ON COMPOSITIONS OF CONFORMAL IMMERSIONS

MARCOS DAJCZER AND ENALDO VERGASTA

(Communicated by Jonathan M. Rosenberg)

ABSTRACT. We consider conformal immersions of a manifold M^n , $n \ge 6$, into conformally flat manifolds. If the principal curvatures of $f: M^n \to N_{cf}^{n+1}$ have multiplicities at most n-4, we show that any $g: M^n \to \widetilde{N}_{cf}^{n+2}$ can locally be written as $g = \rho \circ f$, where $\rho: N_{cf}^{n+1} \to \widetilde{N}_{cf}^{n+2}$ is a conformal immersion.

1. Introduction

A classical result due to Cartan [Ca] states that a codimension one conformal immersion $f\colon M^n\to N_{cf}^{n+1}$ of an n-dimensional Riemannian manifold into a conformally flat Riemannian manifold is (locally) conformally rigid if $n\geq 5$ and the maximal multiplicity of the principal curvatures satisfies $\nu_f^c\leq n-3$ everywhere. Then any other conformal immersion $g\colon M^n\to \widetilde{N}_{cf}^{n+1}$ is locally a composition $g=\rho\circ f$ for some local conformal diffeomorphism $\rho\colon N_{cf}^{n+1}\to \widetilde{N}_{cf}^{n+1}$. Cartan's result was extended to codimension greater than one in [dCD]. For fixed $k\geq 2$, a natural problem is to find conditions on $f\colon M^n\to N_{cf}^{n+1}$ which imply that any conformal immersion $g\colon M^n\to \widetilde{N}_{cf}^{n+k}$ is locally a conformal composition. That g is a local conformal composition means that, for each point $x\in M^n$, there exists a neighborhood $V\subset M$ of x and a conformal immersion $\rho\colon W\subset N_{cf}^{n+1}\to \widetilde{N}_{cf}^{n+k}$ of an open subset of N_{cf}^{n+1} containing f(V) such that $g=\rho\circ f$ along V. When k=2, we prove the following result.

Theorem 1. Let $f: M^n \to N_{cf}^{n+1}$ be a conformal immersion. Assume that $n \ge 6$ and $\nu_f^c(x) \le n-4$ everywhere. If $g: M^n \to \widetilde{N}_{cf}^{n+2}$ is a conformal immersion then there exists an open dense subset $\mathscr{U} \subset M$ such that, when restricted to \mathscr{U} , g is a local conformal composition.

2. The proof

We say that a submanifold $\overline{N}^{n+1} \subset \widetilde{N}_{cf}^{n+2}$ is a conformally flat hypersurface if, with the metric induced by the inclusion map, \overline{N}^{n+1} is conformally flat. Using Cartan's result, it is easy to check that Theorem 1 is equivalent to the following:

Received by the editors August 12, 1991.

1991 Mathematics Subject Classification. Primary 53C42; Secondary 53A30.

Theorem 2. Let $f: M^n \to N_{cf}^{n+1}$ be a conformal immersion. Assume that $n \ge 6$ and $\nu_f^c(x) \le n-4$ everywhere. If $g: M^n \to \widetilde{N}_{cf}^{n+2}$ is a conformal immersion then there exists an open dense subset $\mathscr{U} \subset M^n$ such that $g|_{\mathscr{U}}$ is locally contained in a conformally flat hypersurface of \widetilde{N}_{cf}^{n+2} .

To prove Theorem 2 we will make use of the following lemma on flat bilinear forms. We refer the reader to [dCD] or [Da] for notation, definitions, and some basic facts.

Lemma 3. Let $\beta: V \times V \to W^{k,2}$, $k \geq 3$, be a nonzero symmetric bilinear form. Assume that β is flat and $\dim N(\beta) < \dim V - \dim W$. Then W admits an orthogonal direct sum decomposition $W = W_1^{r,r} \oplus W_2^{k-r,2-r}$, where r=1 or 2, such that if β_1 and β_2 are the W_1 and W_2 components of β , respectively, then

- (i) β_1 is nonzero and null,
- (ii) β_2 is flat and dim $N(\beta_2) \ge \dim V \dim W_2$.

Proof. Analogous to that of Lemma 2.2 in [dCD].

Proof of Theorem 2. We may assume that $N_{cf}^{n+1} = S^{n+1}$ is the unit Euclidean sphere, that $\widetilde{N}_{cf}^{n+2} = \mathbf{R}^{n+2}$ is the flat Euclidean space, and that M^n is endowed with the metric induced by g. We consider S^{n+1} isometrically embedded in the light-cone \mathbf{V}^{n+2} of the flat Lorentzian space \mathbf{L}^{n+3} and contained in an (n+2)-dimensional affine hyperplane orthogonal to the axis of \mathbf{V}^{n+2} .

The map $F: M^n \to V^{n+2} \subset L^{n+3}$ defined by

$$F(x) = \frac{1}{\varphi(x)} f(x)$$

is an isometric immersion, where $\varphi \colon M^n \to \mathbb{R}$ is the positive function satisfying

$$\langle f_*(x)X, f_*(x)Y \rangle = \varphi^2(x)\langle X, Y \rangle$$

for any $X, Y \in T_x M$.

As in [dCD] or [Da], for a fixed point $x \in M^n$, the vector-valued second fundamental form $\alpha_F \colon TM \times TM \to T_FM^{\perp}$ of F in \mathbb{L}^{n+3} is given by

$$\alpha_F = (\langle \alpha_F, \eta \rangle + \langle , \rangle) \xi + \langle \alpha_F, \eta \rangle \eta + \alpha_F^*,$$

where the basis ξ , η for the orthogonal complement of $T_{f(x)}M^{\perp}$ into $T_{F(x)}M^{\perp}$ verifies

$$\langle \xi, \xi \rangle = 1$$
, $\langle \xi, \eta \rangle = 0$, $\langle \eta, \eta \rangle = -1$

and $F(x) = \xi + \eta$. Here α_F^* is the $T_{f(x)}M^{\perp}$ component of α_F and satisfies

(1)
$$\alpha_F^* = \alpha_f/\varphi.$$

Now let

$$W = T_{g(x)}M^{\perp} \oplus \operatorname{Span}\{\xi\} \oplus \operatorname{Span}\{\eta\} \oplus T_{f(x)}M^{\perp}$$

be given the natural metric $\langle \langle , \rangle \rangle$ of type (3, 2). Define $\beta: T_x M \times T_x M \to W$ by

$$\beta = \alpha_g \oplus (\langle \alpha_F, \eta \rangle + \langle , \rangle) \xi \oplus \langle \alpha_F, \eta \rangle \eta \oplus \alpha_F^*.$$

A straightforward computation shows that

$$\begin{aligned} \langle \langle \beta(X, Y), \beta(Z, W) \rangle \rangle - \langle \langle \beta(X, W), \beta(Z, Y) \rangle \rangle \\ &= \langle \alpha_{g}(X, Y), \alpha_{g}(Z, W) \rangle - \langle \alpha_{g}(X, W), \alpha_{g}(Z, Y) \rangle \\ &- \langle \alpha_{F}(X, Y), \alpha_{F}(Z, W) \rangle + \langle \alpha_{F}(X, W), \alpha_{F}(Z, Y) \rangle, \end{aligned}$$

and the Gauss equations for g and F imply that β is flat.

By definition of β , we have $\beta(X, X) \neq 0$ for $X \neq 0$; thus, $N(\beta) = 0$. By Lemma 3, $W = W_1 \oplus W_2$ decomposes orthogonally so that $\beta = \beta_1 \oplus \beta_2$, where

$$\beta_1: T_x M \times T_x M \to W_1^{r,r}, \qquad r \in \{1, 2\},$$

is nonzero and null and

$$\beta_2 \colon T_x M \times T_x M \to W_2^{3-r, 2-r}$$

is flat satisfying dim $N(\beta_2) \ge n - 5 + 2r$.

We claim that r=2. Assume r=1. It follows that $\beta_1=\phi\gamma$, where $\gamma\in W_1$ is a null vector and ϕ is a real-valued symmetric bilinear form. Thus there exists a unit vector $\delta\in T_{g(x)}M^\perp$ such that

$$\gamma = \cos\theta\delta + \sin\theta\xi + \cos\overline{\theta}\eta + \sin\overline{\theta}N,$$

where $N \in T_{f(x)}M^{\perp}$ is a unit vector. By definition, we have $Z \in N(\beta_2)$ if and only if $\beta(Z, X) = \beta_1(Z, X) = \phi(Z, X)\gamma$ for all $X \in T_xM$; therefore,

(2)
$$\langle \alpha_F(Z, X), \eta \rangle + \langle Z, X \rangle = \phi(Z, X) \sin \theta,$$

(3)
$$\langle \alpha_F(Z, X), \eta \rangle = \phi(Z, X) \cos \overline{\theta},$$

and

(4)
$$\langle \alpha_F^*(Z, X), N \rangle = \phi(Z, X) \sin \overline{\theta}$$

for all $Z \in N(\beta_2)$ and $X \in T_X M$. From (2) and (3) we get

(5)
$$\phi(Z, X)(\sin \theta - \cos \overline{\theta}) = \langle Z, X \rangle,$$

which implies $\sin \theta - \cos \overline{\theta} \neq 0$. From (4) and (5) we obtain

(6)
$$\langle \alpha_F^*(Z, X), N \rangle = \frac{\sin \overline{\theta}}{\sin \theta - \cos \overline{\theta}} \langle Z, X \rangle.$$

Using (1), we conclude from (6) that f has a principal curvature with multiplicity at least dim $N(\beta_2) \ge n-3$. This is a contradiction and proves the claim.

Since r=2, we have $\beta_1=\phi_1\gamma_1+\phi_2\gamma_2$, where ϕ_1 , ϕ_2 are real-valued symmetric bilinear forms and γ_1 , γ_2 are orthogonal null vectors. So we may write

$$\gamma_1 = \eta + \cos u \xi + \sin u \delta_1$$

and

(8)
$$\gamma_2 = N + \cos v \xi + \sin v \delta_2,$$

where δ_1 , δ_2 are unit vectors in $T_{g(x)}M^{\perp}$ verifying

$$\cos u \cos v + \sin u \sin v \langle \delta_1, \delta_2 \rangle = 0$$
.

Clearly, $\phi_1 = \langle \alpha_F, \eta \rangle$ and $\phi_2 = \langle \alpha_F^*, N \rangle$. Hence,

(9)
$$\beta_1 = \langle \alpha_F, \eta \rangle (\eta + \cos u \xi + \sin u \delta_1) + \langle \alpha_F^*, N \rangle (N + \cos v \xi + \sin v \delta_2).$$

For any $Z \in N(\beta_2)$ and $X \in T_x M$, $\beta(Z, X) = \beta_1(Z, X)$ is equivalent to

$$\alpha_{g}(Z, X) = \langle \alpha_{F}(Z, X), \eta \rangle \sin u \delta_{1} + \langle \alpha_{F}^{*}(Z, X), N \rangle \sin v \delta_{2}$$

and

$$\langle \alpha_F(Z, X), \eta \rangle (1 - \cos u) + \langle Z, X \rangle = \langle \alpha_F^*(Z, X), N \rangle \cos v.$$

Thus, from $\nu_f^c \le n - 4$, we have $1 - \cos u \ne 0$ and $\cos v \ne 0$; therefore,

(10)
$$\alpha_g(Z, X) = \langle \alpha_F(Z, X), \eta \rangle (\sin u \delta_1 + \operatorname{tg} v(1 - \cos u) \delta_2) + \operatorname{tg} v \langle Z, X \rangle \delta_2$$

and

(11)
$$\alpha_{g}(Z, X) = \langle \alpha_{F}^{*}(Z, X), N \rangle \left(\frac{\sin u \cos v}{1 - \cos u} \delta_{1} + \sin v \delta_{2} \right) - \frac{\sin u}{1 - \cos u} \langle Z, X \rangle \delta_{1}.$$

We easily conclude from (10) that g has a normal direction σ such that the tangent-valued second fundamental form A_{σ} in this direction has an eigenvalue with multiplicity at least n-1 whose eigenspace contains $N(\beta_2)$.

From r=2 we have that $\dim S(\beta)=2$, 3. We claim that $\dim S(\beta)=2$ if and only if σ is an umbilical direction. First observe that $\dim S(\beta)=2$ if and only if $\beta_2=0$, and if $\beta_2=0$ then σ is umbilical by equation (10). Conversely, if $A_{\sigma}=cI$, consider the vector $\zeta=\sigma/c-\xi-\eta$. Then ζ is not null and $\langle\langle \beta, \zeta \rangle\rangle=0$. This implies that $\dim S(\beta)=2$ and proves the claim.

Assume that $\dim S(\beta)=3$ on an open subset $V\subset M^n$. The 2-dimensional distribution $S(\beta)\cap S(\beta)^\perp$ is the (maximal) degeneracy space of the restriction of $\langle\langle\;,\;\rangle\rangle$ to the smooth distribution $S(\beta)$ and, therefore, is smooth. It follows easily that the vector fields δ_1 , δ_2 and the functions u, v in (7) and (8) can be taken to be smooth on V. The same conclusion holds on any open subset of M where $\dim S(\beta)=2$.

Let $\mathscr{W} \subset M$ be the open subset of points where $\dim S(\beta) = 3$, and let \mathscr{U}_1 be the interior of $M \backslash \mathscr{W}$. Let σ be a smooth umbilical unit normal vector field defined on a connected component U_{λ} of \mathscr{U}_1 . We claim that σ is parallel with respect to the normal connection of g. In fact, if σ is not parallel at $x \in U_{\lambda}$, we easily conclude from the Codazzi equation for A_{σ} that the second fundamental form $A_{\sigma^{\perp}}$ has a principal curvature with multiplicity at least n-1. The same holds in a neighborhood $W \subset U_{\lambda}$ of x, and it is a well-known fact that W must be conformally flat (cf. [CY]). By the classical Cartan-Schouten theorem for conformally flat hypersurfaces, we conclude that $\nu_f^c \geq n-1$ on W, which is a contradiction and proves the claim. It follows from the claim that $g(U_{\lambda})$ is contained in an umbilical hypersurface of \mathbf{R}^{n+2} .

For a connected component V_{λ} of \mathcal{W} , let σ be a smooth unit normal vector field such that the second fundamental form A_{σ} has eigenvalues μ , λ with multiplicities 1 and (n-1), respectively. Set $\Delta = \ker(A_{\sigma} - \lambda I)$. We claim that λ is constant and σ is parallel along Δ . Consider orthonormal vector fields $Y_1, \ldots, Y_{n-1} \in \Delta$ such that $\nabla^{\perp}_{Y_i} \sigma = 0$ for $2 \le j \le n-1$. From the

Codazzi equation for A_{σ} , Y_i , and Y_j for $2 \le i \ne j \le n-1$, we easily conclude that

$$Y_i(\lambda) = 0$$
, $2 \le j \le n-2$.

Now the Codazzi equation for A_{σ} , Y_1 , and Y_i yields

(12)
$$\langle \nabla_{Y_i}^{\perp} \sigma, \sigma^{\perp} \rangle \langle A_{\sigma^{\perp}} Y_i, Y_i \rangle = 0, \qquad 1 \le i \ne j \le n-1,$$

and

(13)
$$Y_1(\lambda) = \langle \nabla_{Y_1}^{\perp} \sigma, \sigma^{\perp} \rangle \langle A_{\sigma^{\perp}} Y_j, Y_j \rangle, \qquad 2 \leq j \leq n-1.$$

If at some point $\langle \nabla_{Y_1}^{\perp} \sigma, \sigma^{\perp} \rangle \neq 0$, we obtain from (12) and (13) that Span $\{Y_2, \ldots, Y_{n-1}\}$ contains an (n-3)-dimensional umbilical subspace for g. Now (1) and (11) imply that $\nu_f^c(x) \geq n-3$, which is not possible, and this proves the claim.

Set $\mathscr{U} = \mathscr{U}_1 \cup \mathscr{U}_2 \cup \mathscr{U}_3$, where $\mathscr{U}_3 \subset \mathscr{W}$ is the open subset where $\lambda \neq 0$ and \mathscr{U}_2 is the interior of $\mathscr{W} \setminus \mathscr{U}_3$.

The image under g of any connected component of \mathcal{U}_2 is contained in a flat hypersurface of \mathbb{R}^{n+2} by Proposition 3 of [DG]. If V_{λ} is a connected component of \mathcal{U}_3 , define $c: V_{\lambda} \to \mathbb{R}^3$ by

$$c(x) = g(x) + r(x)\sigma(x), \qquad r(x) = 1/\lambda(x).$$

For all $Y \in \Delta$, we have

$$\widetilde{\nabla}_Y c = Y - rA_{\sigma}Y = 0$$
,

where $\widetilde{\nabla}$ denotes the canonical connection of \mathbb{R}^{n+2} . If X is a unit tangent vector field orthogonal to Δ , we get

$$\widetilde{\nabla}_X c = X - X(r)\sigma - rA_{\sigma}X - r\nabla_X^{\perp}\sigma.$$

In particular, since σ is not an umbilical direction, we have

$$\|\widetilde{\nabla}_X c\|^2 > |X(r)|^2;$$

hence, from the curve c and the function r we can construct a conformally flat hypersurface in \mathbb{R}^{n+2} as described in [dCDM] or [Da] which contains $g(V_{\lambda})$. This concludes the proof. \square

REFERENCES

- [Ca] E. Cartan, La déformation des hypersurfaces dans l'espace conforme réel a $n \ge 5$ dimensions, Bull. Soc. Math. France 45 (1917), 57-121.
- [dCD] M. do Carmo and M. Dajczer, Conformal rigidity, Amer. J. Math. 109 (1987), 963-985.
- [CY] B. Y. Chen and K. Yano, Umbilical submanifolds with respect to a nonparallel normal direction, J. Differential Geom. 8 (1973), 589-597.
- [dCDM] M. do Carmo, M. Dajczer, and F. Mercuri, Compact conformally flat hypersurfaces, Trans. Amer. Math. Soc. 288 (1985), 189-203.
- [Da] M. Dajczer et al., Submanifolds and isometric immersions, Math. Lecture Series, vol. 13, Publish or Perish, Houston, TX, 1990.
- [DG] M. Dajczer and D. Gromoll, Isometric deformations of compact Euclidean submanifolds in codimension 2, Duke Math. J. (to appear).

IMPA, EST. DONA CASTORINA 110, 22460-320 RIO DE JANEIRO, BRAZIL E-mail address: MARCOS@IMPA.BR

Institute of Mathematics, Universidade Federal da Bahia, Av. Ademar de Barros s/n, 40210 Salvador, Brazil