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Abstract. Existence of a simplex with prescribed edge lengths in Euclidean,

spherical, and hyperbolic spaces was studied recently. A simple sufficient con-

dition of this existence is, roughly speaking, that the lengths do not differ too

much. We extend these results to Riemannian ^-manifolds M" . More pre-

cisely we consider m + 1 points Po, px , ... , pm in M" , m < n , with pre-

scribed mutual distances Ijj and establish a condition on the matrix (/,y) under

which the points p, can be selected as freely as in R" : p0 is a prescribed point,

the shortest path p0px has a prescribed direction at Po > the triangle PoP\P2

determines a prescribed 2-dimensional direction at pq , and so on.

1. Basic definitions and the theorem

Existence of a simplex with prescribed edge lengths in Euclidean, spherical,

and hyperbolic spaces was studied in [3]. A simple sufficient condition of this ex-

istence established there is, roughly speaking, that the edge lengths do not differ

too much, see [3, Theorem 2]. We deal here with m + 1 points Po, P\, ■■■ , Pm

in a Riemannian n-manifold M" , m < n, with prescribed mutual distances

fj and establish a condition on the matrix (//,) under which the points p, can

be selected as freely as in R" : po is a prescribed point, the shortest path poP\

has a prescribed direction at po , the triangle PoP\P2 determines a prescribed 2-

dimensional direction at po , and so on. Our result however does not guarantee

uniqueness of the points pt (see more on that at the ends of parts A and I of

§3). Note that the desired points p, may not exist even though all the distances

Uj are equal and the manifold M" is complete, noncompact, and expanding

in the following sense: there exists a point w £ M" and a constant c > 0 such

that for any triangle awb with wa = wb , one has ab > c • wa • Zawb where

Z means angle. An appropriate example for four points in M3 can be con-

structed as follows. Let M2 be a narrow right circular cone. Its vertex v can be

smoothed out later for regularity. Put M3 = M2 x 7?. One can check that M3

is expanding if the point (v , 0) is chosen as the point w . Prescribe /,; = 1 .
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Select points qo, qi, and q2 £ M2 on a circumference centered at v such that

their mutual distances in M2 all are unit. Now put po = (qo, 0), p\ = (qx, 0),

and p2 = (q2, 0). Obviously /oi = ta = ta = 1 • By symmetry, the last point
Pi should be of the form (v , h), h£ R. Then /30 = /31 = li2 = (r2 - h2)1'2

where r is the radius of the above circumference. When the cone M2 is suffi-

ciently narrow, one has r > 1 . Then /30 = /31 = ta > 1 and hence the desired
point Pi does not exist when p0, px , and p2 are selected as above.

There is another subtle difference in this area between Mn and Euclidean,

hyperbolic, or spherical «-space Xk of curvature k. Consider, say, a tetra-

hedron in Xk . If the directions of the three edges coming from its vertex are

coplanar then the same is true of each other vertex of the tetrahedron. This is

not so in M" even for small tetrahedra.

By fc-plane, we will mean Xk . The sphere X[ will often be denoted by Sn .

The notation xy will be used for a geodesic with ends x, y for its length

and for the distance between x and y . The meaning will be specified in cases

of possible confusions.

A set C C M" is called convex if for each two points in C there exists a

unique shortest path in M" connecting these points and this path (which is a

geodesic) belongs to C.

Let (xij) be a matrix with x;, = 0, x,; = x7, > 0, i, j = r, r+1, ... , r + s .

(We will encounter cases r = 0 and r = 1 .) Such a matrix will be called

allowable. Let qr, qr+x, ... , qr+s be s + 1 points in a metric space Y with

the mutual distances qtqj = x(J. The set of these s + 1 points will be called a

realization of (x,;) in Y and often written down as qrqr+x •■■qr+s- Suppose

Y = X£ with n > s. In case k > 0, assume also that the points #, lie in an

open semisphere of Xk . If their convex hull is a nondegenerate s-simplex then

we say that the matrix (x,y) and its realization are nondegenerate in Xg .

Let M" , n > 2, be a regular Riemannian manifold and let e\, e2, ... , em ,

2 < m < n, be pairwise orthogonal unit vectors at a point p £ M" . The set

{e\, e2, ... , em} will be called a frame at p . Suppose that an allowable matrix

(lij), i, j = 0, 1, ... , m , has a realization p0px ■■■pm in Mn such that, for

each pair p,, pj, the manifold M" contains a unique shortest geodesic p/Pj

of the length /,; and the following conditions hold.

(0) Po=P-
(1) The direction of the segment poPx is ex .
(2) The direction of the segment A)/^ is coplanar with ex  and e2  and

forms with e2 an angle < n/2 .

(3) The direction of the segment P0P3 is coplanar with ex, e2, and e^ and

forms with e^ an angle < n/2 .

(m) The direction of the segment PoPm is coplanar with ex,e2, ... ,em and

forms with em an angle < n/2.

We will say then that the realization poPX ■■■pm of (/,;) fits the frame {ex, e2,

... ,em} at p.

Theorem. Let M" , n>2, be a regular Riemannian n-manifold, not necessarily

complete. Let p £ M" , r > 0 be less than or equal to the convexity radius at

p (see [4, §5.2] for the definition), let k' and k" be finite lower and upper

bounds of the sectional curvature in the r-neighbourhood Nr(p) of p, and let
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{ex, e2, ... , em}, 2 < m < n, be a frame at p. Suppose that an allowable

matrix (Uj), i, j = 0, 1, ... , m, satisfies the following conditions:

(i) ki<r, i=l,2,...,m.
(ii) For each pair of distinct i and j different from 0, there exists a non-

degenerate triangle on the k'-plane (k"-plane) with side lengths lot, Iqj . and

hj ■

(1) (Thus its perimeter is <2n/Vk"ifk">0.)

(iii) With a'jj (a'/f) being the angle of that triangle opposite to the side of the

length Uj, each allowable matrix (atj) satisfying

(2) a'u < au <a"j,        i, j = 1,2, ... , m ,

has a nondegenerate realization axa2 ■ ■ ■ am in Sn~x.

Then the matrix (Uj) has a realization popx ■•■ pm in Mn which fits the frame

{ex,e2, ... , em}. Moreover, any realization poPX ■ ■ -Pk , k < m, of the matrix

(ly) with i, j = 0, 1, ... , k fitting the frame {ex, e2, ... , e^ (we do not know

if such a realization is unique) can be augmented by points Pk+X, Pk+i, ■■■ , Pm

such that the resulting set pxp2 ■■■pm is a realization of the original matrix (Uj)

fitting the frame {ex, e2, ... , em} .

2. Some related questions

Remark 1. Condition (ii) of the theorem is not easy to check directly. Theorem

2 in [3] yields a simple sufficient condition for (iii) to hold. Take some

(3) a > max a"
i,j

and suppose that

I     m
(4) Q<2arcsin^/^—ry

Then, by [3, Theorem 2], a quantity

(5) X = X(m-l,a)£(0,a)

is determined identically by the equation

(6) sinA = sina[l - f(m - l)(cos2 R)/cos2(a/2)]x'2

where

( 2/m if wis even,
(7) f(m-l) = \ .

( 2mj(m - l)(m +1)   if m is odd

and

(8) sin7? = y/2(m- l)/msin(a/2).

(We use m - 1 as the integer argument to comply with [3].) This I has the

property that each allowable m x m matrix (a,y) with

(9) au£(X,a], i^j,

is nondegenerate in Sm~x . Thus if min,ja^ > X = X(m - 1, a) then (iii)

holds.
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Remark 2. A better though less convenient method to check condition (iii) arises

from Theorem 1 in [3]. Put

Sjj = cosajj — cosQ,mcosajm ,        i, j = 1, 2,... , m — 1.

Theorem 1 in [3] implies that the m x m matrix (a,;) of our theorem has a

nondegenerate realization in Sm~x if and only if the (m - 1) x (m - 1) matrix

5" = (sjj) has a positive spectrum. To establish this property of S = S(a,j) for

each combination of the m(m - l)/2 arguments a,; in the domain D: a\, <

otjj < a'/j, it is enough to establish this property for one such combination and

then make sure that detS(ajj) stays positive in D.

Remark 3. Suppose the sectional curvature is constant in Nr(p). Then one can

take k' = k" — k. The matrix (a,-7-) is now unique. Its readability can be

checked with the help of Theorems 1 and 2 in [3]. Our theorem means now

that each allowable matrix (/y) is freely realizable in Nr(p) with 0th vertex at

p (see the next remark) if and only if it satisfies (i), (ii), and (iii). (Consider-

ing necessity of (iii), one should notice that fitting the frame {ex, e2, ... ,em}

implies nondegeneracy of the realization poPx ■•■pm in Nr(p), which in turn

implies nondegeneracy of the realization ax---am in S"~x .) In this form, the

theorem can be applied to spaces of constant curvature more general than Xk .

Let, for instance, M3 = Sx x R2 . Then the convexity radius R(p) = n/2 for

any p £ M3. Take r = n/2. Consider the matrix

/ 0    /0I    ta\       /   0      1.58    1.58\

L=\ho    0    ta     =     1-58      0      3.15
\ho   hx     0/      V1-58    3-15      0   /

where 1.58 > n/2 and 3.15 > n. This matrix has realizations in M3, say,

those located in 7?2. The theorem, however, does not guarantee existence of

any realization of L since /oi > r in violation of (i). Importance of (i) becomes

clear if one notices that L has no realization in Sx x Rx c M3 which would

be symmetric about 7?1 . At the same time, replacing 1.58 and 3.15 by 1.57

and 3.13, one gets a matrix freely realizable in M3 (see Remark 5 for an exact

definition) according to the theorem.

Remark 4. Let K be a nonempty set in M" and let (/,-_,-) be an allowable

matrix. If for any p £ K and any frame {ex,e2, ... ,em}, 2 < m < n , at p

the matrix (Uj) has a realization in M" fitting this frame, we will say that (Uj)

is freely realizable in M" with 0th vertex in K. The theorem gives a simple

sufficient condition of such realizability. Suppose that infpg^ R(p) > 0 where

R(p) is the radius of convexity. Take a positive r < inf^g^ R(p) and let k', k"

be finite lower and upper bounds of sectional curvature in the /--neighbourhood

of K. Suppose that conditions (i), (ii), and (iii) hold with these r,k',k".

The theorem implies then that (Uj) is freely realizable in M" with 0th vertex

in K.

Remark 5. Let P be a permutation on {0, 1, ... , m}. Put Ifj = lp(i)p(j),

I, j = 0, 1, ... , m. If the matrix (If.) is freely realizable in M" with 0th

vertex in K for any P, we will say that the original matrix (/,-_,-) is freely

realizable in M" with a vertex in K. If Tv" = M" here, we will say that (Uj)

is freely realizable in M" .  (In this case, M" of course should be complete.)
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Free realizability with Oth vertex in K does not imply free realizability with

a vertex in K . In the rest of this remark, we assume that r, k', and k" are

as in the preceding remark. Note that conditions (i), (ii), and (iii) can hold for

(ly) but fail for (Iff). Of course, if (i), (ii), and (iii) hold for each matrix (/£■)
then (ly) is freely realizable with a vertex in K.

A natural question to ask in this connection is as follows. Suppose that (Uj)

is freely realizable in Mn with Oth vertex in K. Put

/ = max /0,;

~_({x£K\p(x,dK)>l}   ifdK^0,

~ I M" ifdK = 0 (then K = M").

Suppose K ^ 0 . It is guaranteed now that each realization p0px ■ ■ ■ pm of (Uj)

with at least one vertex, say p\ , in K has po £ K . Let F = {fx, f2, ... , fm}

be a frame at the point px £ K. Is it possible to select Po £ K and a frame

{ex, e2, ... , em} at po such that the realization p0px -Pm would fit both

frames? In other words, is (Uj) freely realizable in M" with a vertex in K ?

We do not know the answer.

Remark 6. Let K, r > 0, k', and k" be as in Remark 4. Let L = (Uj), i, j =
0, 1, ... , m , be the matrix of the edge lengths of a nondegenerate Euclidean m-

simplex. Put L(e) = (eI,j) , e > 0. Then L(e) is freely realizable in M" with

Oth vertex in K for sufficiently small e . Indeed, together with the angles a'^ =

a'jj(e) and a"j = a"j(e) on k'-and rc"-planes for the matrix L(e) , consider also

the appropriate angles a?- on Euclidean plane. (They do not depend on e.)

The matrix (a°-) is nondegenerate in Sm~x since L is nondegenerate in Rm .

Obviously, a^ —► a^ , a'' -* aQ as e —► 0. Then, for sufficiently small e , any

matrix (a,7) with atj £ [aj--(e), a^-(e)] is arbitrarily close to the nondegenerate

(ctfj). Since nondegenerate matrices form an open set in the appropriate matrix

space (see [3, Corollary of Theorem 1]), these matrices (a,-7-) are nondegenerate.
Now the theorem implies that L(e) is freely realizable in Mn with Oth vertex

in K.
Applying this observation to each permuted matrix Ifj (see Remark 5), one

will see also that L(e) is freely realizable in M" with a vertex in K when e

is sufficiently small.

Remark 1. Note finally that the theorem does not assume triangle inequalities

involving ly , lik , ljk in which the index 0 does not appear among i, j, k .

Those triangle inequalities follow from the theorem, i.e., from realizability of

the matrix (ly).

3. Proof of the theorem

A. One may consider only the case k = m - 1 since points can be added one

at a time. We use induction by m . If m = 2 , one obviously can select po and

px fitting the frame {ex} . (This selection is unique in this particular case.) Let

p(</>) be such that the length poP(4>) = ta. and the direction of the segment
PoP(4>) is coplanar with ex and e2 and forms an angle <f> £ [0, n] with ex and

an angle < n/2 with e2. The distance pxp(4>) changes continuously with 0
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from pxp(0) = |/0i - tal < ta to pxp(n) = lox + ta > ta • Then pxp(4>*) = ta
for some (p* e [0, n]. If cp* = n then lx2 = lox + ta. which is impossible for
the nondegenerate triangles mentioned in (ii). Thus tp* ̂  n. If cp* = 0, then

either /0i - ta = ta or ta - ta = ta > which is also impossible due to (ii).
Hence </>* £ (0, n) and the point p2 = p((p*) is a desirable one. (We do not

know if <j>* and p2 are unique.) Thus the theorem, including the statement on

augmentation, holds for m = 2.

B. Suppose now that the theorem holds for m - 1 > 2 in place of m . Along

with the matrix L = (ly), i, j = 0, 1, ..., m, we will consider three other

matrices: Lm with is obtained from L by deleting its wth, i.e., the last, row

and column; Lm_i obtained from L by deleting its (m- l)st row and column;

and Cm_iw obtained from L by deleting its last two rows and last two columns.

Similarly, we introduce three modifications, Am , Am-X , and Am-Xm , of a ma-

trix A = (ctjj), i, j = 1, 2, ... , m . Note that since A has a nondegenerate re-

alization in S"~x for any choice of its elements ay £ [a1^, a'/j], the same is true

of Am , Am-X , and Am_Xm . By our induction assumption, there exists a realiza-

tion poPX ■ ■ -Pm-i of Lm fitting the frame {ex, e2, ... , em-X}. For <p £ [0, n],

denote by e(<j)) the unit vector coplanar to em-x and em forming an angle tp

with em-X and an angle < n/2 with em . Obviously the part poPX ■■■pm-i of

the last realization is a realization of Lm_Xm . By our induction assumption, this

realization popx ■ ■ -pm-i can be augmented by a point p(tp) such that the result-

ing set poPx ■ ■ -Pm-iP^) is a realization of Lm_x fitting the frame {ex, ei, ... ,

em-i, e(<p)} . Denote by a\,..., am-X, a(<p) the directions of the segments

PoPx, ..., poPm-i, PoP(<P) at po . We now specify the entries ay of the ma-

trix A above as follows. We assume a,y to be the distance a/Oj on the sphere

Sn~x of directions at po for i, j < m - 1, i.e.,

(10) otij = ajOj = ZpiPoPj, i, j = 1,2, ... , m- 1.

We put

(11) aim = ami■ = a,a((p),     i = 1 , 2, ... , m - 1 ,        amm = 0.

Thus ax ■ ■■am-Xa((p) is now a realization of the matrix A in S"~x while

ax---am-X, ax ■■■ am^2a((p), and ax--am^2 are realizations of Am,Am-X,

and Am-Xm . Note that in case M" = X£ , the entries aim do not depend on

cp except for am-Xm .

C. We make now an important reference to comparison theorems for trian-

gles by Alexandrow and Toponogov. That will be the only substantial refer-

ence to Riemannian Geometry in this paper. Since ta < r, all our points

Po, Px, ... , pm-\, P(4>) and the segments between them lie in Nr(po) ■ Accord-

ing to [2, §6.4.2, Theorem and Remark 3], Toponogov's Theorem can be stated

as follows.

Theorem (V. A. Toponogov). Let C be a convex set in M" , n > 2, and k' be

a lower bound of the sectional curvature at points of C. Then for any triangle

made of shortest paths in C there exists a triangle in the k'-plane with the

same side lengths such that the angles a, /?, y of the triangle in C and the

corresponding angles a', /?', y' of the triangle in the k'-plane satisfy

(12) a'<a, fi'<B, y'<y.
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Since Nr(p0) is convex, the theorem applies to it and yields

(13) a'u< ay,        i,j=l,2,...,m-l;

(14) a'im < aim = a,a(</>) = /-PiPoP(4>)    fori<m-2 and tp £ [0, n].

The local comparisons of the angles of triangles like those in (13) and

(14) were actually understood prior to Toponogov's global results, e.g., by

Alexandrow.

Note that am_lm = Lpm-XPoP(§) is not involved in either (13) or (14) since,

generally speaking, pm-Xp(<p) ̂  lm-Xm ■ (We are just working towards the ap-

propriate equality.) Denote by B the closed metric ball centered at po whose

radius is maxi<,<m /,-n . Since this radius is < r, the ball B is convex. Accord-

ing to [1, §1.7b)], B is a domain of type Rk„ (defined in [1, §1.4]). It follows
from [1, the end of §1.6 and §1.4c)] that, for any triangle in B of perimeter

< 2n\[k", if k" > 0, the triangle in the rc"-plane with the same side lengths

satisfies

(15) a<a",        /?</?", ?<?"

where a, /?, y are the angles of the triangle in B and a", /J", y" are the

corresponding angles of the triangle on the k"-plane. Due to (1), the estimate

(15) can be applied to the triangles PtPoPj and PiPoP(<P) resulting in

(16) ay <a"j,        i, j = 1,2, ... ,m-l;

(17) aim = Z.piPoP((p) < ot'im   for i < m - 2 and tp £ [0, n].

The relations (13), (14), (16), and (17) mean that the off-diagonal elements of

the matrices Am and Am-\ satisfy condition (2). Therefore their realizations

ax ■ ■ ■ am-X and ax ■ ■ ■ am-ia((p) are nondegenerate.

D. It will be convenient to associate with these two realizations the nondegen-

erate spherical (m-2)-simplexes axa2- ■ -am-X and axa2- ■ -am„2a(<p) of which

the first one is immovable while the second one varies with cp. The variation,

however, is not rotation about the common (m - 3)-face axa2 ■ ■ ■ am-2 since the

lengths of the edges a,fl(0), i < m - 2, generally speaking depend on tp (see

(11)) unless M" = X£. In subsections E, F, G, and H we are going to watch

the distance a(<p) = am-\a((p) in Sn~x as tp varies on [0,7r].

E. Let Sm~2 c S"~x be the sphere determined by axa2 ■ ■ -am-\ . Denote by

77o and 77^ the two closed semispheres of Sm~2 whose common boundary is

the spere Sm~3 determined by a\a2- ■ -am-2; see Figure 1 on the next page.

Since the simplex axa2- ■■am-X is nondegenerate, the point am-\ <£ Sm~3.

One may assume that

(18) am-1 £ relint 770 = H0\Sm-3.

Put

(19) F0 = {x £Ho\xa,£[a'im,a"m],  i = 1, 2, ... , m - 2};

(20) Fn = {x £ Hn\xaj £ [a'im , a"m],  i = 1,2, ... , m-2}.

Let us show that

(21) fl(0)ef0,        a(n)£Fn.
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y' __JK_ ^N.

^N^S^*1 / y/jsSatfS) S1   ^yS Cq

Figure 1

Since poPx ■ ■■Pm-x and poPx ■ ••pm-2P(0) both fit the same frame {ex, e2, ... ,

em-x = e(0)} , the direction a(0) of the segment PoP(0) lies in 770 as the point

am_i does according to (18). The distances a,a(0) = a,m(0), i < m - 2

(see (11)), satisfy (2) according to (14) and (17). Thus a(0) £ F0. Similarly

a(n) £ Fn.

F. Denote by G the sperical shell

(22) G = {x £ S"-x\a'm_Xm < xam-x < a'^_lm}.

Let us show that

(23) FonG = 0;        FKnG = 0.

Suppose to the contrary that, say, F0 n G 3 z . Then the mutual distances of the

m points ax, ... , am-X, z in Sn~x satisfy (2), and hence ax ■■■am-Xz should

be a nondegenerate (m - l)-simplex. On the other hand, these m points lie in
Sm-1

G. We prove now that the spherical shell

(24) G separates 7^ and Fn .

Suppose to the contrary that, for instance,

(25) F0UF,cJ?^{jc€5"-I|xfl«-i<o,M_lM}.

Consider the matrix

/    0 ax2      ...     oim-i       a\m   \

a2, 0        ...     a2m-\       a'2m

(26) A'=        .
Om-ll     Qm-12     ••• 0 a'm-\m

^   a'm\ a'ml       ■■■      a'mm-\ °        '
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where ay are defined by (10). Due to (13) and (16), condition (2) holds for

A'. Then A' has a nondegenerate realization. One obviously may assume that

it lies in the (m - l)-sphere Sm~x c Sn~x determined by the points ex, ... , em

and that the first m - 1 points of the realization are ax, a2, ... , am_i. Denote

by b the last point of this realization. Then

(27) b£dB.

As the point b rotates in Sm~x about Sm~3 (determined by ai---am_2),

it travels a circumference C (nondegenerate since b £ Sm~3), see Figure 1.

The 2-sphere S2 determined by C is orthogonal to Sm~3 and thus to Sm~2.

Therefore the great circle Sx =S2nSm~2 includes a diameter cqc% of the circle

K = S2 n B, see Figure 1. (By a diameter, we mean here a longest geodesic in

K that can be longer than n when the radius a'm_lm of B is > n/2 .) Due to

(27),

(28) b£CndK.

Note that the points bo and bn which make up C n Sx = C n Sm~2 satisfy

(29) a,b0 = aibn =dim,        i = 1, 2, ... , m - 2.

Thus each of them is either in Fo or Fn ; however, if one is in Fo then the

other one should be in Fn since bo and bn are distinct and symmetric about

£m-3   Qne may assume that

(30) b0£F0;        bn£Fn.

By contrary assumption (25), bo and bn lie in the open ball B. Therefore

bo and bn are interior points of the diameter cqck , see Figure 1. Obviously

the circumference C is orthogonal to cocn at bo and bn. Then C and dK

cannot intersect contrary to (28). The case Fo U Ft c Sm~x\(B u G) reduces to

a contradiction, similarly, which proves (24).

H. Since the points bo, bn £ Sm~2 are symmetric about Sm~3 and (see (30))

bo £ F0 thus lying on the same side of Sm~3 with am-\, the distance

(31) MOT-i < bnam-x ■

Now if Fr C B and, by (24), F0 c Sm_1\(G U B) then by (30) the distance
bnam-\ < b0am-X contrary to (31). Hence

(32) F0cfl,        FncSm'x\(GuB).

Now come back to the distance a(<j>) = am-Xa(tp) singled out in subsection D.

Due to (32) and (21), one has

(33) a(0) < a'm_Xm < a'n\_Xm < a(n).

I. Now we watch the distance pm-Xp(<p) in M" . For the triangle pm-XpoP(<p),

consider in the A:'-plane (k"-plane) a triangle with the same side lengths. De-

note by a'(cp) (a"((p)) its angle opposite to the side of the length pm-Xp(tp).

Due to (12) and (15),

(34) a'(cp)<a((p)<a"(<p).

Suppose now that pm-Xp(0) > lm-Xm . Due to (34) and geometry of the k -plane,

one has then a(0) > a'(0) > a'm_im contrary to (33). Thus pm_xp(0) < lm-Xm .
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Similarly, pm_xp(n) > /m_im.   By continuity, pm-Xp(<p*) = lm-\m  at some

<P*£(0,n).
Thus an arbitrary realization poPx ■ ■ -Pm-i of Lm fitting the frame {ex, ei,

... , em-X} has been augmented by the point pm = p((p*) such that poPx ■ ■ -pm

is a realization of L. Obviously this realization fits the frame {ex,ei, ... ,em}.

This completes the proof. (Again, we do not know if <p* and pm are unique.)
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