
proceedings of the
american mathematical society
Volume 118, Number 1, May 1993

FACTORIZATIONS OF GENERIC MAPPINGS
BETWEEN SURFACES

DOMENICO LUMINATI

(Communicated by Frederick R. Cohen)

Abstract. Given a generic mapping F : S —> N of two smooth (i.e., C°° )

real surfaces, S compact, and a line bundle jl : E —» N , we look for necessary

and sufiicient conditions to find an immersion F : S —► E such that F = noF .

0. Introduction

Let S, N be two differentiable surfaces (i.e., real, C°°, 2-manifolds), S

compact, and let F : S —► N be a generic mapping, that is, a mapping locally

equivalent to one of the following:

(i)  (x,y)^(x,y),

(ii) (x, y) » (x, y2),

(iii) (x,y)^(x, yl - xy),

and whose apparent contour is a smooth curve except for a finite number of

normal crossings and semicubical cusps (compare [6, 1]).

Let 77 : E —> N be a differentiable line bundle (i.e., a rank 1 vector bundle).

We shall answer the following:

Question. Does there exist an immersion (i.e., a mapping with injective differ-

ential at every point) F : S —> E such that F = n o FI (i.e., the following is a
commutative diagram):

E

S -> N
F

This question was first answered by Haefliger [2], in the case N = R2 and

E = R3, and his theorem and proof were later generalized by Millet [3] to the

case of an arbitrary surface N and E = N x R.
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In this paper we use again Haefliger's original idea to deal with the general

case. In the first section, we state Theorem 1.1, which answers the question; in

the second we give the proof of this theorem; and finally in the third section

we apply it to the problem of finding a factorization of a generic mapping

F : S -* RP2 by means of an immersion in RP3 and a projection from a point.

1. Statement of the theorem

Let £ denote the set of critical points of F, C a connected component of

X, and fie the restriction of F to C. We can define the following two line

bundles over the base space C:

(1) Kc : Kc —> C the bundle of kernels of dF (i.e., K^x(p) = ker(dF(p))

VP6C);
(2) fjt.ii : f*E -» C the induced bundle.

We shall prove the following.

Theorem 1.1. There exists an immersion F : S -» E such that F = n o F if

and only if for all the components C oj"L the Whitney sum of the previous two

bundles is trivial.

Remark. Let (,:Z ^ C be a line bundle over C, and define

J 1      if C is orientable,

\ -1    if C is nonorientable.

(In some sense this number is the Stiefel-Whitney class of the bundle.)

It is easily seen that the condition in Theorem 1.1 is equivalent to

(1.1) e(Kc)e(fc7t) = l;

that is, either both bundles are orientable or both are nonorientable.
Furthermore, let c(C) denote the number of cusp points in C, and vc :

Nc —> C the normal bundle of C in S. By [2, Lemma 1], we get

e(Kc) = (-l)c(C)£^c);

so condition (1.1) turns into

(1.2) (-iylch(vc)e(fc-n) = l.

Finally observe that, if 7i : E —► N is the trivial bundle, then e(fcn) - 1 and

thus (1.2) reduces to Haefliger-Millet's condition.

2. Proof of the theorem

First of all observe that finding a mapping F : S —> E such that noF = F is,

by the very definition of the induced bundle, the same as finding a cross-section

o of the bundle F*n : F*E -► S, induced from )t:E-»N (see the diagram):

f*E -—-> E

a      F'n    /^ tz

S    -> N
F
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Now, if a is a section of F*n : F*E -> S, then

Vp £ S - X   d(n*F o a)(p) is injective,

since a section is always an immersion and the set of critical points of n*F is

(F*n)~x(L). (Roughly speaking, the obstruction to making n*F o a an immer-

sion is "concentrated" around X.) This means that it suffices to find a section

ox of the bundle F*E\y—V being a tubular neighborhood of X—such that

7r*/7 o ox is an immersion; an arbitrary extension of this section—which can

always be found—will provide the desired immersion.

Since V is a tubular neighborhood of X, it has the same number of con-

nected components as X. Let U be the connected component of V containing

C.
U = vc is diffeomorphic to the quotient

K2/(*, >o~(*+i.y)     ife(uc) = l,

K /{x,y)~(x+l,-y)     ife(I/c) = -l5

in such a way that the curve C is mapped onto the quotient of the line {y = 0}.

Then the bundle F*n : F*E\u —► U is isomorphic to one of the following

four:

(I)   l&3/(x,y,z)~(x+\,y,z) ^ R2/(x,y)~(x+i,y) if «(«>c) = 1 and e(fcit) = 1;

(II)    RVfjo-.zMx+i.-y.z) ^ R2/(x,y)~(x+i,-y) if e("c) = -1 and£(/<*.rc) =
1;

(III) R3/(x,>-,r)~(x+i,>,-z) 3 R2/(X,yMx+i,y) if e(^c) = 1 and e(/<*,7r) = -1;

(IV) R3/(Xj>,>zMx+1>_y>_z) ̂4 R2/(X;y)^+i,_y) if e(i/c) = -1 and e(/^7c) =
-l;

as follows from the fact that (7 deforms onto C and the Lifting Homotopy

Theorem for fibre bundles (compare [5]), where each 77, denotes the mapping

induced by the canonical projection (x, y, z) i-+ (x, y).

Lemma 2.1. Every cross-section of the line bundle (I) [resp. (II), (III), (IV)]

defines a function h : R2 -► R smc/z 7/7a7 (I) [resp. (II), (III), (IV)] no/Vfc

(I)      h(x+l,y) = h(x,y)\/x,y;
(II)      /7(x + l,-v/) = n(*,y)Vx,}>;

(III) h(x+l,y) = -h(x,y)\Jx,y;
(IV) n(x + l, -)0 = -A(x,30 Vx, y.

Conversely every such function defines a cross-section of the corresponding bundle.

Proof. Obvious.   □

Let Kx denote the fiber of the bundle k : K —> C over (x, 0) (i.e., the
kernel of dF(x,0)).

Lemma 2.2. Let h be a function as in the previous lemma. Then h defines a

cross-section ox making n*F o ox an immersion if and only if

(2.1) VXGR,   V(M, «)€*,- {(0,0)}      !£(*, 0)77+ |^(X, 0)77^0.

Proof.  n*F oax is an immersion if and only if

VxeR   dox(x,0)[Kx] £ker(d(ii*F)(ox(x,0))),
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but with our notation

dox(x, 0)[KX] = j(w, v, ^-(X,0)u + ^(x,0)v)   (u,v) e *,};

ker(d(ii*F)(x, 0, z)) = {(u, v , w) \ (u, v) £ Kx, w = 0} ;

thus the thesis holds.   D

Lemma 2.3. Use the coordinates on U = uc given before Lemma 2.1. The line

bundle K is orientable (i.e., e(Kc) = 1) if and only if there exists a never zero

function k : R -> R2,    k(x) = (kx(x), k2(x)), such that

(2.2) VxeR   dF(x,0)[k(x)]=0;

Vxel   kx(x + 1) = kx(x)   and   k2(x+l) = i ^ x    V^J = *'
I -k2(x)   ife(vc) = -l.

On the contrary, K is nonorientable (i.e., e(Kc) = -1) if and only if there exists

a never zero function k : R —> R2,    k(x) = (kx (x), k2(x)), such that

(2.3) Vx £ R   dF(x, 0) [k(x)] = 0;

VxeR   kx(x + 1) =-kx(x)   and   k2(x + 1) = { ~k^*]   iff^C\=X\
\\k2(x)      ife(vc) = -l.

Proof. A line bundle over C is orientable if and only if it has a never zero cross-

section, and such a section for the bundle K is provided by a function k as in

(2.2). The second part of the statement is proved by a similar argument.   □

By Lemmas 2.1 and 2.2 and the considerations at the beginning of this sec-

tion, it follows that proving Theorem 1.1 is the same as proving

Theorem 2.4. There exists a function h satisfying condition (I) [resp. (II), (III),

(IV)] of Lemma 2.1 and condition (2.1) of Lemma 2.2 if and only if (1.1) holds.

Proof ((1.1) is sufficient). There are four possibilities, corresponding to the four

bundles (I), (II), (III), (IV).

(I), (II). Since e(fcit) = 1, (1.1) implies e(tc) = 1, so the assumption and

thesis are the same as in [2, Lemma 2], thus the thesis holds.

(III). Since e(f^) - -1, (1.1) implies e(K) = -1. Then by (2.3) we have a
never zero function k such that

(2.4) VxeR   kx(x + I) =-kx(x)   and   k2(x + 1) =-k2(x).

Define

h(x,y) = r(x) + yk2(x)

where

r(x)=    kx(t)dt--    kx(t)dt.
Jo 2 Jo
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Observe that

/■X+l rx r[

r(x+l) + r(x)= kx(t)dt+      kx(t)dt-      kx(t)dt
Jo Jo Jo

rx i-X+l

= /   kx(t)dt+ /      kx(t)dt

= / kx(t)dt+ f kx(t+l)dt   [by (2.4)]
Jo Jo

= / kx(t)dt- [ kx(t)dt = 0;
Jo Jo

and using (2.4) again we have

h(x+l,y) = -h(x,y)   Vx,y,

that is, condition (III) holds.  Furthermore V/z(x, 0) = k(x), so (2.1) holds

too.

(IV).   Once again (1.1) implies e(Kc) = -1', therefore, by (2.3) we have a never
zero function k such that

(2.5) VxeR   kx(x+ 1) = -A:i(x)   and   k2(x + 1) = k2(x).

As before define h(x, y) = r(x) + yk2(x), where

r(x)= f kx(t)dt-- [ kx(t)dt,
Jo l Jo

and use (2.5) to get

h(x+l,-y) = -h(x,y),       Vn(x, 0) = k(x),

that is, the thesis.

((1.1) is necessary). Suppose that such a function h exists. Then the projec-

tion of Vn(x, 0) on Kx will provide a never zero function k such that either

(2.2)—in cases (I) or (II)—or (2.3)—in cases (III) or (IV)—holds. This ends
the proof of the theorem.   D

3. Generic mappings in RP2

Let RP3 denote projective space, and let p e RP3 be a fixed point. Identify

RP2 with the set of lines in RP3 through the point p. There is a canonical

projection

7i: RP3 - {p} -+ RP2.

Let F: S —► RP2 be a generic mapping. One can ask for the existence of an

immersion F : S —► RP3 - {p} such that F = noF.

Proposition 3.1.    With the just said assumptions and notation, such an F exists

if and only if for all connected components C of the critical set X of F

(-l)c^e(vc) = l.

Remark. The condition is exactly the same found by Haefliger [2] looking for

a factorization with an immersion in R3 of a generic mapping in R2.



252 domenico luminati

Figure 1 Figure 2

Proof. Observe that the projection n : RP3 - {p} -* RP2 is nothing but the

tautological bundle over RP2; thus we are allowed to use Theorem 1.1 and the

thesis will be proved once we show that f^n : f£E -* C is the trivial bundle

for all C. But this is a consequence of the following:

Lemma 3.2. For all components C of 1 the curve fie :C -» RP2 is homotopi-

cally trivial.

Proof. First of all, observe that the curve fie is sided, which means it possesses

a field of transverse vectors, excepted at cusp points, that in a neighborhood of

each cusp is directed towards the internal part of the cusp. Such a field can be

defined by the direction toward which the map F folds (see Figure 1).

It is not hard to see that the curve fc can be deformed, by means of an

homotopy, to a regular (i.e., with never zero derivative) sided curve (see Figure

2). Thus, to prove the lemma, it is enough to prove the following:

Lemma 3.3. Any regular sided closed curve in the projective plane is homotopi-

cally trivial.

Proof. Let /: [0, 1] -► RP2 be such a curve, that is,

/(l) = /(0),        f'(l) = f'(0),

and let n(t) be a field of transverse vectors along /.

Let / be the lifting of / to the sphere. Then it is easily seen that fi is

homotopically trivial if and only if / is a closed curve. Suppose, for the sake

of contradiction, /(0) / /(l), and let h(t) denote the lifting of the vector field

n.

Since the quotient map from the sphere to the projective plane identifies

opposite points and opposite tangent vectors at opposite points, we have that

the following hold:

(3.1) /(l) = -/(0),        /'(l) = -/'(0),        n(l) = -n(0).

By our assumptions, the three vectors fi(t), fi'(t), and h(t) are linearly

independent for all t £ [0, 1 ]; therefore,

det(f(t)\f'(t)\h(t))^0      V/e[0,l];
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on the other hand, using (3.1) we have

det(/(l) | fi'(l) | n(l)) = -det(/(0) | /'(0) | n(0)),

and this is a contradiction.

This ends the proof of the two lemmas and of Proposition 3.1.   □

Remark. The converse of Lemma 3.3 is also true. In fact if / is homotopically

trivial, then it has a closed lifting / to the sphere. Since the sphere is orientable,

/ possesses a field n of transverse vectors. The covering map transforms n to

a field of transverse vectors along / (see also [4, Proposition 1]).
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