A VECTORIAL SLEPIAN TYPE INEQUALITY. APPLICATIONS
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ABSTRACT. We prove a new inequality for Gaussian processes; this inequality
implies the Chevet’s inequality and Gordon’s inequalities. Some remarks on
Gaussian proofs of Dvoretzky’s theorem are given.

I. INTRODUCTION

Let {gi«} (1<i<n,1<k<d), {l}?,and {g,»}',’ denote independent
sets of orthonormal Gaussian random variables. Let E and F be Banach

spaces, {fi}_, C F and {x;}7, CE*. Let T(w) = X0, Y4 _, & 1(@0)x: ® fi
be a random operator from E to F. The Chevet inequality says [Cv]

d
(1) £ (max 17x1) < ﬁ(ez(xr, . x;)lE( > )

+32(fl,-~~sfd)]E< Zg,

where
12
e(xt, ..., x)=sups | D x7(x)?] ; lxle<1
1<i<n
and
1/2
e(fis ..., f)=supS | Y (fk)2 s tlles <1
1<k<d

Later, Gordon proved an inequality in the opposite direction:

(1.2)
1/2 d n
|X||E 1 (ZX (‘x ) E( )-82(]},...,];1)]E<Egix
k=1 i=1

< ]E( min ||Ta,x||> .
llxlle=1
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He also showed that the constant v/2 in (1.1) can be replaced by 1 (see [G1]).
Our aim is to deduce these inequalities from a general Gaussian inequality for
Gaussian processes.

I1. BASIC INEQUALITIES

Let (Q, % , P) be a probability space and X a canonical R?-valued Gaus-
sian random vector (i.e., with covariance matrix equal to Id;). We define
two Gaussian processes as follows. For n > 1, let B} be the closed unit ball
of /7 and S"~! its unit sphere. For x = (x!,...,x") € R", let |x|, =
(XL (x)HH)Y2 and let Xi, ..., X, be n independent copies of X, indepen-
dent of X . Let {g,..., 8.} be a set of orthonormal Gaussian random vari-
ables independent of {X, X;, ..., X»}. Let

n n
(2.1) Xx=inXi and gx=Zx‘gi.

i=1 i=1
We shall prove the following inequality.

Theorem 2.1. Let AC B} . Let Fy: R? — R be a family of 1-Lipschitz functions
indexed by x € A. Then the Gaussian processes {Xx}xca and {8x}xeca satisfy

(2.2) E max Fy (Xy) < Emax{Fy(||x[2X) + &}.
x€A x€A
Corollary 2.1. Let A C B}, and let |||-||| be a norm on R? such that ¥x € R?,

[lIx|ll < lIx|l2. Then the processes {Xyx}cca and {gx}xea verify
2.3 i X|||-E <Eminl|||X,]|]| <E X
(2.3)  minjix]lof||X]|| - Emax g, < Emin|||Xy[|| < Emax ||| X|
< E[[|X]]] + E max gy.
XEA

Proof. For the right-hand side inequality put F,(x) = |||x|||, and for the left-
hand side inequality put F,(x) = —|||x|||. O

Corollary 2.2. Let X be a canonical R?-valued Gaussian random vector, with
X, and g, as defined in (2.1). Let A c S"~!, F a 1-Lipschitz function on
R4, and u =EF(X). Then the processes {Xx}xca and {gx}xea verify

Emax |F(Xy) — u] <E|F(X) — u|+ Emax g, < | + Emax g,.
X€A x€A X€EA

Proof. For the first inequality, take G(-) = |F(-) — u|, which is a 1-Lipschitz
function; for the second, we use a well-known Poincaré-type inequality, that is,

E|f(X) - E(f(X))]? < EIVS(X)]3
for X as above and all 1-Lipschitz functions f on R¢ [P, C]. O

Next we show how the Gordon inequalities follow from inequality (2.3).
Indeed, let u: RY — F, u(¥4_ o*er) = X4_, ok fi,and v: E — [2, v(x) =

(x(x), ..., x5(x)). Wehave |lu|l =ex(fi,..., fz) and ||[v]| = ea(x], ..., X;).
Let X = Zi:n hier,andfor 1 <i<nlet X; = 2‘;:1 gixer - Then X isan R4-
valued canonical Gaussian vector and X, ..., X, are n independent copies

of X, independent of X . Then u(Xy)(w)) = Ty(x), so the rest of the proof
is as in Corollary 2.1 with 4 = v(Sg), where Sk is the unit sphere of E and
el = llu(a)ll. O
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Before proving Theorem 2.1, we get a vectorial Slepian type inequality, from
which we deduce Theorem 2.1 (see Theorem 2.2).

We define some notation. For x = (x;), y = (y;) in R?, x ® y denotes the
matrix (X;y;)i<;,j<d,and for u, v € R?, define x®y[u, v] as (4, x®y(v)) =
(x, u)(y,v) and | -] re asthe operator norm.

Theorem 2.2. Let {X;} and {Y,}, t € T, be two families of Gaussian vectors

with values in R?, let {g,} be a family of Gaussian random variables indepen-
dent of {X;} and {Y,;}, and suppose

(1) dist(X,) =dist(Y;) forall te T,
(if) IE(X ® X, - Y, ® Y, o) < $Elgi — &* forall s, ¢ in T.

Let F,, te T, be a family of real 1-Lipschitz functions on RY. Then
Esup F(X;) < Esup{F(Y,) + g}.

Proof. We may clearly assume without loss of generality that the two processes
{X:, te T} and {Y;, t € T} are independent and, also by a standard approx-
imation argument, that the F;, are 1-Lipschitz and twice differentiable.

It is clear that we just need to prove the inequality for finite sets X;, ..., Xn,
Yi,...,Yy (N>1). Fix X;,..., Xy and Y;, ..., Yy, and prove that
(2.4) E llgz’x{ﬂ(’m} <E ]rsnggv{E(Y,) + &i}

For 0 € [0, n/2] let
Z(0) = (cos(0)X; +sin(6)Y,, sin(f)g;; ... ; cos(8)Xn + sin(f) Yy, sin(6)gn)
where Z(6) is an (R9*!)N-valued Gaussian vector, with
Z(0)=(X1,0;...;Xy,0) and Z(n/2)= (Y1, &5 ... ; YN, &N);
a vector (y, z) of E = (R%*")V will be denoted by
(¥, 2) = (5 z))ici<y Where y; € R and z; € R.
We prove first the following lemma.

Lemma 2.1. Let F: REU+DUN RN F(y, z) = (Fi(31)+ 21, ..., Fn(¥Nn) + zn)
where F,, ..., Fy, are 1-Lipschitz twice differentiable on R?, and G: RN —
R be a twice differentiable function such that 3k,, k,, such that |G(-)| <
kiekl*l: | 18G(-)/da;| < kie*l'l>, and 10%2G(-)/da;de;| < kiekl*l2 for all
i,j=1,...,N. Put p=GoF and

(2.5) h(6) = Ep(Z(6)).
Suppose
L 902G
(2.6) Vi,j, i#]J, Farda;
and
2
(2.7) Vi=1,...,N ) 0°G -=0.
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Then h(0) is increasing, therefore,

EG(Fi(X1), ..., Fn(Xn)) = h(0) < h(n/2) = EG(Fi(Y1)+8&1, ..., Fn(Yn)+8n).
Proof of Lemma 2.1. Let ¢ > 0, and let A be an (R?+!)V.valued canonical
Gaussian vector independent of {Z(0); 0 € ]0, n/2[}. Let Z,(0) = Z(0) +eA
so that I,(6) = I'(8) + &2I , where T'(6) is the covariance matrix of Z(6) and
I';(0) is the covariance matrix of Z,(6). Thus

I'.(0) - T'(0)ase —0 sothat h,(0)— h(6)ase— 0.
Remark that
V(u,v)€E  ((u,v),T(0)(u,v)) > &|(u, v)|}

Let g:(y, z; 0) be the density function of Z,(6). We will list the following
well-known identities (see [G2, F, G1]):

1 .
28) &y, 7 6) = s [, ew {03 07, 2)
~ 5w, 0), TuO)(w, )| dudo
where du=du,---duy, du; =du; ---du; 4, and dv =dv,---duy;

(29)  h(6) = /E 0, 2)&, 2, 0)dydz  [=Ep(Zs(O)];

0
(2.10) H6) = [ o0, 215580, 2, 0)dydz:
E o0
(d+1)N
0 1 d . 92
(2.11) ggge(X, 0) = ) i%l E)’i,,’(e)m&()‘, 6)

where x = (y, z) and I'.(0) = (] ;(0))1<i,j<na+1) - We compute I.(6). We
can write I';(6) as a block matrix: I';(8) = (I ;(6))i1<i<n, 1<j<n Where

(2.12) I j(0) = E[Z7(0) ® Z}(6)]
where
ZH0) = (Xi(0) + Yi(0) + eAi, 8i(0) +eA))
where
A= (Ai, A)i<i<n» Ai= (A, ..., AY),
Xi(6) = cos(6)X;, Y;(0) = sin(0)Y; 8i(0) = sin(6)g;.

Using the fact that {X,, ..., Xy}, {Y1,..., Yn},and {g,..., gn} arein-
dependent processes, we find that

Ai,j(0)+821dd5i,j 0
0 B ()

where A4; ;(0) isa d x d matrix and Bf ;(0) is a scalar such that
A;;(8) = cos?(O)E(X; ® X;) +sin*(0)E(Y; ® V),
sin’(0)Eg;g; + €%0;

(2.13) re (6) = [

(2.14)

B;;(0)
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where J; ;=1 if i=j,and O if i # j. A simple computation gives

((u, v); Te(0)(u, v))
N N N N
=ZZ [(ui, Ai, j(0)u) + *(ui, uj)] ZZ (0)v; - v;.
i1 j=1 Py
(Vs

Considering 92g 0)/0y;0y; as a d x d matrix for each i, j gives
J

9 ( 0) == i ce 0 ( zB)d ()]
egey z, tra 37,0y, a8\, d0

l 1

2

NI'—
Mz

+ ,,,=|di O By 23 0);
but
215 m0) = [0, 215580, 2, 6)dvdz.
Let M; j=EY;®Y; —EX;® X;. We get
(2.16)

sm20 al ey, z)
he(0) = le:ltrace< 3y: 9y, Mi‘j)

oy, )
* Zl 32,821 g’gl}ge(y, z, e)dydz,
Since dist(X;) = dist(Y;) for all i, we get M, ; = 0; hence, we have, for

9=GoF,
sm20 82Go F
/{Zt (aylay Mi‘j)

h(6) =

i#]

82Go F
+Z (3 3zj> g'gj}gc‘(y,z,e)dydz,

A simple computation gives, for all i # j,

9?GoF _ _0%G__
6y,~8yj - 8a,~0aj

F-VFi(yi) ® VF(y))

and
02Go F _ 092G
32,’821' B 8a,~0a,
Condition (2.7) gives

oF foralli, j.

2
2.17) re__ » 6if forall i, j,
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SO

2 N 52
hy(0) = sm20/{ (_________8 G(F(y, ) .Mi,j) +Z—a GUED, Z))]Egigj
i#]

0y;0y; Py 02;0z;

s1n20 62G(F(y, z))
dyioy, i
1# Yioyj
1
+ (Esig; - 51Eg7 +E8]1)

O’G(F(y, 2)) .
XW &, z;0)dydz

in26 Y [02G(F(y,
_ sm2 /{Z <_79£a,~f9ya—jz» ((Mi,j - VFi(yi), VFj(y;))

i#j
1
- §E|gi - gj|2)) } &, z;0)dydz.
Since [|[VF(y)|| <1,

(M;, (VFi(yi)), VFj(y))) — %Elgi gj|2 < (M; j)".S"(Rd) - -]Elg, gj|2 <0,

so hy(6) > 0 and EG(F(Z,(0))) < EG(F(Z,(n/2))). Finally, letting ¢ — 0,
we get the result of Lemma 2.1. 0O

2
Za oF )]Egz}gs(y, z;0)dydz

We now finish the proof of Theorem 2.2. The map max which assigns to
each (aj, ..., ay) € RY the value max(a;, ..., ay) is slowly increasing and
verifies (2.6) and (2.7) in distribution sense [G2]. So if we regularise max by
convolution with a twice differentiable function y; , which is supported by a ball
of radius 1/k, we obtain a function m; , which is 1-Lipschitz and satisfies the
above three conditions. By considering the functions 4, (8) = Em, o F(Z(6)),
and by letting k go to infinity, we find by Lebesgue’s theorem that the function
EmaxoF(Z(-)) is increasing in [0; /2]. This completes the proof of Theorem
22. O

Proof of Theorem 2.1. We have X, = Y x'X;. Let Yy = ||x[],X, where
x runs over a set A C B2. Then dist(X,) = dist(Y,). Take a finite set
{ai, ..., an} in A; a simple computation gives

M; j=E(Y, ® Y, — X4 ® Xg) = (laill2llajll2 — a; - a;) 1dy

where a;-a; is the scalar product. Moreover, E|g, — g;,|* = |la; — a;l|3, the F;
are 1-Lipschitz functions, so

2
1M, jl| ey — 3El&a, — &,1* = (laill2llajll2 — a; - aj) — $llai — a;l3
— L(llaill2 - llajli2)* < 0.
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Hence conditions (i) and (ii) of Theorem 2.2 are satisfied, and Theorem 2.1 is
proved. O

ITI. FINAL REMARKS
We give now a short proof of a result due to Milman.

Theorem 3.1 [M, Sc]. Let ¢ > 0, f: RY — R be a Lipschitz function with
constant L, X = Zf; 1 &i€i where {gi}i1<i<n is a set of orthonormal Gaussian
random variables and {e;},<i<n is the canonical basis of I, and u =Ef(X).
Then there exists an operator T: 15 — RN with n = [(eu/L)(en/L - 2)], such
that
|f(Tx)—pu|<eu forall xeS" .

Proof. Consider, as above, real-valued Gaussian operator T, = Y|, Ef’:, gije;
®e; from [ to RV,

n
gj,jej and X, =) x'X;
i=1

I
|'Mz

where x = (x', ..., x"). Then Xx(w) = Tyx , and we have

P({w/3x € S" 1 If(Xx)—ﬂ|>8u})=P({w; sup 1f(X;) u|>8u})

1
< —E su Xx) — u.
oy xeS'P—'If( x) — U

We apply Corollary 2 to get
P({w/3x € S"'; |f(Xx) — u| > eu})

{]Elf —u|+ LE sup fog,},

xesn—1

and using the Poincaré-type inequality as in Corollary 2, we find that

P({w/3x € S" 1 |f(Xy) — ul > eu}) < £ ll +E sup fogJ]
x€eSn—!
—(1 +v/n).

We only need to choose n such that this last expression is < 1.
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