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Abstract. We consider conformal immersions of a manifold M" , n > 6,

into conformally flat manifolds. If the principal curvatures of /: M" —> N"f

have multiplicities at most n - 4 , we show that any g: M" —> N"t2 can locally

be written as g = po f, where p: N"tl —► N"t2 is a conformal immersion.

1. Introduction

A classical result due to Cartan [Ca] states that a codimension one conformal

immersion /: Mn —► N"tx of an n-dimensional Riemannian manifold into a

conformally flat Riemannian manifold is (locally) conformally rigid if n > 5

and the maximal multiplicity of the principal curvatures satisfies vi < n - 3

everywhere. Then any other conformal immersion g: M" —> N"tx is locally a

composition g = p o fi for some local conformal diffeomorphism p: N"fx —>

N"tx. Cartan's result was extended to codimension greater than one in [dCD].

For fixed k > 2, a natural problem is to find conditions on /: M" —► N"tx

which imply that any conformal immersion g: M" —► N"tk is locally a con-

formal composition. That g is a local conformal composition means that, for

each point x £ M" , there exists a neighborhood V c M of x and a conformal

immersion p: W c A^1 -> N"tk of an open subset of N"fx containing f(V)

such that g - po f along V. When k = 2, we prove the following result.

Theorem 1. Let fi: M" —► N"tx be a conformal immersion. Assume that n > 6

and vi(x) < n - 4 everywhere. If g: M" —> N"f2 is a conformal immersion

then there exists an open dense subset %f c M such that, when restricted to %,

g is a local conformal composition.

2. The proof

We say that a submanifold ./V      c N"t2 is a conformally flat hypersurface if,

with the metric induced by the inclusion map, ./V is conformally flat. Using

Cartan's result, it is easy to check that Theorem 1 is equivalent to the following:

Received by the editors August 12, 1991.
1991 Mathematics Subject Classification. Primary 53C42; Secondary 53A30.

©1993 American Mathematical Society

0002-9939/93 $1.00+ $.25 per page

211



212 MARCOS DAJCZER AND ENALDO VERGASTA

Theorem 2. Let fi: M" -* N"tx be a conformal immersion. Assume that n > 6

and vi(x) < n-4 everywhere. If g: M" —► N"f2 is a conformal immersion then

there exists an open dense subset % c Mn such that g\% is locally contained in

a conformally fiat hypersurface of N"f2.

To prove Theorem 2 we will make use of the following lemma on flat bilinear

forms. We refer the reader to [dCD] or [Da] for notation, definitions, and some

basic facts.

Lemma 3. Let fi: V x V —> Wk •2, k > 3, be a nonzero symmetric bilinear

form. Assume that /? is flat and dim N(B) < dim F - dim PF. Then VV admits

an orthogonal direct sum decomposition VV = Wf © W2~r'2~r, where r = 1

or 2, such that if fix and fi2 are the Wx and VV2 components of fi, respectively,
then

(i) px is nonzero and null,

(ii)  B2 is flat and dimN(fif) > dim V - dim VV2.

Proof. Analogous to that of Lemma 2.2 in [dCD].   □

Proof ofi Theorem 2. We may assume that N"fx = Sn+X is the unit Euclidean

sphere, that N"t2 = R"+2 is the flat Euclidean space, and that M" is endowed

with the metric induced by g. We consider Sn+X isometrically embedded in

the light-cone V"+2 of the flat Lorentzian space L"+3 and contained in an

(n + 2)-dimensional affine hyperplane orthogonal to the axis of V+2.
The map F: Mn — V"+2 c L"+3 defined by

F(x) = -^fi(x)v  ;     cp(x)   v

is an isometric immersion, where cp: Mn —> R is the positive function satisfying

(fi(x)X,f,(x)Y) = tp2(x)(X,Y)

for any X, 7 e TXM.
As in [dCD] or [Da], for a fixed point x £ Mn , the vector-valued second

fundamental form aF: TM x TM —► TFMX of F in L"+3 is given by

aF = ((aF ,n) + (,  )){ + (aF , n)n + a*F ,

where the basis <!;, n for the orthogonal complement of Tf^M1- into Tp^M1-

verifies

(£,£) = 1,        <£,n) = 0,        (n,7,) = -l

and F(x) = t, + n. Here a*F is the T/^M1- component of aF and satisfies

(1) a*F = af/q>.

Now let

VV = Tg{x)M-L © Span{<^} © Span{7/} © Tf(x)Mx

be given the natural metric (( , )) of type (3,2). Define B: TxMxTxM -> VV

by
B = ag® ((aF ,n) + (,   ))<J © (aF , n)n © aF .
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A straightforward computation shows that

({B(X, Y),R(Z,W))) - ((B(X, W),B(Z,Y)))

= (ag(X, 7), ag(Z , VV)) - (ag(X, VV), ag(Z , 7))

- (aF(X ,Y),aF(Z, VV)) + (aF(X, VV), aF(Z , 7)),

and the Gauss equations for g and F imply that /? is flat.

By definition of B , we have B(X, X) ^ 0 for X ± 0; thus, N(fi) = 0. By
Lemma 3, VV =WX@W2 decomposes orthogonally so that /? = Bx © B2 , where

Bx:TxMxTxM^Wfr,        re {1,2},

is nonzero and null and

B2:TxMxTxM^W23-r2-r

is flat satisfying dimN(fi2) > n - 5 + 2r.
We claim that r = 2. Assume r = 1. It follows that jix = <py, where y £ Wx

is a null vector and cp is a real-valued symmetric bilinear form. Thus there

exists a unit vector 8 £ Tg^M1- such that

y = cos 66 + sin 6£ + cos dn + sin 6N,

where N e Tf^M1 is a unit vector. By definition, we have Z e N(B2) if and

only if B(Z , X) = BX(Z , X) = <f>(Z, X)y for all X £ TXM; therefore,

(2) (aF(Z ,X),n) + (Z,X) = <p(Z , X)sin6,

(3) (aF(Z,X),n) = cp(Z,X)cosd,

and

(4) (aF(Z,X),N) = 4>(Z,X)sind

for all Z € N(B2) and * e TXM. From (2) and (3) we get

(5) <t>(Z,X)(sin6-cosd) = (Z,X),

which implies sinf? - cosf? ^ 0. From (4) and (5) we obtain

(6) (aF(Z ,X),N)=   ,   lmd       (Z, X).
sin 8 - cos 6

Using (1), we conclude from (6) that / has a principal curvature with mul-

tiplicity at least dimN(R2) > n — 3. This is a contradiction and proves the
claim.

Since r - 2, we have px = 4>xyx + cp2y2, where 4>x,4>i are real-valued

symmetric bilinear forms and yx, y2 are orthogonal null vectors. So we may
write

(7) yx = n + cos ut, + sin udx

and

(8) y2 = N + cos vt, + sin vd2,

where <5i, 82 are unit vectors in Tg^M1- verifying

cos u cos v + sin 77 sin v(dx, S2) - 0.
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Clearly, cpx = (aF, n) and cp2 = (aF, N). Hence,

(9) Bx = (aF, n)(n + cos u£, + sin udx) + (ap, N)(N + cosvt, + sinvdf).

For any Z € N(fi2) and X £ TXM, B(Z, X) = Rx(Z, X) is equivalent to

ag(Z , X) = (aF(Z , X), n)sinudx + (a*F(Z , X), N) sinvd2

and

(aF(Z ,X),n)(l- cosu) + (Z,X) = (a*F(Z, X), N) cost; .

Thus, from vi < n - 4, we have 1 - cos u ± 0 and cos v ^ 0; therefore,

(10) ag(Z, X) = (aF(Z , X), n)(sinudx + tgu(l - cosu)d2)+ tgv(Z, X)S2

and

ag(Z , X) = (aF(Z ,X),N) (*nucosvS{ + sinvs2)

(11) V1-COS77 J
--^-(Z,X)8X.

1 - cos u

We easily conclude from (10) that g has a normal direction a such that the

tangent-valued second fundamental form Aa in this direction has an eigenvalue

with multiplicity at least n - 1 whose eigenspace contains N(fif).
From r = 2 we have that dimS(fi) = 2,3. We claim that dimS(B) = 2

if and only if a is an umbilical direction. First observe that dimS([S) = 2
if and only if p2 = 0, and if fi2 = 0 then ct is umbilical by equation (10).

Conversely, if Aa — cl, consider the vector £ = a/c - £ — n. Then £ is not

null and ((/?, £)) = 0. This implies that dimS(R) = 2 and proves the claim.

Assume that din\S(fi) = 3 on an open subset V c Af" . The 2-dimensional
distribution S(fi) nS(R)1- is the (maximal) degeneracy space of the restriction

of (( , )) to the smooth distribution S(fi) and, therefore, is smooth. It follows

easily that the vector fields Sx, S2 and the functions u, v in (7) and (8) can

be taken to be smooth on V. The same conclusion holds on any open subset

of M where dimS(B) = 2.
Let W c M be the open subset of points where dimS(R) = 3, and let %fx

be the interior of M\W. Let a be a smooth umbilical unit normal vector

field defined on a connected component Ux of %x . We claim that a is parallel

with respect to the normal connection of g. In fact, if a is not parallel at

x £ Ux, we easily conclude from the Codazzi equation for Aa that the second

fundamental form Aa± has a principal curvature with multiplicity at least n—1.

The same holds in a neighborhood VV c Ux of x, and it is a well-known fact

that W must be conformally flat (cf. [CY]). By the classical Cartan-Schouten

theorem for conformally flat hypersurfaces, we conclude that vi > n - 1 on

W, which is a contradiction and proves the claim. It follows from the claim

that g(Uf) is contained in an umbilical hypersurface of R"+2 .
For a connected component Vx of W, let a be a smooth unit normal

vector field such that the second fundamental form Aa has eigenvalues p, k

with multiplicities 1 and (n - 1), respectively. Set A = ker(Aa - ki). We claim

that k is constant and a is parallel along A. Consider orthonormal vector

fields 7i, ... , 7„_i € A such that Vfo = 0 for 2 < j < n - 1 .  From the
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Codazzi equation for Aa , 7,, and Yj for2<if=j<n-l, we easily conclude

that
Yj(k) = 0,        2<j<n-2.

Now the Codazzi equation for Aa ,YX, and Yj yields

(12) (V^a,a-L)(AaxYi,Yj) = 0,        l<i±j<n-l,

and

(13) Yx(k) = (VY-xo,oL)(Aa,YJ,Y]),        2<j<n-l.

If at some point (VyO^cr-1-) ^ 0, we obtain from (12) and (13) that

Span{72, ... , 7„_i} contains an (n - 3)-dimensional umbilical subspace for

g. Now (1) and (11) imply that vi(x) > n - 3, which is not possible, and this

proves the claim.

Set ^ = %x U % u 24 , where ^cW is the open subset where k / 0 and

2£ is the interior of ^"\^3.
The image under g of any connected component of %i is contained in

a flat hypersurface of R"+2 by Proposition 3 of [DG]. If Vx is a connected

component of ^3, define c: ^ -* R3 by

c(x) = ^(x) + 7-(x)rj(x),        r(x) = l/k(x).

For all 7 e A, we have

VYc=Y-rAaY = 0,

where V denotes the canonical connection of R"+2. If X is a unit tangent

vector field orthogonal to A, we get

Vxc = X - X(r)a - rAaX - rVJ^a.

In particular, since a is not an umbilical direction, we have

||Vxc||2>|X(r)|2;

hence, from the curve c and the function r we can construct a conformally flat

hypersurface in R"+2 as described in [dCDM] or [Da] which contains g(Vf).

This concludes the proof.   □
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