains the pure subgroup G" generated by YJl=x G(At)[X].

Moreover, G'/G" is a homomorphic image of ©f=1 G(Ai)/(G(Aj)[X]) and,

hence, has outer type less than or equal to I. It follows that G'[X] = G".

Similarly, H'[X] is purely generated by £,=i H(Ai)[X]. By Lemma 1(b), each
G(Aj)[X] and H(A,)[X] is purely generated by G(Jff) for Jfi a set of types
T satisfying A, < T £ X. If Jf = \]Jfi then G'[X] is the pure subgroup
generated by G(Jf) and H'[X] is the pure subgroup generated by H(Jf). We

have established the following equalities:

rankG'(X) = rankG(X) = rank77(X) = rank77'(X);

rankG'[X] = rankG(^) = rank77(.#) = rank77'[X];

rank(G'(X) + G'[X]) = rankG(Jf U {X}) = rank77(Jf U {X})

= rank(77'(JT) + H'[X}).

By Lemma 1(a), rankG(^fU{X})-rankG(^) = rank 77 (^u {X}) -rank H(Jf)
is the rank of a maximal X-homogeneous completely decomposable quasi-

summand of G' and of 77'. It follows that 77' ~ 77i © C, where C is a

completely decomposable group such that G' ~ GX®C.

The next step is to show that Gx embeds into 77i . Note that for any sub-

set Jf of {Ax,...,Ak}, rankGi(./#) = rankHx(^), since rankG'(^#) =

rankG(^f) = rank 77(Jt) = rank 77' (Jf) and rank G'(Jf) = rankG,(^) +
rank C(Jf). Therefore, Gx is quasi-isomorphic to a subgroup of 77i by Corol-

lary 3. Similarly, each G, = 3?[3i\ is quasi-isomorphic to a subgroup of

77. By symmetry, any strongly indecomposable quasi-summand of 77 e Y

is quasi-isomorphic to a subgroup of G. It follows that there is a nonzero map

G, -> 77 -» G. The image of this map has nonzero projection onto some Gj.

By the same reasoning, we can then obtain a nonzero composition

G, —+ 77 —► G —* Gj —* 77 —> G —► Gk

for some k . If we continue this process, eventually one of the subscripts on

the G 's will repeat. At this point, for some index /, we will have a nonzero
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composition G, -> 77 —> G, that is a quasi-automorphism of G,, since G,

strongly indecomposable implies End(G,) c Q by Theorem 2. As a conse-
quence, we may write G ~ G, ® G' and 77 ~ G, © 77' for some groups G'

and 77'; however, the class Y is closed under quasi-summands, so that G'

and 77' belong to T. As noted previously, the quasi-direct decompositions

G 6i Gt ® G' and 77 ~ G, © 77', along with the hypothesis of the theorem,
imply that rankG'(^#) = rank 77' (Jf) for each set of types Jf from the lattice

generated by typeset G' u typeset 77' C typeset G U typeset 77. The confluence of

these remarks allows us to apply an induction on rank to G' and 77', and the

proof is complete.

Let F be the class of all Butler groups quasi-isomorphic to groups of the

form G = ^(3\) © • • • © S?(9m), where each 3j is a tuple of subgroups of

Q, such that each ^(3f) is strongly indecomposable; and if rank3?(9,) > 2,

then G/C]{G[Ak]\Ak £ 3f} ~ &(3{) © C, with C completely decomposable.
Applying the duality of [AV4] immediately provides the following.

Corollary 8. Let G and 77 be Butler groups in the class Y'. Then G and 77
are quasi-isomorphic if and only if rank(C]Xe^, G[X]) = rank(f]Xe^ H[X]) for

each subset JK of the lattice ofi types generated by typeset G U typeset 77.

Remark. Analogs of Theorem 7 and Corollary 8 hold in the context of rep-

resentations of finite posets, a fact we note but do not prove. The interested

reader can make the minor changes needed to obtain the (more general) proofs

by referring to [AV6].
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