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CONSTRUCTION OF CONVEX SETS
IN NEGATIVELY CURVED MANIFOLDS
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(Communicated by Jonathan M. Rosenberg)

Abstract. It was proved by Choi that one can solve the Dirichlet problem

at infinity for simply connected negatively curved manifolds by constructing

appropriate convex sets. All the known constructions, it seems, inherently need

some kind of growth condition on the curvature; therefore, it is interesting to

find new ways to construct convex sets in negatively curved manifolds. In this

paper we give a new way to construct convex sets from sets we call e-almost-

convex. From the point of view of this problem this can be considered as a

natural generalization of convexity.

1. Introduction

Anderson and Sullivan (cf. [A, S]) proved that the Dirichlet problem at in-

finity for simply connected negatively curved manifolds is solvable provided

that the curvature satisfies -a2 < K < -b2, for some constants a, b. This

result was sharpened in [B] by replacing the lower curvature bound with an

exponential growth condition using the method of Anderson-Choi. It suggests

that the lower bound might be dispensed with altogether. This method hinges

upon Choi's theorem (cf. [C]), which states:

Theorem (Choi). Let Nn be a simply connected negatively curved manifold with

curvature bounded away from 0. Denote by S"_1(oo) the ideal boundary, and

suppose that for every p, q £ S"_1(oo) there are disjoint open convex sets V, W

which separate p, q in the cone topology of N" u S"~'(oo) (cf. [EbO, A]).

Then the Dirichlet problem at infinity for A is uniquely solvable for any con-

tinuous function on the ideal boundary.

The method of constructing convex sets in [A, B], it seems, inherently needs

some kind of growth condition on the curvature; therefore, it is interesting to

find new ways to construct convex sets in negatively curved manifolds.

Let TV" be a simply connected negatively curved manifold. First we define

the notion of an almost-convex set.

Definition. We call an open set A c N" almost-convex if every point p £ dA

can be touched by a horosphere from the outside; that is, there exists an open

horoball B such that AnB = 0 and p £ dA n dB .

Received by the editors April 29, 1991.
1991 Mathematics Subject Classification. Primary 53C20.

©1993 American Mathematical Society

0002-9939/93 $1.00+ $.25 per page

205



206 ALBERT BORBELY

We call an open set A c N" e-almost-convex if dA is a C3 hypersurface

with the following property: for every p £ dA denote by U the 2nd fun-

damental form of dA with respect to the outer normal and by V the 2nd

fundamental form of the touching horosphere from the outside with respect to

the inner normal. We require that

U(X,X)>V(X,X) + e\\X\\2

for every X £ TpdA.

In the sequel for two symmetric matrices A, B we write A > B or A > B

if A - B is positive definite or positive semidefinite, respectively. We use the

sign convention for the 2nd fundamental form such that the 2nd fundamental

form of a sphere with respect to the outer normal is positive definite. With this

definition we now have

Theorem 1.1. Let N" be a simply connected negatively curved manifold and

A c N" be an open e-almost-convex set. Let A, = {p £ Nn: distQ?, A) < t}.

Then for t>n/e, At is convex.

Remark. With this theorem one can generalize Choi's theorem by simply replac-

ing the convex sets Vx, Vy in the statement of his theorem by e-almost-convex

sets.

The proof is based on the stability properties of the Riccati equation which

describes the evolution of parallel hypersurfaces. As an easy consequence of the

method we can also prove the following lemma.

Lemma 1.2. Let N" be a simply connected complete negatively curved manifold

and H be a horosphere. Let p £ H and Sr a sphere of radius r inside H

which touches H at p. Then

V - -Id < U < V
r

where V and U are the 2nd fundamental forms of the horosphere II and the

sphere Sr with respect to the inner normal, respectively.

2. Proofs

Set S = dA, and denote by S, the parallel hypersurface (outside A) to S

at distance t > 0. Let p £ S and y be the geodesic emanating from p in the

direction of the outer normal. Denote by U(t) the 2nd fundamental form of S,

with respect to y'(t) and by V(t) the 2nd fundamental form of the horosphere

centered at y(oo) (touching A, from the outside) with respect to y'(t). We

know (cf. [HH, Eb]) that the horosphere is C2 so it has a 2nd fundamental

form.

We have to prove that for t > n/e, U(t) is positive semidefinite.

With the stated sign convention, we have the evolution equation for the 2nd

fundamental forms of parallel hypersurfaces.

(2.1) U' + U2 + R = 0

where R(X) = R(y', X)y' is the curvature tensor and U' means the covariant

derivative of U = U(t) along y. The same equation is true for V = V(t),

which is negative definite with this choice of the 2nd fundamental form.
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We note that if R is a symmetric matrix-valued function then every solution

U of (2.1) with symmetric initial value is symmetric.

We know that (2.1) has two special all time (i.e., (-co, oo)) solutions. One is

V, and the other is W, the 2nd fundamental form of the horosphere centered

at y(-oo) with respect to / . This is positive definite. We will show that W

is the stable and V is the unstable solution of (2.1).

Our main tool is the comparison theorem for the Riccati equation (cf. [EH]).

Comparison Theorem. Consider the Riccati equations

(Rf B'j + B2 + Rj = 0,        j=l,2,

where Bj, Rj are smooth functions ofi n x n symmetric matrices. Let Bj be

solutions of (Rj) on [0, tf) with maximal t}. Suppose that Rx > R2 and

B2(0)>Bx(0).
Then t2 > tx and B2(t) > Bx(t) for all t £ [0, tx).

Because V is an all time solution of (2.1) this immediately gives that U(t)

in the theorem exists for all t > 0; that is, the parallel surface St never degen-

erates, i.e., it is always C2.

We start our investigation of (2.1) with some elementary facts. Suppose now

that R is some negative semidefinite matrix-valued function on (-00,00),

which does not necessarily come from a curvature tensor of a Riemannian man-
ifold.

Proposition 2.3. Let U, > 0, 7 = 1,2, be positive semidefinite solutions ofi the

Riccati equation (2.1) on the interval [s, 00). Then the distance between Ux

and U2 is decreasing monotonically to zero; that is,

^\\Ux-U2\\2<0   and   ||C/,-t/2||2->0,

where, for a matrix A, we define the norm by \\A\\2 = tr(AAT).

Proof. Define the function

fi(t) = ||CA - U2\\2 = tr((Ux(t) - U2(t))(Ux(t) - U2(t))T).

Differentiating it gives us

fi'(t) = 2tr((Ux-U2)'(Ux-U2)).

From differential equation (2.1) we have

fi'(t) = -2tr((U2-U2)(Ux-U2)).

Applying elementary properties of the trace we have

f'(t) = -2tr((Ux + U2)(UX - U2)2).

Since Ux, U2 > 0, we get fi'(t) < 0. To estimate f'(t) we pick an orthonormal

system of eigenvectors ex,e2, ... for Ux - U2 with corresponding eigenvalues

k\,k2, ... . Then

fi'(t) = -2Y*,mei, e^ + (Uxet, e,-» ;

but (Uxej, e^ - (U2ej, e,) = k,, so it gives us, via the Holder inequality,

f{t) < -2£|A,f < -2(n-'/3/)3/2 = -2n-'/2/3/2,
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which implies that f(t) -* 0 as t -* oo . This concludes the proof of Proposition
2.3.

Proposition 2.4. Equation (2.1) has a positive semidefinite solution W and a

negative semidefinite solution V for all time (i.e., on (-oc, oo)).

Proof. First we construct W, the positive definite all time solution.  Let Ut

be a solution of (2.1) on [t, T) with maximal T and with initial condition

Ut(t) = 0. Comparing this with the zero solution for R = 0 implies that U,(s)

is defined for all s > t and Ut > 0 on [7, oo).
We now define W by

(2.2) W(s)=  lim  t/((5).
;—»—oo

The comparison theorem tells us that Ut(s) is monotone increasing as t —* -oo

so that the limit exists. To show that W(s) is finite we need an argument which

we will use later in Proposition 2.5; therefore, we only sketch it here.

Fix 5 £ R, and let

A =    max   {|A(x)|, 1}
x€[s-2,s]

where k(x) is the smallest eigenvalue of R(x). We can easily estimate the

solution U of (2.1) on the interval [s - 2, s] where R = -Aid and the initial

condition is U(s - 2) = oo Id (i.e., arbitrarily large initial condition). A similar

argument we use at the end of the proof of Proposition 2.6 shows that U(s) <

2AId. Using the comparison principle, we have Ut(s) < U(s) < 2AId for any

t <s-2.
The next step is to prove uniform convergence on compact sets. For a

compact set K c (-00,00) choose so < K, that is, so < k for any k £

K. We know that Ut(so) is monotonically increasing and bounded as t —►

00. Therefore for any e > 0 there is a fo such that for every tx,t2 < to,

\Utx(so) - Uh(so)\ < e, which means via Proposition 2.3 that for any k £ K,

\Utx(k) - Uh(k)\ < e, that is, Ut-* W uniformly on K as t —> -00 ; so, using
(2.1) we have U( -» G uniformly on K, which in turn implies that W is

differentiable, W = G, and W is a positive semidefinite solution of (2.1).

To construct V, we solve (2.1) backwards. Consider the matrix-valued equa-

tions on the real line

(2.3) Y' + Y2 + R = 0,

where R(t) = R(-t). R < 0, so we have a positive definite solution W > 0 on

(-00, 00). Set V(t) = -W(-t). Then it is easy to check that this is a negative

semidefinite solution of (2.1), which proves the proposition.

Remark. The uniqueness of W and V will follow from Propositions 2.5 and
2.6.

In Propositions 2.5 and 2.6 we examine the stability properties of W and

V.

Proposition 2.5. Suppose that V(t) is a negative semidefinite solution of (2.1)

on (-00, 00), c/(0) < V(0), and trU(0) + e < trK(O) for some e > 0. Let
U(t) be the matrix-valued solution of (2.1) with initial value (7(0) on [0, T)

where T is maximal. Then T <n/e.
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Proof. The comparison theorem tells us that U < V < 0 for all t £ [0, T);

that is, we can write U = V - A where A > 0. Substituting U and V into

(2.1) and subtracting one from the other gives

(v-uy = u2 - v2.

Taking the trace we have

(2.4) [tr(F - £/)]' = tr(U2 - V2) = tr(U2 + V2 - 2VU) + 2tr(VU - V2).

Now tr VU = trV2 -trVA. So A > 0 and V < 0 implies that tr VA <
0 (choose ej to be the eigenvectors of A; then trVA = ^(VAei, ei) =

Z^,ki(Vei, e^ < 0, where /, > 0 are the corresponding eigenvalues); that is,

tr VU > V2. Substituting this into (2.4) we have, via the Holder inequality,

(2.5) [tx(V - U)]' > tr(T - U)2 > i[tr(F - U)]2.

Set f(t) = tr(V(t) - (7(7)). Then (2.5) becomes

(2.6) f'^7if2>       f(°)^£-

It is easy to show that (2.6) does not have a solution on [0, n + n/e) for any

n > 0. Let g(t) be the solution of the differential equation g' = ^g2 with

c?(0) = /(0) • Then f(t) > g(t) whenever f(t) exists. The solution of this

differential equation gives us that

,(0 =  mn
8(l)     n - 7/(0) '

so g —> oo as t —> n/f(0) < n/e . This proves Proposition 2.5.

Proposition 2.6. Suppose that V is a negative semidefinite solution of (2.1) and
VV is a positive semidefinite solution of (2.1) for all time (i.e., on (-oo, oo)). If

(7(0) > F(0) + eId then (2.1) has a solution on [0, oo) with initial value (7(0),

(7(7) > 0 for t> n/e and \\u - W\\-> 0 as t^oo.

Proof. The comparison theorem tells us that  (7 is defined on [0, oo).   Set

T = n/e, and let cp be a cut-off function such that 0 < cp < 1 , <p(s) - 1 for

s < T, and <p(s) = 0 for s > T + a where a is a small positive number.
Consider the equation

(2.7) Y' + Y2 + Rx =0,    where Rx=cpR.

Proposition 1 shows that there is a negative semidefinite solution Y of (2.7) for

all time (i.e., on (-oo, oo)). From the construction of Y or from Proposition

2.5, it is obvious that Y = 0 on [77 + a, oo). In case for some s £[T + a, oo),

tr Y(s) < 0, Proposition 2.5 would imply that Y —* -oo within n/tr Y(s) time.

Using the comparison principle backwards, that is, to the equations

X' + X2 + Ri = 0,    where ^0(0 = -R(t), R0(t) = -Ri(t),

we know if Xx(-T - 1) < X0(-T - 1) and Rx > R0 then JTi(0) < X0(0).
Setting Xx(-t) = -Y(t) and X0(t) = -V(-t) we now have that Xx(-T- 1) <

X0(-T - 1), and therefore Y(0) > V(0); but because Rx = R on [0,T],
Proposition 2.5 implies that tr 7(0) - tr V(0) < e, otherwise V —* -oo within

n/e time, which is a contradiction.
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We now have the inequality

V(0) < 7(0) < V(0) + e Id < (7(0).

Applying the comparison principle to Y and U (7(0) < (7(0) and Rx >

R) yields that, for every t > 0, U(t) > Y(t), that is, (7 becomes positive

semidefinite for t > T + a. Since a is arbitrarily small, U becomes positive

semidefinite for t > T.
Now Proposition 2.3 shows that \\U - W\\2 -> 0 as t —► oo .

This concludes the proof of Proposition 2.6.

Proof of Theorem 1.1. Applying Proposition 2.6 to evolution equation (2.1) of

parallel hypersurfaces proves the theorem immediately.

Proof of Lemma 1.2. The inequality (7 < V is trivial. To prove the other

inequality denote by y the geodesic emanating from p in the direction of

the inner normal (it is centered at 7(00)). Let V(t) and U(t) be the 2nd

fundamental forms of the parallel horosphere and sphere, respectively, at y(t)

with respect to y'(t). We know that (7(7) < V(t) < 0, U(t) is defined on

[0, r), and they both satisfy the Ricatti equation

X' + X2 + R = 0

where R < 0 is the curvature tensor of N" . We know that V(t) is defined on

[0, 00), so if (7(0) f V(0)-(a+i)ld then trU+a + i < tr V ; that is, according
to Proposition 2.5 U is defined at most on the interval [0, n/(a + n/r)), which

is a contradiction. Now letting a go to zero proves the lemma.
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