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A HENRICI THEOREM

FOR JOINT SPECTRA OF COMMUTING MATRICES

RAJENDRA BHATIA AND TIRTHANKAR BHATTACHARYYA

(Communicated by Palle E. T. Jorgensen)

Abstract. A version of Henrici's classical perturbation theorem for eigenval-

ues of matrices is obtained for joint spectra of commuting tuples of matrices.

The approach involves Clifford algebra techniques introduced by Mcintosh and

Pryde.

1. Introduction

Perturbation bounds for eigenvalues of matrices have a long history and sev-

eral significant results concerning them are known [3].

For commuting tuples of operators the concept of joint spectrum has been

developed in several important papers over the last twenty years (see [10] for

a recent discussion). However, not many perturbation inequalities seem to be

known in this case. Davis [6] drew special attention to this problem and its

importance; after that Mcintosh and Pryde [10] introduced a novel idea, the

use of Clifford algebras, to develop a functional calculus for commuting tuples

of operators and used this to extend earlier perturbation results from [4]. This

approach was developed further by them and Ricker [11].

In two recent papers [13, 14] Pryde has initiated an interesting program:

using the ideas of Clifford analysis to generalize some classical perturbation
inequalities for single matrices to the case of joint spectra of commuting tuples

of matrices. In [13] he generalizes the classical Bauer-Fike Theorem from single

matrices to commuting tuples. In this note we obtain a similar extension of a

well-known theorem of Henrici [8]. We follow the ideas of Pryde [ 13]. We must

emphasize that attempts to obtain similar generalizations of other inequalities

[14] run into difficulties and stringent conditions need to be imposed. Thus it

would be of interest to find out which of the classical 'one variable' theorems can

be generalized to the 'several variable' case, which fail to have generalizations

and which are true in modified forms. The present note is of interest in this

context.
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Other authors with different motivation have also obtained extensions of

some classical spectral inequalities from the case of one operator to that of

commuting tuples (see, e.g., [12]).

To state the classical Henrici Theorem we need to define a measure of non-

normality of an 77 by 77 complex matrix. Any such matrix A can be reduced

to an upper triangular form T by a unitary conjugation, i.e., there exists a

unitary matrix U and an upper triangular matrix T such that U*AU = T.

Further, writing T = A + N, where A is a diagonal matrix and N is a strictly

upper triangular matrix, we have

(1.1) U*AU = T = A + N.

Of course, neither U nor T are uniquely determined. The matrix A has as

its diagonal entries the eigenvalues of A . The matrix A is normal iff the part

N in any decomposition (1.1) of A is zero. Given a norm v on matrices the

v measure ofi nonnormality can be defined as

(1.2) Av(A) = \x£v(H),

where the infimum is taken over all N occurring in decomposition (1.1) of A .

A is normal iff   AV(A) = 0.
Identifying A as usual with an operator on the Euclidean space W with the

Euclidean vector norm || • ||, we define the operator norm of A as

(1.3) \\A\\= sup \\Ax\\.
11*11=1

This norm will be of special interest to us.

We then have

Theorem 1.1 (Henrici). Let A be a nonnormal matrix, and let B be any other
matrix, B £ A . Let v be any norm majorizing the operator norm. Let

(1.4) y=    K{A)K     ' y     u(B-A)

and let gn(y) be the unique positive solution of

(1.5) g + g2 + --- + g"=y.

Then for each eigenvalue fi of B there exists an eigenvalue a of A such that

(1.6) \a-B\<-±-)V(B-A).

This theorem can be stated equivalently in the following way. For a fixed

eigenvalue fi of B let

(1.7) S = min|a - fi\,

where a varies over all eigenvalues of A . Then

s

(1.8) -i-<v(B-A)
V     ' l+Al/(A)/d + --- + A"u-l(A)/S"-x ~

(see [15, p. 172] for this formulation and its proof).
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We will restrict ourselves to the operator norm and prove a version of the

above inequality for the joint spectra of commuting w-tuples of matrices. The

formulation of our result requires some facts from Clifford algebras which are

explained in §2. Perturbation theorems are stated and proved in subsequent
sections.

2. Preliminaries

For the convenience of the reader, we briefly state some facts about joint

spectra and Clifford algebras. Further details may be found in [1, 10, 11].

Let A = (A\, ... , Am) be an m-tuple of commuting matrices. A joint

eigenvalue of A is an element X = (Xx, ... , Xm) of Wm corresponding to

which there exists a nonzero vector x £ &" such that AjX = XjX for all

j = I, ... , m . Such an x is called a joint eigenvector of A . The collection
of all joint eigenvalues of A is called the joint spectrum of A and is denoted

by opt(A). The set opt(A) is nonempty and has at most n distinct points. For

a single matrix T we will denote its usual spectrum, i.e., the set of eigenvalues,

by a(T). If Ax,..., Am commute and each of them has real spectrum then
it is shown in [10] that

(2.1) apl(A) = {X£3?m:0£o (£(Aj- Xjl)2)) .

Let 31 (m) be the Clifford algebra generated by 3tm ; 32(m) is a 2m-dimen-
sional linear space. Its basis elements can be indexed by subsets of the set

M = {I, ... , m} . Let F = {es : S c M} be a basis for 3?(m). 3?(m) is made
into an algebra by defining a multiplication for these basis elements by

(2.2) eseT =    Yl   (s, t)es+T,
ses,ter

where (s, t) = +1 if s < t and -1 if s > t, and S + T is the subset of

M consisting of integers which are either in 5" or in T but not in both. In
particular, e$ is the identity for this algebra and

(2.3) e2j} = -e^,    e{l]e{j} = -e{j]e{i},        i, j =1, ... ,m,

and if

(2.4) S = {ix, ... ,ik}, ix <i2<---<ik,    then   es = e{il} •••e{ik}.

Let {ex, ... , em} be the standard basis of 3$m . Identifying ej with ey\,

3im can be thought of as a subspace of 3?^m). So (xx, ... ,xm) is identified

with ^2 Xje^\. Since

(2-5) (E WW) (E xJeU}) = (" E xf)e*

and e^, is the identity of 3?(m), any nonzero element of 3Zm is invertible in

3l(m) ■
For any two elements X = Y< h?s and p = J2 Vs^s of 3H(m), let (X, p) =

^XsPs ■ This defines an inner product in which the basis {es : S c M} is
orthonormal.
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Let A!" be a finite-dimensional vector space over ^. The tensor product

X ® 3l(m) is a finite-dimensional vector space whose elements can be represented

as Yj xs ® es ■ If % has an inner product ( , ), the space X ® 31 (m) naturally

inherits it:

(2.6) (^xs®es, Y,ys®es) = ^(xs,ys)-

Let Jfn be the algebra of all 77 by 77 matrices. Let {As : S c M} be
any collection of 2m matrices from Jfn . Then XMs ® es is an element of

Jfn ® 3$(m). It can be thought of as a linear operator on %?n ® 3t{m) if we define

its action on Y,XT® eT by

(2.7) f E^®^) (E/l7'(8>^) = E As^T ® eseT-

So J£n <8> «^(/n) is a subalgebra of the algebra of all linear operators on Wn ®3l(m)

and Jf„ is a subalgebra of JKn ® <^(m) by the identification of the matrix A

with the operator ^ <g> ^ in ^#„ <g> 3?(m).

Given an 777-tuple ̂  = (Ax, ... , Am) of n by 77 matrices Aj the Clifford

operator of ,4 is an element of Jfn ® ̂ m) defined as

(2.8) Cliffy) = 7 ̂  ^- ® <?{;}.

We list below a few results which we need later and which are proved in

Pryde [13].

Lemma 2.1 (Pryde). (i) If Aj and Ak commute foreveryj andk then QX\fX(A)2 =

UAj2.
(ii) For any X £ 3im define A - XI = (Ax - Xx, ... , Am - Xm). If Aj and

Ak commute for every j and k then Clirf(A-XI) is invertible if]YJAj ~^j1)2
is invertible.

(iii) If A = (A\, ... , Am) is an m-tuple of commuting selfadjoint matrices

then Cliffy) is selfadjoint and

(2.9) || Cliffy) || = max{||A|| : X £ opt(A)}.

This last quantity max{||A|| : X £ opt(A)} will occur in our discussion often.

We will denote it by r(A) and call it the joint spectral radius of A .

We close this section with a small observation.

Proposition 2.2. If"the Dj's are diagonal matrices for j = 1, ... , m then

Cliff(7)) is invertible iff Y,D-j is invertible, and in this case Cliff(D)_1 =

(YD2)~X Cliff(D).

Proof. The proof uses the previous lemma twice. Taking X = (0, ... , 0) in

the second part of the lemma we see that Cliff(D) is invertible iff J2 D2 is

invertible. Since the Dfs are diagonal they commute. So by the first part of

the lemma (Cliff(D))2 = Y,D2 . Hence Cliff(7>)-1 = (ET),2)-1 Cliff(D).   u



a henrici theorem 9

3. Perturbation of real spectra

In this section we consider m-tuples of matrices A = (Ax, ... , Am) with

real eigenvalues only. Our first result in this section concerns the Bauer-Fike

theorem [2]. Recall that for single matrices this says that if A is similar to a

diagonal matrix, i.e., if there exists an invertible matrix T such that TAT~X -

A = diag(ai, ... , a„) and B is any arbitrary matrix then o(B) is contained

in the union of the balls B(at, e), where e = \\A- B\\ • \\T\\ • \\T~l\\. See [3,
p. 114]. This was generalized to the case of m-tuples of commuting matrices

by Pryde in [13]. However, as Stewart and Sun have pointed out in their recent

book [15, p. 177] Bauer and Fike proved a stronger result:

Let A, B £ Jfn and T £ GL(n). Then for any fi £ o(B)\o(A)

(3.1) \\T-\A-BI)~XT\\-X < \\T~X(A-B)T\\.

A generalization of this to the case of m-tuples of commuting matrices with

real spectra is the following theorem.

Theorem 3.1. Let A = (Ax, ... , Am) and B = (Bx, ... , Bm) be two m-tuples
of commuting matrices with real spectra. Let fi £ opt(B)\opt(A). Let T £
GL(n). Then

(3.2) ||T-1 (Cliffy - fiL))~xT\\-x < \\T-x(Cliff(A - B))T\\.

Proof. Since fi 0 opt(A) and all Aj have real spectra by (2.1), XX^y ~ Pj1)2
is invertible. So by Lemma 2.1 (ii) Cliff(A - fi I) is invertible.

On the other hand, since fi £ opt(B), there exists xef" such that BjX =

fijX   for all 7 = 1, ... , 77.
Hence,

Cliffy - B)(x ® e>) = i Y,(Aj - Bf(x ® e{j])

= i Y,(Aj - fif(x ® e{j]) = Cliffy - fil)(x ® e>).

So,

x®et = (Cliff(A - fil))~x(Cliff(A - B))(x ® ef)

= rr-'(Cliff(^ - fiI))-xTT-x(Cliff(A - B))TT~x(x ® ef).

Hence,

T-x(x®ef) = (T-x(Cliff(A-fiI))-xT)(T-x(Cliff(A-B))T)(T-x(x®e4>)).

After taking norms and cancelling \\T~x(x ® ef)\\ from both sides we have

||(T'x(Cliff(A - fiI))-xT)\\~x < \\(T~x(Cliff(A - B))T)\\.   D

Now we will define the measure of nonnormality of an m-tuple A = (AX, ... ,

Am) of commuting matrices. In this case there exists a unitary matrix U such

that U*AjU = Tj for all 7 where the 7) are upper-triangular. (See [9, p.

81].) Write 7} = A; + TV) where the A; are diagonal and the Nj are strictly
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upper-triangular. Let N = (Nx, ... , Nm). We can define the measure of non-

normality of A as

(3.3) A(^) = inf||Cliff(TV)||,

where the infimum is taken over all choices of unitary U for which each U*AjU

is upper-triangular. We obtain below a Henrici theorem in the case of m-tuples:

Theorem 3.2. Let A = (Ax, ... , Am) and B = (Bx, ... , Bm) be two com-

muting m-tuples of matrices with real spectra. Let fi £ apl(B) \ opt(A). Let

5 = min{||a - fi\\ : a £ opt(A)} . Then

<3-4> i + m)/* + ..'+A,-Wj.- £ "CWiA ~ »"■
Proof. Let U be a unitary such that the infimum in definition (3.3) of A(A)

is attained. Then U*AjU = Aj + TV; where the Ay are diagonal and the TV)
are strictly upper-triangular. Let A = (Ax, ... , Am) and N = (N\, ... , Nm).

Then

U* Cliffy - fiI)U = iU* (E(^> - Pi1) ® eV}) u

= i £(Ay- + Nj - fijl) ® e0} = Cliff(A + TV - £/).

But

Cliff(A + N-BI)= Cliff(A - £7) + Cliff(TV)

( ' ) =Cliff(A-/37)(l + (Cliff(A-/?7))-1Cliff(TV)).

Note that fi <£ opl(A) since fi & opl(A). Let A,- - /?,7 = 7); and let 7) =
(A , ... , Dm). By (2.1) ET)2 is invertible. So by Proposition 2.2 Cliff(7)) is

invertible and (Cliff(7)))-1 = E* Tk ®e{k} where rfc = (E, D2)~xDk. The
7). are all diagonal. So,

(Cliff(A - fil))~x Cliff(TV) = ( J] Tk ® e{t} ) I £ TV}, ® e{7} ]

(3.7) V * '  V ̂  /
= E r^ ® em%}= x'  say-

fc,7

Now TkNj being the product of a diagonal and a strictly upper-triangular matrix

is again strictly upper-triangular. In different powers of X various products of

TkNj appear. But any product of 77 strictly upper-triangular matrices is zero.

So X" is zero. Therefore,

(Cliff(A + 7V-/3T))-1

= (l-X + --- + (-l)"-xX"-x)(Cliff(A-fiI))-x.

Hence,

||(Cliff(A + TV - fil))~x || <||(Cliff(A - fil))~x ||

.(l + ||(Cliff(A-/?7))-1|| • ||Cliff(7V)||

+ ... + ||(Cliff(A-/?7))-1ir1 . ||Cliff(TV)||"-1).
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Let    7/ = ||(Cliff(A-/5T))-1||-1.    Then

(3.9)       ||(Cliff(A + TV-A7))-1||<77-1(l + ^ + --- + ^^).

Taking T — U in Theorem 3.1 we have

(3.10)
\\(Cliff(A +N-fiI)yx\\-x =\\U*(Cliff(A - fiI)yxU\\-x

<||£7* Cliffy - B)U\\ < || Cliffy - B)\\.

By (3.9) and (3.10)

(3.11) \\Cm(A-B)\\ > {l+KA)h + .n+^{A)l^y

So the proof will be complete if we show that n - S. Recall that the Dj are

diagonal matrices with real entries. Let d\}' be the (i, z')th entry of Dj; i.e.,

Dj = diag(rf1(;'), ... , dnj)). Then opt(D) = {(<7,(1), ... , </<M>) : i = I, ... , n}.

Put (df],... ,d\m)) = di. Then

7/ = ||(Cliff(A-)37))-1|r1

= |(E^~lciiflH|  =||cliff(E^2)_ljD|

= max{||<i,||/||</,||2 ,7=1,... , n}~x = max {\\dt || ,7 = 1,... , n}

= max{||z|| , z € opt(A - fil)} = max{||a - fi\\:a£ op,(A)}

= 8   by definition.

This completes the proof.   □

4. Perturbation of complex spectra

In this section we consider m-tuples A = (Ax, ... , Am) of commuting ma-

trices with no restriction on Aj . In [ 10] Mcintosh and Pryde have shown that

any Aj can be written as AXJ + iA2j where AXj and A2j are polynomials in Aj

and each of them has real spectrum. Define n(A) = (Axx, ... , AXm , A2X, ... ,

A2m). This is called a partition of A in [13, 14]. Since the Aj commute, the

Aqj also commute for all q = 1,2 and for all j = 1, ... , m . So there exists

a unitary U such that U*AqjU = Aqj + Nqj where Aqj is diagonal and Nqj
upper-triangular. Let

(4.1) TV=(TV,,,... ,NXm,N2x,... ,N2m),

and in this case define the measure of nonnormality of A by

(4.2) A(^) = A(n(A)) = inf||Cliff(TV)||,

where as before the infimum is taken over all TV associated with A in the above

construction. For a = (ax, ... , am) £ ^m let aXj = Re (aj), a2j = Im (q;) .

Mcintosh and Pryde have also shown that a £ opt(A) iff (axx, ... , aXm , a2x,

... , a2m) £ opl(n(A)). Now let A and B be any two m-tuples of commuting
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matrices. Let fi e opt(B). Then (fixx, ... , fiXm, fi2X,... , fi2m) £ opt(n(B)).
By the main result of § 4 there exists (axx,... ,aXm, a2x, ... ,a2m) £ opt(n(A))

such that if

<5 = \\(fiu , ■■■ , fi\m, fil\ , ••■ , film) ~ («11 , ••• > cxXm, a2x, ... , a2m)\\

then

<«>        i+AM)/< +■■'+*-(.«)/«.- s "CWMA)""(B))»-

Note that 8 is also equal to \\fi - a\\, the distance between fi and a in W .

So we have proved

Theorem 4.1. Let A = (Ax,... , Am) and B = (Bx,... , Bm) be two m-

tuples of commuting n by n matrices. Let fi £ opt(B)\opt(A). Define 8 =

min{||a - fi\\ : a £ opt(A)} . Then

l+A(A)IS + .S+A-HA)lt>-> £ ]]Cm"iA) ~ "{B))l

5.  A SPECTRAL VARIATION BOUND

Consider two tz by n matrices A and B. Let Xx, ... , X„ be the eigenvalues

of A and px, ... , pn the eigenvalues of B . Let SA(B) = max; min,|A, - Pj\.

In [5] Bhatia and Friedland proved that

(5.1) SA(B)<nx/n(2M)x-x/n\\A-B\\x/n   ,

where M = max(\\A\\, \\B\\).
The approach in [5] was through characteristic polynomials. In [7] Eisner

obtained the same result from Henrici's theorem. Using Eisner's approach we
can obtain an analogue of (5.1) for commuting m-tuples. Let

(5.2) SA(B)=   max     min  \\X-p\\.
^6t/p,(77) Xeapl(A)

Define

(5.3) S.(Afr) = {jf/*M       wherey^ A/rfor7->0,

Then S„(A, r) is strictly monotone in both its arguments.

The following lemma can be found in Eisner [7] and is crucial to the proof.

Lemma 5.1. Given x > 0, 8 > 0, and a positive integer n define

y = (8"~x +8n-2T + --- + r"-x)x'n.

Then y is the minimal number such that

min{Sn(rM, r), 8M} < yMx-x/nrx/n   for all M>0,r>0.

Theorem 4.1 can be equivalently stated as

(5.4) SA(B) < S„(A(A), || Cliff(n(A) - n(B))\\).

Let M = max(||Cliff(7z(^))||, ||Clim>(fl))||). Let U be a unitary such that
U*AqjU - Nqj + Aqj, and suppose the infimum in definition (4.2) is attained
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for this choice, i.e., A(n(A)) = ||Cliff(TV)|| where TV is as in (4.1). Then by

definition

(5.5) A(A) = || Cliff(TV)|| < || Cliff(TV + A)|| + || Cliff(A)||.

The first term on the right-hand side is || Cliff(n(A))\\, and || Cliff(A)|| = r(A) =
r(n(A)) < ||Cliff(7r(^))||. So A(A) < 2Af. Hence by monotonicity of Sn in
the first component

(5.6) SA(B) < Sn(2M, || Cliff(n(A) - n(B))\\).

Also for all X £ opt(A) and p £ opt(B)

(5.7) ||A - p\\ < \\X\\ + \\p\\ < || CliftL4)|| + || Cliff(7?)||,

so that SA(B)<2M. So,

(5.8) SA(B) < min{S„ (2M, \\Cliff(n(A) - n(B))\\) , 2M}

(5.9) <7?1/"(2M)1-1/"||Cliff(7r(^)-7r(5))||1/'!

by the lemma. This is nothing but the Bhatia-Friedland inequality in the present

context. We state this as a theorem:

Theorem 5.2. Let A = (A\, ... , Am) and B = (Bx, ... , Bm) be two m-tuples
of commuting n by n matrices. Let n(A) and n(B) be partitions of A and

B respectively. Let M = ma\(\\Cliff(n(A))\\, ||Cliff(7r(5))||). Let SA(B) be as
defined in (5.2). Then we have the following bound on SA(B):

(5.10) SA(B) < nxln(2M)x-xln\\Cliff(n(A) - %(B))\xx'n.

Finally we should point out that for the case of pairs of matrices A = (Ax, A2)

the norms ||Cliff(^)|| and ||Cliff(7t(^))|| have been evaluated by Pryde [13].
For general m-tuples only bounds for them are known so far [10]. These can

be combined with our results to give computable upper bounds for estimation

of joint spectra. It remains an intersting open problem to find exact expressions

for these norms.
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