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ON MAPPINGS WITH INTEGRABLE DILATATION

TADEUSZ IWANIEC AND VLADIMIR SVERAK

(Communicated by Clifford J. Earle, Jr.)

Abstract. A factorization of Stoilow's type has been obtained for mappings

in R2 with integrable dilatation.

0. Introduction

For Q a domain in W (an open and connected set), we consider a mapping

/: fi -> R" of the Sobolev class rV^n(Q,Rn) with nonnegative Jacobian,

J(x, f) > 0 a.e. We say that / has finite dilatation if

(0.1) \Df(x)\"<K(x)J(x,f)   a.e.

where 1 < K(x) < co for almost every x £ fi and \Df(x)\ denotes the norm

of the differential Df(x): R" -» R" .

In recent developments of the nonlinear elasticity theory [Ba, S], there have

been intensive studies of the analytic and geometric properties of such map-

pings. It is known that the condition / 6 ^^"(fi, R") does not guarantee

that / is continuous, but it does if / has finite dilatation [VG], see also [Ma]

for a simpler proof. To state our result we need some definitions.

The dilatation quotient at the points x e fi with J(x, /) # 0 is defined by

If J(x, /) = 0, then Df(x) = 0, and in this case we put K(x, f) = 1
a.e. Therefore the dilatation function K( , fi): fi —> [1, co) is defined almost

everywhere in fi. A mapping / e ^^"(fi, R") is said to be K-quasi-regular,

1 < K < oc, if K(x, fi) < K a.e. If, in addition, / is a homeomorphism, we

say that / is -rv-quasi-conformal.

A well-known result in the theory of quasi-regular mappings [Re] states that

if K( , f) £ L°°(fi), then / is either constant or an open mapping. In two
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dimensions this fact has already been recognized by Bojarski [Bol, Bo2], who

has proved Stoilow's type factorization

(0.3) f=<Poh-x,

with /7: fi' —> fi a homeomorphism (quasi-conformal mapping) and <p: fi' —>

R2 a holomorphic function.

In this note we prove that this factorization remains valid for 2-dimensional

mappings whose dilatation function is only assumed to be integrable. Such

mappings are, therefore, open and discrete.

Theorem 1. Let Cl be a bounded domain in the complex plane (C, do(z)) and,

f £ Wx<2(Ci,C) with J(z,f) > 0 and K( , fi) £ LX(Q). Then there ex-
ists a homeomorphism h £ ^'^(fi^fi) and a holomorphic function <p £

Wx-2(Ci',C) such that

(0.4) fi = <poh-x.

Moreover,

(0.5) /  \Dh(co)\2do(co)< f K(z, fi)do(z)
Ja.1 Ja

and

(0.6) / \<p'(to)\2do(to)< [  jLf(z)    do(z).
J a' Ja dz

One can ask whether some integrability condition on the dilatation function

of a mapping / e ^oc'"(^' K") w^tn positive Jacobian implies openness also
in dimension n > 2. The arguments we have used in the proof of Theorem 1

suggest the following.

Conjecture 1. Let fi be a domain in R" and f £ Wx<n(Ci,Rn) with J(x, f) >

0 and K( , fi) £ L"_1(fi). Then f is either constant or an open mapping.

This has already been shown under additional assumptions about the bound-

ary values of / [Ba, S]. The general case still remains open.1

1. Preliminaries

We need a few of the fundamental properties of the quasi-regular mapping in

R" . Let us recall the chain rule for differentiation of the composite functions

[BI].

Lemma 1.1. Let fi £ Wx^f(Cl, fi') be a quasi-regular mapping and let (p £

<-"(fi'). Then (pof£Wx0-n(Ci),and

(1.1) D(<pof)(x) = (D(p)(f(x))oDf(x)

for almost every x £ fi.

The next result concerns the change of variables in a multiple integral [BI,

Re, Ri].

'Very recently J. Heinonen and P. Koskela confirmed this conjecture for / a "quasi-light map-

ping" with K{ , f) G L^iCl) and p > n - 1 , and most recently for / e ^"(£1, R") with

p>n mdKeL^n-^-"\n).
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Lemma 1.2. Let fi: fi -> fi' be quasi-conformal and u £ L'(fi'). Then

u(f(x))J(x, f) £ Lx (fi), and we have

(1.2) / u(y)dy= { u(f(x))J(x,f)dx.
Ja1 Ja

With the aid of these two lemmas we easily arrive at an estimate of the Ln-

norm of the differential of the inverse mapping h = fi~x: fi' -+ fi in terms of

the dilatation function of /.

Lemma 1.3. Let f: fi —► fi' be a quasi-conformal mapping of bounded domains

fi, Q'cl", and let h: fi' —► fi denote the inverse mapping. Then

(1.3) /  \Dh(y)\ndy< [ Kn~x(x, fi)dx.
Ja1 Ja

Proof. We have

/  \Dh\"=  [ \D(f)-x(x)\nJ(x,f)dx= f \adjDf(x)\nJx-n(x,f)dx
Ja> Ja Ja

<   f \Df(x)\"^Jx-n(x,fi)dx= f K"-X(x,f)dx,
Ja Ja

as desired.

This is why we assumed in Conjecture 1 that K( , fi) £ L"~X(Q). The last

prerequisite deals with the concept and properties of monotone mappings.

We refer to the article of McAuley [McA], in which this subject is well covered

by a series of papers.

Let X and Y be compact metric spaces. A continuous mapping h from X

onto Y is said to be monotone if for each y £ Y the set f~x(y) is connected.

Actually, as shown by Whyburn, this implies that f~x(C) is connected for each

connected set C in Y.

We shall use the following result of Kuratowski, Lacher, and Whyburn [McA].

Lemma 1.4. If Y is locally connected, then the set of all monotone mappings

from X onto Y is closed in C(X, Y). The latter stands for the space of all
continuous mappings of X into Y with the topology of uniform convergence.

In our application of this result X and Y will be the 2-spheres, in which

case Lemma 1.4 is an elementary exercise.

2. The Beltrami equation

The space R2 will be identified with the complex plane C, where the area

element is denoted by do(z) = dxdy, z — x + iy. For a £ C and r > 0,

we define the open disk B(a, r) = {z; \z - a\ < r} and its boundary S(a, r) =

{z;\z - a\ = r} .

On the extended complex plane C = C U {co} we introduce the chordal

distance

d(a, oo)= and   d(a,b) = —=—JL    —^=
\flf\df yfl + \a\2yfl + \b\2

if a, b / co .
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Thus C is a compact metric space. Recall that the chordal distance d is
inherited from the Euclidean metric on the 2-sphere via the stereographic pro-

jection. It is clear that d restricted to C induces the same topology as does the

Euclidean metric.

We shall make use of the Cauchy-Riemann derivatives. For fi £ Wx^?(£l, C),

where fi is an open subset of C , the derivatives are defined by

, _ df _ 1 fdf _ .df\ _a/_i/a/   .d/\
h~dz~2\dx    ldy)'       h ~ dz "2 \dx+ldyj-

It is straightforward to check the formulas

J(z,fi) = \fiz\2~\fi2\2   and   \Dfi(z)\ = \fz\ + \f2\.

Our proof of Theorem 1 will rest on the existence theorem for the Beltrami

equation.

Proposition 2.1 (Bojarski [Bol, Bo2]). Let p be an arbitrary measurable Junc-

tion with compact support and \\p\\oo < 1. Then, for some p > 2, there exists a

unique solution /e^tC.C) ofi the Beltrami equation

(2.1) fi2(z) = p(z)fz(z)

such that f(0) = 0 and 1 - fi £ LP(C).

This is what we call the normal solution of (2.1) The coefficient p is referred

to as the complex dilatation of /. The normal solution is a quasi-conformal

homeomorphism of the extended complex plane, analytic outside the support of

p, and its Taylor expansion at infinity takes the form f(z) = z+ax z~x+a2z~2 =

• • • . See also [A, L, LV].
For results concerning the existence of solutions of (2.1) with ||^||oo = 1, we

refer to David [D]; see also [P].
From now on we confine ourselves to those p which are supported in the

unit disk B = {z; |z| < 1} . The purpose of this section is to establish uniform

estimates for the inverse mapping h = f~x: C —» C. First, recall the inequality

(2.2) f \Dh(co)\2do(co)< f    K(z,fi)do(z)
Je Jh(E)

for each measurable set E c C. Here, the dilatation function of / can be

expressed in terms of p as

K(7   n_|D/(z)|2_ l + \p(z)\

A(Z'ij" J(z,f)      l-\p(z)[

Proposition 2.2. Let Br = 5(0, r), r > 1, and £, C, £ Br be such that |£ - £| <

2. Then

(2.3) \m-h(0\2log^J^^n J    K(z,fi)da(z).

The chordal distance from h(£) to co is estimated independently ofi p as

(2.4) d(h(c;), OO) < y^

for all £ £ C.
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Proof. Take notice that / maps C-B univalently into C-{0}. In view of the

Koebe distortion inequality, we can write |z|-r-|z|_1-2 < \f(z)\ < |z|-|-|z|_1-|-2,

for all z with |z| > 1; see, for example, [M]. Hence, Br+X c fi(Br+f), which is

equivalent to

(2.5) h(Br+x) c Br+3.

We also infer that

(2.6) |/(z)|<4|z|   for |z| > 1.

To prove inequality (2.3) we set |<j; - Q = 26 < 2 and a = \(£ + £) £ Br.

Obviously, S(a, S) c B(a, t) c Br+X if 5 < t < 1. Since h is a homeomor-

phism, by the maximum principle, one can find points <!;', £' £ S(a, t) such

that \h(£,) - h(Q\ < \h(£,') - h((')\. The latter is easily estimated by the integral
of \Dh\ over the circle S(a, t):

(2.7) \h(i)-h(Q\< \ f       \Dh(co)\\dco\
z Js{a,t)

for almost every t £ (d, 1). By Holder's inequality we obtain

rx\h(0-h(C)\2<^ I      |Z)A(a;)|2|rfa)|.
1 Js{a,t)

Integrating with respect to t £ (3, 1), by Fubini's theorem, we find that

-2|A({) - h({)\2 logS <n f       \Dh(co)\2 do(co)
JB(a,\)

<n f    \Dh(co)\2do(co).
Jb„,

This, together with (2.2) and (2.5), yields

\h(i) - 77(C)|2l0g^^ < 77  / K(z,fi)d0(z)

<n f    K(z,f)do(z),
JBr+i

as desired.
Concerning estimate (2.4), it is equivalent to show that d(z, oo) <

10/(1 + \fi(z)\) for all z e C. If \z\ > 1 we use (2.6) to obtain

2 5sf2 10

*(z'°°) = 7rT|z|^TT4lzT^ TTlTW
For \z\ < 1, in view of the maximum principle \f(z)\ < max^|=1 |/(^)| < 4,

we conclude

This completes the proof of Proposition 2.2.

3. Proof of Theorem 1

We may assume that fi is a subdomain of the unit disk, fi c B, and

/^constant. Consider the complex dilatation p = p(z) of /; that is,

(3.1) ft = p(z)fiz   a.e. in fi.
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We extend p by zero outside fi and regard it as a function on the whole of

C. For 0 < e < 1 we define

(32) H \ = {ii{z) if \p(z)\< I-e,

1 ' ' fl[Z)    \(l-e)p(z)\p(z)\-x   if \p(z)\> I-e.

Let fe: C -» C be the normal solution of the Beltrami equation

(3.3) fl = p*(z)ft,

and let 77e = (/£)_1: C -> C denote the inverse mapping. With the aid of

Lemma 1.1 we find that

f! = -J(z,f)h%   and   fl = J(z,rp%.

Therefore, (3.3) becomes a quasi-linear equation for >7£ (the hodograph trans-

formation)

(3.4) h% = -p'(h£(co))hl.

The dilatation function of fe can be estimated independently of e as

K{z'f)-rJW(^\-T^W)\-Kiz'f)'

where, in view of our convention, K(z, fi) = 1 outside fi. This, combined

with Proposition 2.2, leads to uniform estimates

(3.5) |*.(0 - h*(Z)\2 < 21og(2;K_C|) jB+i K(z, /) <Mz)

for alK, C G Br, r > 1, with )£ - fl < 2, and

(3.6) ./(A^.oo)^-^.

A consequence of (3.5) is that the homeomorphisms hE: C —> C form an

equicontinuous family on each compact subset of C. By the Arzela-Ascoli

theorem it is possible to extract a sequence h£i, / = 1, 2, ... , e, \ 0, that con-

verges c-uniformly to a mapping /?: C —► C. Actually, in view of (3.6), the map-

pings h£' converge uniformly on the extended complex plane C with respect

to the chordal metric. According to Lemma 1.4 the limit mapping /z: C —> C

is monotone. In particular, the set

(3.7) Of = h-\Q)

is a domain.
Other uniform estimates follow from (2.2) and (2.5), particularly,

/    \DhE(co)\2 do(co) < f       K(z, f°) do(z) < f    K(z, fi) do(z)
JBr+l Jh(Br+l) JBr+i

for all r > 1. This shows that he' converges weakly in Wx'2(Br+x). Thus

h£Wx^2(£).

Now we define the function tp: fi' —> C by the rule

(3.8) <p(co) = fi(h(co))   for co £Q'.
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We want to prove that <p is holomorphic. To this end, fix an arbitrary open

subset U c fi', compactly contained in fi'. Thus ¥• (U) c fi for sufficiently

small e,, and we can examine the mappings cp£: U —► C for e £ {ex, e2, ...}:

(3.9) <pe(co) = f(he(to))   for co £ U.

Applying the chain rule (see Lemma 1.1) we find that q>£ £ WX<2(U) and

^l-fh£ + fW ^L-fh' + f-Wgs — Jzna + jznm, ^ - jznw-\- jzna.

Then, equations (3.1) and (3.4) imply

^- = (p(Z)-pe(Z))fzhl,

^ = (i-p(z)pj(z))m,

where z = he(co). It follows from the definition of p£(z) (see formula (3.2))

that

l/7(z)-/7e(z)|2<£(l-|/7£(z)l2),

|1-/Z(Z)/7*(Z)|2<1-|/7£(Z)|2.

Notice, too, that J(co, he) = (1 - \p£\2)\h£J2 (see (3.4)).
Now we use the change of variables according to Lemma 1.2 to obtain

I \<P%\2<e I J(co,h£)\fiz(h£(co))\2do(co)
Ju Ju

= e I     \fz(z)\2 do(z) < e f \fz(z)\2do(z).
Jhc(u) Ja

In much the same way we obtain the estimate

f \cp%\2do(co)< I \fiz(z)\2do(z).
Ju Ja

These two estimates imply that the sequence cp"' = f(he') converges to the

mapping cp = f(h) not only pointwise (because / is continuous) but also

weakly in WX'2(U). In conclusion, cp £ WX'2(U), and we have

|J=0, / \cpa,\2 do(co) < I' \fz\2 do(z).
oco Jv Ja

By the Weyl lemma cp is holomorphic in U. Since U was an arbitrary

compact subdomain of fi', <p is holomorphic in fi' as well. This also implies

inequality (0.6). To derive inequality (0.5) we use Lemma 1.3

/ \Dh\2do(co) < lim / \Dhe\2do(oj) < lim /     K(z,f£)do(z)
Ju £->0Ju e^°J¥(U)

<   I K(z,f)do(z).
Ja

Of course, U can now be replaced by fi', proving (0.5).

What remains is to show that h: fi' —► fi is a homeomorphism, which is the

same as to show that h is one-to-one.
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Recall that our function / 6 WX'2(Q) is actually continuous and noncon-

stant. For a given point a 6 fi, its preimage h~x(a) c fi' is a continuum

(compact connected set) because h is a monotone mapping. Clearly, the ana-

lytic function cp = fioh is constant on h~l(a). Hence h~x(a) consists of a

single point, because otherwise cp would be constant on the whole of fi'; thus,

/ would be constant on fi.

In conclusion, h: fi' —► fi is a homeomorphism, and we have the factoriza-

tion fi = cp o h~x .
This proves Theorem 1.
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