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ON THE HOMOLOGY OF POSTNIKOV FIBRES

Y. FELIX AND J. C. THOMAS

(Communicated by Frederick R. Cohen)

Abstract. Let k be a field of positive characteristic and X be a simply con-

nected space of the homotopy type of a finite type CW complex. The Post-

nikov fibre X[„j of X is defined as the homotopy fibre of the n-equivalence

/„: X —> X„ coming from the Postnikov tower {X„} of X . We prove that if

the Lusternik-Schnirelmann category of X is finite, then H*(X[„y, k) contains

a free module on a subalgebra K of H,(QX„ ; k) such that H»{Q.X„ ; k) is

a finite-dimensional free A'-module.

Let k be a field of positive characteristic p and ^ be a simply connected

space which has the homotopy type of a finite type CW complex. The Postnikov

tower of X consists of a sequence of principal fibrations

Xn ^ Xn.x ^ K(nn(X), n + I)

and of n-equivalences f„: X —► X„ satisfying p„f„ = fn-X. The homotopy

fibre of fin is then denoted by X\n\ and is called the nth Postnikov fibre of X,

X[n] —> X -4 X„ .

The homotopy lifting property of the fibration /„ defines a natural action of

H*(£lXn ; k) on H,(X[„]; k) [8]. This action is called the holonomy operation

and its behaviour in this context is the subject of this paper.

More generally we will consider a fibration of simply connected spaces

F ^EJ* B

such that Q.B has a stable r-stage Postnikov system [7]. This means that QB

can be obtained by a finite sequence of multiplicative fibrations

Gr-*Gr.i^Kr,    r = 0,...,n,       nB = Gn,        G.X = {*},

with Kr a product of Eilenberg-Mac Lane spaces. The spaces CIX„ are stable

n-stable Postnikov systems. This happens also, for instance, when B has only

a finite number of nonzero homotopy groups. We can now state our main

theorems.
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The category of fi: E ^ B, cat fi, is defined as the least m < oo such that

E can be covered by m + 1 open sets [/,■ so that the restriction of / to each

Uj is homotopic to zero [1]. Clearly cat fi <catE.

Theorem 1. Let F -> E —> B as before. We suppose that cat/ < oo. Then

(1) there exists a nontrivial morphism of H*(QB; kfmodules

Ht(F ; k)-* Ht(QB; k),

(2) there exists a subalgebra K of H*(Q.B; k) such that H,(F; k) contains a

free K-module and such that Ht(QB; k) is a finite-dimensional free K-module.

Theorem 2. Let F -+ E —> B as before. Suppose that E has the homotopy type

of a finite CW complex and Q.B is a product ofi Eilenberg-Mac Lane spaces.

Then the algebra H^QB^k) is isomorphic to K®G with G finite-dimensional

and 77, (F; K) is a free K-module.

One can remark that if / is homotopically trivial, then F has the homotopy

type of the product SIB x E, and Theorem 1 is obviously true in this case. The

point is that the homology of the fibre F is never very far from being free; this

is the content of the results.

In [3] Halperin and the authors establish a relation between cat/ and some

homological invariants of 77,(77; k) as a module over 77*(£1/3; k). Let G =

0,>o C7, be a graded Hopf algebra over the field k satisfying

G0 = k;
dim (7, < oo for any i;

G is cocommutative.

The grade of a graded C7-module M is the greatest n (or oo) such that

E\Iq(M ; G) ± 0. The depth of the Hopf algebra G is, by definition, the grade
of the trivial module k . The main result of [3] reads as follows.

Theorem [3, Theorem A].  With the above hypothesis, grade(Ht(F; k)) < cat/.

Following Moore and Smith [7], we call a Hopf algebra G p-solvable if there

exists a sequence of normal sub-Hopf algebras

k c G(-S) c (7(-i+i) c • • • c C7(o) = G

such that each quotient t7(,)//C7(,_i) is a commutative Hopf algebra with xp =

0 for every x in G^//G(t-X), i.e., each quotient is a coprimitive Hopf algebra.

The interest of p-solvable Hopf algebras in topology comes from the following

result of Moore and Smith.

Theorem [7, Theorem 6.2]. If Q.X is a stable r-stage Postnikov system, then the

Hopf algebra 77* (QX; k) is p-solvable.

Every finitely generated coprimitive Hopf algebra is finite dimensional. Thus

from Lemma 1, every finitely generated p-solvable Hopf algebra is also finite

dimensional. In particular, each element has finite height.

Lemma 1. Let G be a finitely generated Hopf algebra and K be a normal sub-

Hopf algebra such that the quotient G//K is finite dimensional. Then K is also

finitely generated.
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Proof. From the Hoschchild-Serre spectral sequence associated to the short ex-

act sequence of Hopf algebras

K-+G^G//K,

we obtain an isomorphism

TorxG(k, k) = TorxG/IK(k, k) 0 (TorG,IK(k, TorxK(k, k))/lm(d2)).

As G//K is finite dimensional, the dimension of the vector space Tor'GnK(k, k)

is finite for every i; therefore, TorG(k, Ac) is finite dimensional if and only if

TorxK(k, k) is finite dimensional.   □

The next lemma is the main tool in the proof of Theorem 1. This is a

generalization of [2, Proposition 3.1] with exactly the same proof.

Lemma 2. Suppose 0/we ExtG(M, G), G a Hopf algebra, and M a G-
module. Then for some finitely generated sub-Hopf algebra KcG, co restricts

to a nonzero element of Ext^(M, G).

Lemma 3. A module M of finite grade on a p-solvable Hopf algebra G has

grade zero.

Proof. We denote by co a nonzero element in ExtG(M, G). It then results

from Lemma 2 that, for some finitely generated sub-Hopf algebra 77 c G, ca

restricts to a nonzero element in Ext%(M, G); therefore, Ext#(M, 77) ̂  0.
Write M = lim Ma with each Ma a finitely generated ^(-module. From

the canonical isomorphisms

ExtsH(M, 77) = lim ExtsH(Ma , 77),

one can see that if ExtffM, 77) ̂  0, then Ext# (AP, 77) ̂  0 for some finitely
generated submodule Ma.

The Hopf algebra 77 is p-solvable and finitely generated; therefore, 77 is

finite dimensional and, hence, elliptic in the sense of [5]. By [4, Lemma 3.10]

m = 0.   □

Proof ofi Theorem 1. As the category of p is finite, the grade of the 77,(Q73; k)-

module 77, (77; k) is finite; therefore, by Lemma 3 the grade is zero. This im-

plies the existence of a nontrivial morphism of 77,(Q7i; /c)-module g: 77, (F; k)

^H*(QB;k).
For the sake of simplicity we denote G = 77,(QB; k) and M = 77,(F; k).

By hypothesis there exists a sequence of normal sub-Hopf algebras

k c A(_s) c A{_s+X) c • • • c ^(o> = G

such that each quotient A^//A^X) is isomorphic as an algebra to

A{t)//A{t_x) = 0Ax,- ® 0 k[yj]/yP .
iei, jeJ,

For each degree q we denote by Kq the algebra generated by the x, and the

yj of degree larger then q . By the previous decomposition, G is a free finitely

generated Kq -module for each integer q .
Let m be an element of M such that g(m) ^ 0. The element g(m) belongs

to a finitely generated subalgebra 77 of G. Denote by t the maximal degree of
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the homogeneous elements of 77. As G is a Kt free module, K, • g(m) = Kt.
This implies that the 7C,-module generated by m in M is free.   □

Proof of Theorem 2. The homology Serre spectral sequence of the fibration

Q7i -» F -* E

is a spectral sequence of Ht(ClB; A;)-modules. As 77,(7?; k) is finite dimen-

sional, there is only a finite number of nonzero differentials dr in this spectral

sequence. We will prove by induction on r that each Er is a free finitely gen-

erated module over some subalgebra Hr of G = 77,(f277; k) such that G is a

free finitely generated 77r-module.

This is true for E2. The algebra 77,(f273; k) is a tensor product ®(Ax, ®

0; k\yjMy!j ■ The integer q will be defined by

q = (the maximal degree of the homogeneous elements of H,(E; k)) + 2.

Denote by 773 the tensor product of the components Ax, and k[yj]/yp with

Xi and yj of degree greater than q . G is then the tensor product G = 773 <g>

7?3 with 7?3 finite-dimensional. The Ti^-term of the Serre spectral sequence,

(E2, df), is then isomorphic to (773, 0)®(H,(E; fc)®i?3, df) as an 773-module.
Its homology E$ is therefore isomorphic to 773 ® 77(77, (.£7; k) ® 7? 3, c^) and
is a free finitely generated 773-module.

We proceed in exactly the same way for the general case. At each stage 77r

will be the intersection of 77r_ i and the tensor product of the components Ax,

and k[yj]/yp with x, and y} of degree greater than 2 + (the maximal degree

of the generators of Er-X as an 77r_1 -module).   □
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