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Abstract. We prove a new inequality for Gaussian processes; this inequality

implies the Chevet's inequality and Gordon's inequalities. Some remarks on

Gaussian proofs of Dvoretzky's theorem are given.

I. Introduction

Lei {gi,k} (1 <i<n, 1 < k < d), {hk}dx , and {gi}" denote independent
sets of orthonormal Gaussian random variables. Let E and F be Banach

spaces, {fkyk=l c F and {x*}?=1 c E*. Let T(co) = ££., £](_, *,■,*(«).*; ®/t
be a random operator from E to F . The Chevet inequality says [Cv]

(1.1)    E^rnax ||rwx||) < s/2 U(x*x , ... , x*n)E ( Yhkfk   )

+e2(fi,...,fid)El Yg,x*      J J ,

where

\l        V2        1
e2(x*, ... ,x^) = sup<      Y x*(x)2)      >  \\x\\e<1 >

)
and

e2(fi,...,fid) = sup\ I Y y*(fk)2)   ; b*llf*<i ► •
\l<A:<rf -/

It

Later, Gordon proved an inequality in the opposite direction:

(1.2)

<E(  min lir^xll ) .
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He also showed that the constant y/2 in (1.1) can be replaced by 1 (see [Gl]).

Our aim is to deduce these inequalities from a general Gaussian inequality for

Gaussian processes.

II. Basic inequalities

Let (Q,, sf , P) be a probability space and X a canonical Rd-valued Gaus-

sian random vector (i.e., with covariance matrix equal to Id^). We define

two Gaussian processes as follows. For n > 1, let B2 be the closed unit ball

of /2" and S"~l its unit sphere. For x = (x1, ... , x") e R", let ||x||2 =

(2~H=X(X')2)^2 aim" let X\,... ,Xn be n independent copies of X, indepen-

dent of X. Let {gx, ... , gn} be a set of orthonormal Gaussian random vari-

ables independent of {X, Xx, ... , Xn}. Let

n n

(2.1) Xx = Yxi*i   and   & = £>'>,•.
;=1 7=1

We shall prove the following inequality.

Theorem 2.1. Let A c B" . Let Fx: Rd —> R be a family ofil-Lipschitz functions
indexed by x£A. Then the Gaussian processes {Xx}xeA and {gx}x^A satisfy

(2.2) EmaxFx(Xx) < Emax{Fx(\\x\\2X) + gx}.
xeA xeA

Corollary 2.1. Let A c B\ , and let \\\-\\\ be a norm on Rd such that Vx £ Rd ,

\\\x\\\ < \\x\\2. Then the processes {Xx}x€A and {gx}xeA verify

(2.3) min||x||2||mi| -Eraax& < Emin|||^||| < Emax|||^|||
xeA xeA xeA X£A

<E\\\X\\\ + Emaxgx.
xeA

Proof. For the right-hand side inequality put Fy(x) = |||x|||, and for the left-

hand side inequality put Fy(x) = -|||x|||.   □

Corollary 2.2. Let X be a canonical Rd-valued Gaussian random vector, with

Xx and gx as defined in (2.1). Let A c S"~x, F a l-Lipschitz function on

Rd, and p = EF(X). Then the processes {Xx}xeA and {gx}x^A verify

Emax\F(Xx)- p\ <E\F(X) - p\ + Emaxgx < 1 4-Emaxfo.
xeA xeA xeA

Proof. For the first inequality, take G(-) — \F(-) - p\, which is a l-Lipschitz

function; for the second, we use a well-known Poincare-type inequality, that is,

E\f(X)-E(f(X))\2 <E\\Vf(X)\\2

for X as above and all l-Lipschitz functions / on Rd [P, C].   D

Next we show how the Gordon inequalities follow from inequality (2.3).

Indeed, let u: Rd -» F, u(Y,dk=x akek) = £*=i akfk . and v: E ^ I2, v(x) =

(x,*(x), ... ,x*(x)). We have ||u|| = e2(fi , ... , ff) and ||u|| = e2(x*, ... , x*).

Let X = Y?k=\ h^k , and for 1 < i < n let X\ = Y,i=\ &kek - Then X is an Re-
valued canonical Gaussian vector and Xx, ... , X„ are n independent copies

of X, independent of X. Then u(XV(X)(to)) = Tw(x), so the rest of the proof

is as in Corollary 2.1 with A = v(Se) , where Se is the unit sphere of E and

|||a||| = ||K(a)||.   a
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Before proving Theorem 2.1, we get a vectorial Slepian type inequality, from

which we deduce Theorem 2.1 (see Theorem 2.2).

We define some notation. For x = (x,), y = (y,-) in Rd , x®y denotes the

matrix (x,;p,)i<,i7<rf , and for u, v e Rd , define x®y[u, v] as (u, x®y(v)) =

(x, u)(y, v) and || • \\s?(Rd) as the operator norm.

Theorem 2.2. Let {Xt} and {Yt}, t £ T, be two families ofi Gaussian vectors

with values in Rd, let {gt} be a family of Gaussian random variables indepen-

dent of {Xt} and {Yt}, and suppose

(i)  dist(Xt) = dist(T,) for all t £ T,
(ii)  \\E(Xt ® Xs - Yt ® y,)ll^(R-) < 3EI& - gs\2 fior all s, t in T.

Let Ft, t £ T, be a family of real l-Lipschitz functions on Rd . Then

EsupF,(*,) < Esup(TO) + gt}-
t t

Proof. We may clearly assume without loss of generality that the two processes

{X,, t £ T} and {Yt, t £ T} are independent and, also by a standard approx-

imation argument, that the Ft are l-Lipschitz and twice differentiable.

It is clear that we just need to prove the inequality for finite sets X\,..., Xn,

Yx, ... ,YN   (N > 1). Fix Xx, ... , XN and Yx, ... , YN , and prove that

(2.4) E max (TOi)} < E ma* (TO) + Si}-
\<i<N l<i<N

For 6 £ [0, n/2] let

Z(0) = (cos(9)Xx + sin(6)Yx, sin(6)gx; ... ; cos(0)^ + sin(9)YN, sin(6)gN)

where Z(9) is an (Rrf+1 ̂-valued Gaussian vector, with

Z(0) = (Xu0;...;XN,0)    and    Z(n/2) = (Yx, gx; ... ;YN , gN);

a vector (y, z) of E = (Rd+X)N will be denoted by

(y, z) = ((yi; Zf))i<<<jv   where yt £ Rd and z,- £ R.

We prove first the following lemma.

Lemma 2.1. Let F: R^d+X^N -» R", F(y, z) = (Fx(yx) +zx, ... , FN(yN) + zN)

where Fx, ... , FN, are l-Lipschitz twice differentiable on Rd, and G: RN -»

R be a twice differentiable function such that 3kx, k2, such that \G(-)\ <

Jfci^l'b, \dG(-)/dai\ < jfei^Ha, and \d2G(-)/daidaj\ < kxek^'^ for all
i, j = I, ... , N. Put tp = GoF and

(2.5) h(6) = Etp(Z(9)).

Suppose

(2.6) Vi,;, i?j,        J^~<0

and

i=\ J
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Then h(9) is increasing; therefore,

EG(FX(XX),... ,FN(XN)) = h(0) <h(n/2) = EG(Fx(Yx)+gx, ... ,FN(YN)+gN).

Proof of Lemma 2.1. Let e > 0, and let A be an (Rd+1 ̂-valued canonical

Gaussian vector independent of {Z(9); 9 £ ]0, 7i/2[}. Let Ze(9) = Z(9) + eA
so that Te(9) = T(9) + s2Ie , where T(9) is the covariance matrix of Z(9) and

Te(9) is the covariance matrix of Ze(9). Thus

Te(9) -» T(9) as e -» 0   so that   ht(0) — h(9) as e -» 0.

Remark that

V(M, U) E £ ((77, v),Te(9)(u, V)) > S2\\(U,V)\\2E.

Let gt(y, z; 9) be the density function of Ze(9). We will list the following

well-known identities (see [G2, F, Gl]):

(2.8) gE(y, z;9)= ,1%)(d+x)N J exp li((u,v); (y, z))

--U". v), T£(9)(u, v)) \ dudv

where du = dux •■■duN , dut = duiyX •• dut j , and dv = dvx ■■ -dv^ ;

(2.9) hE(9)= f tp(y,z)g£(y,z,9)dydz       [= Ep(Z£(0))];
Je

(2.10) h'e(9) = j tp(y, z)-^ge(y, z, 9)dydz;

a i {d+l)N d a2

i'.7=l

where x = (y, z) and Te(9) = (y'j(6))i<ij<N(d+\) ■ We compute Te(9). We

can write r£(0) as a block matrix: re(0) = (T* -(0))i<,-<jv, \<j<n where

(2.12) n,;(0) = E[Z?(0)®Z;(0)]

where

Zf (9) = (*,-(0) + 7,(0) + eA,, g,-(0) + «AJ)

where

A = (A,,A;.)1<,<w,        A,- = (A,',...,Af),

X,(0) = cos(0)X,,        y,(0) = sin(0)r,,        ft(0) = sin(0)#.

Using the fact that {Xx, ... , XN}, {Yx,... ,YN}, and {gx,..., gN} are in-

dependent processes, we find that

oiii n   (o^-\Aij(e) + e2udSi,j       0
I*-"J 'uW-[ 0 B'j(Q)

where Ajj(9) is a d x d matrix and Bf .(0) is a scalar such that

(2 14) ^(<?) = cos2^E^' ® *» + sin2(0)E(^ ® */) -

77f,(0) = sin2(0)Eglg; + e2(J,,j,
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where Sij = 1 if i = j, and 0 if i ^ j. A simple computation gives

((u,v)-rB(6)(u,v))
N     N N     N

= Y £[<";, Aij(9)uj) + e2(Ui, «,)] + £ Y Blj(e)v'' »7-
;=1 ;=1 1=1 7=1

Considering d2ge(y, z; 0)/<9y,<9y/ as a rf x cf matrix for each i, y gives

^aCy, *;« = j E <race (a^*0, •z; »)3»</»))

1,7=1 '

but

(2.15) h'E(9) = jtp(y,z)-^gt(y,z,9)dydz.

Let Af,- j- = ET,- ® T,- - EXt ® AT,. We get

(2.16) '

,,._,     sin20   f   f A (82tp(y,z)    X£   \«e» = —i(E«-e(^LJ-M,J)

Since dist(Ar,-) = dist(Yj) for all i, we get Af,,, = 0; hence, we have, for
tp = Go F ,

,,,_,     sin20  /■ [JJ    (d2GoF    ..   \

A simple computation gives, for all i ^ j ,

fl/°f = -J^-4- o F • VF,(y,) ® VF,-(y,)
oytdyj      dcxjdatj J   J

and

r32C7oF a2C7       .,,„..
■3—5— = ^—^~ ° F    for a11 '» J-
oZjOZj      oajOcxj

Condition (2.7) gives

2.17 T-j = -   V    »    »        for all/, 7,
<9af . T"?,. oat da j
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SO

.,,       Hn2fl  /fA    (B'G(F{y,z)) \    .f d*G(F(y, z))

+ MEft£/-i[Es? + Eg?]J

^/{E(^f(«.-^.».v^)>

-^E|ft-g;|2) J \ge(y,z;9)dydz.

Since ||VF,(y,)|| < 1,

(Af,-,;-(VF,-(y,-)), VFj(yj)) - \E\gi - gf2 < ||(A7, j)!^ - AE|ft - gf2 < 0,

so h'e(9) > 0 and EG(F(Ze(0))) < EG(F(Ze(n/2))). Finally, letting e -> 0,
we get the result of Lemma 2.1.   □

We now finish the proof of Theorem 2.2. The map max which assigns to

each (ax, ... , a/y) £ RN the value max(ai, ... , a^) is slowly increasing and

verifies (2.6) and (2.7) in distribution sense [G2]. So if we regularise max by

convolution with a twice differentiable function y/k , which is supported by a ball

of radius l/k, we obtain a function mk , which is l-Lipschitz and satisfies the

above three conditions. By considering the functions hk(9) = Emk o F(Z(9)),

and by letting k go to infinity, we find by Lebesgue's theorem that the function

EmaxoF(Z(-)) is increasing in [0; 7t/2]. This completes the proof of Theorem

2.2.   □

Proof of Theorem 2.1. We have Xx = £ti*'*i- Let Yx = \\xhX, where

x runs over a set A c B2. Then dist(Xx) = dist(7x). Take a finite set

{ax, ... , a/f} in A ; a simple computation gives

Mi j = E(Fa, ® Yaj - Xat ®Xaj) = (||a,||2|Kll2 - a, • af) Idrf

where a, • a7 is the scalar product. Moreover, E\gai - ga.\2 = \\a,■- aj\\2, the Fj

are l-Lipschitz functions, so

WijW&W) - \E\ga, - gaf = (INMKIU ~ <*i ' «>) ~ jll«i ~ "jWl
= - I(||a,.||2 - |M|2)2 < 0.
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Hence conditions (i) and (ii) of Theorem 2.2 are satisfied, and Theorem 2.1 is
proved.   □

III. Final remarks

We give now a short proof of a result due to Milman.

Theorem 3.1 [M, Sc]. Let e > 0, f: RN ^> R be a Lipschitz function with

constant L, X = J^i=i g,e, where {gi}\<i<N is a set of orthonormal Gaussian

random variables and {e/}i<j<jv w the canonical basis of l2 , and p = Ef(X).

Then there exists an operator T: /£ -> R^ with n = [(ep/L)(ep/L - 2)], such
that

\f(Tx)-p\<ep   for all x £ Sn~x.

Proof. Consider, as above, real-valued Gaussian operator Tw = VJ"=1 £/=i Sije*

®ej from I2 to R*,

N n

x' = zZ&< JeJ   and   x* = zZ *'-**
7=1 7=1

where x = (x', ..., x"). Then Xx(co) = Twx, and we have

?({co/3x £ Sn~x;  \f(Xx)-p\>ep}) = V^co;   sup  \f(Xx) - p\ > ep^

< ~E  sup  \f(Xx) - p\.
sll   xeS"-*

We apply Corollary 2 to get

V({co/3x £ S"-x;  \f(Xx)-p\>ep})

< J\ \ E\fi(X) -p\ + LE  sup  Y xJ8j \ •

and using the Poincare-type inequality as in Corollary 2, we find that

F({co/3x £5""';  \f(Xx) -p\> ep}) < ±-   1 + E  sup  £V*,-

<—(1 + VtT).
ep

We only need to choose 77 such that this last expression is < 1 .
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