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Abstract. We give a simplified proof of recent regularity results of Lewis and

Murray, namely, that certain commutators, and the boundary single layer po-

tential for the heat equation in domains in R2 with time dependent boundary,

map LP into an appropriate homogeneous Sobolev space. The simplification

is achieved by treating directly only the case p = 1, but in a weighted setting.

1. Introduction and statement of results

Regularity results for certain commutators and layer potentials associated

to the heat equation in domains in E2 with time dependent boundary have

recently been obtained by Lewis and Murray [LM]. They showed that these

operators are bounded from LP into an appropriate Sobolev space Ia(LP).

Their proof proceeds in two steps: First treat the case p = 2, and then use a

variety of real variable techniques to extend to the case p ^ 2. Their results are

equivalent to the U boundedness of certain "nonstandard" singular integrals

that, in particular, need not map constants into BMO; thus the Tl Theorem

does not apply, nor can one interpolate with an end point estimate to obtain

the case 2 < p < oo. Not surprisingly then, the second part of their program

entails a not inconsiderable expenditure of effort, and it would therefore seem

desirable to dispense with this step entirely. Fortunately, there is a way to do

this: in the (possibly appocryphal) words of Rubio de Francia, "7/ does not

exist, only (weighted)L2." In this note we will prove a weighted version of the

L2 result of [LM], from which most of the LP theory follows automatically (in

particular, we obtain the case of principal interest in parabolic theory, namely,

a = \ for all p, 1 < p < oo). While the weighted results are new and

perhaps of independent interest, our primary motivation in establishing them

is to simplify the arguments of [LM].

Before stating our theorems, we need to recall some elementary facts about

Littlewood-Paley theory in R" . Let y/ £ Q^R") be radial, be supported in the

unit ball, and have mean value zero. We define Qsf = y/s * f, where y/s(x) =
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s~"y/(x/s), and where y/ has been normalized so that JQx(y/(s^))2ds/s = 1

for all £, £ R" (this can be done since y/ is radial). Thus Qs satisfies the

"Calderon reproducing formula"

For 0 < a < 1, we define Qs = s~aIaQs, where as usual Ia denotes the

fractional integral operator

(/«/r(Os|{ra/«).

Then, at least for test functions,

r$di=cj
Jo s

since
f°° ds

0< /    s~2a(y/(s))2 — = Ca<oo,        0<q<1.
Jo 5

The latter inequality follows from the smoothness of yi and the fact that ^(0) =

0 (so, in particular, \yi(s)/s\ is bounded near the origin). If we set

£(kd = \z\-am\)

then a routine computation shows that

C      9l_a C      v'~a

lft(*)l < /      i°   +■        and   |Vft(x)| < ,     ','°   ^,    .
'^ v  ;| - (5 + |x|)"+'-a '   ^n  ;| - (s + \x\)n+2-a

Thus,

(fl«,)l4)"2<q,|-
and

|V^(x)|2^J      <C|x|-"-'.

By vector-valued Calderon-Zygmund theory (see, e.g., [GR, Chapter V]), we

then have, for all w £ A2,

(1.1) ll*(/)l|2.««||/||2.»,

where

*(/„(/fia/i^)"2.
Furthermore, the homogeneous weighted Sobolev space Ia(L2,), w £ A2, can

be given the norm

(1-2) \\f\\LiLi) = (j^J™ \Qsf(x)\2 ̂-w(x)dx^     ,

because by (1.1) this last expression is comparable to  ||/||2,«;, where  / =
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For 0 < a < 1, let (real-valued) A £ 7„(BMO), and consider the one-

dimensional operator

(1.3) w^/'f.ff'/w*-
As in [LM], our results for this operator can easily be extended to the boundary

single layer potential for the heat equation in domains {(xx, x2): Xi > A(x2)},

with A = Ix/2a, a £ BMO. We shall return to this point in §4. Our principal

result is the following.

Theorem 1.4. Let A = Iaa, and suppose w £ Ai  if 0 < a < 1  or w £ A2 if

\ < a < 1. Then

\\Kaf\\L(Ll>)<Ca\\a\\l\\f\\2,w.

As an almost immediate corollary, we recover, except for the case 1 < p < 2 ,

0 < a < \ , the result of [LM, Theorem 3].

Theorem 1.5. Suppose 1 < p < oo if\<a<\,or2<p<oo // 0 < a < 1.

Then

\\Kaf \\i„(d>) < CQip||a||%||/||p .

Proof of Theorem 1.5 (Modulo Theorem 1.4). If \ < a < 1 , then by Theorem

1.4 we have that DaKa is bounded on L2,,, w £ A2, and therefore on LPU),

1 < p < oo, w £ Ap, by Rubio de Francia's extrapolation theorem (see, e.g.,

[GR, Chapter IV]), where

(D"f)~($) = \c:\aM).

If 0 < a < 1 then DaKa is bounded on L2,, w £ Ax . In particular, by a result

of Coifman and Rochberg [CR], we have for u £ L(p/2' , p > 2, the inequality

j\DaKaf(x)\2u(x)dx <Cn,E\\a\\t j \f(x)\2(M(\u\x+e))x'x+c(x)dx,

for any positive e . By choosing 1 +e < (p/2)', the LP boundedness, p > 2 , of

DaKa may be deduced by a standard duality argument. Theorem 1.5 follows.

We remark that the proof to follow will actually show that in the case 0 <

a < j, one may take w £ Ax+2a in Theorem 1.4, and therefore by a slightly

more involved duality argument, one obtains Theorem 1.5 for p > 2/(1 + 2a).

This is the best result that can be directly obtained by our method, which relies

on the auxilary use of the Littlewood-Paley g^ function, with X < 1 + 2«.

Since the full range of p has already been treated in [LM], we shall content

ourselves with Theorems 1.4 and 1.5 as stated.

In the next section, we give a transparent extension to the weighted setting of

a result of Strichartz relating Carleson measures and 7(,(BMO). In §3 we prove

Theorem 1.4, and then in §4 we describe how this result may be extended to

the boundary single layer potential.
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2.   7a(BMO)   AND WEIGHTED CARLESON MEASURES

We first need a preliminary fact.

Lemma 2.1. With 0 < a < 1, the square function gaf defined on R" by

gaf{x) - (X]Iafix+h)~/a/(x)|2 w^)'

is bounded on L2,, w £ Ap(a), where p(a) = min(l + 2a/«, 2). In particular,

we may always take w £ Ax, and if n = 1 and \ < a < 1, we may take

w £ A2.

Proof of Lemma 2.1. This is fairly trivial. First (see, e.g., Stein [S, pp. 162-163,
6.12, 6.13] and the references given therein) we have the pointwise bound

(2.2) gaf(x) < Ca^g*J(x)

if X < 1 + 2a/n (see [S, p. 88] for the definition of g%). But by a result of

Muckenhoupt and Wheeden [MW], g£ is bounded on L2,, with w £ Aq^,

q(X) = min(A, 2), X > 1. If 1 + 2a/n > 2, we take X = 2. If 1 + 2a/n < 2
and w £ Ax+2ajn , then by a well-known property of Ap weights we may select

a X < 1 + 2a/n , with w £ Ak. In either case, Lemma 2.1 follows by [MW] and

the pointwise bound (2.2).

We now give a weighted version of Theorem (3.3) of [Stz].

Lemma 2.3. Suppose 0 < a < 1 and A = Iaa, a £ BMO. If Q(s) is a cube
with side length s and p(a) = min(l + 2a/« , 2), then

(2 4) 1        /     f      ^x + h)-A^2dhw(x)dx<C\\a\\2{ZA) w(Q(s)) ]Q(S) /,„,<, |*|-+*. aflWW ** - Laim*'

where w £ AP(a). In particular, we may always take w £ Ax, and if j < a < 1

and n = 1, we may take w £ A2.

Proof of Lemma 2.3. This is easy if we follow the argument in [Stz], combined

with that of Journe [J, pp. 85-87], so we only give a brief sketch. Since the

operator

(2.5) f-> Iaf(x + h) - Ittf(x)

has Fourier multiplier [elh'^ - \]\E,\~a, it annihilates constants, so we may as-

sume that a has mean value zero on Q*(s). Here Q*(s) denotes the cube

concentric with Q(s) and has ten times the diameter of Q(s). As usual, we

write a = ax+a2, where ax = axQ-(S), a2 = aX(Q>(S))C. Now crudely, by

Lemma 2.1, the left side of (2.4) with Iaai in place of A is no larger than a

constant times

-±^j\ai(x)\2w(x)dx.

The desired estimate for this last term may be obtained exactly like the corre-

sponding estimate in [J, p. 86] by using Holder's inequality, the reverse Holder

property of Ap weights, the John-Nirenberg Theorem, and the fact that w de-

fines a doubling measure. To handle the part of (2.4) corresponding to 7a<22,
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we observe first that the operator defined by (2.5) is given by convolution with

the kernel

" [\x + h\"~a     \x\»-°\ ~   "'a\x\"+x~° '

where the last inequality holds whenever \x\ > 2\h\. If we write h = td in polar

coordinates, then the left side of (2.4) with Iaa2 in place of A is bounded by

(2-6)    /   /  f\i ,/+1/^+1-° |fl2(y)|</y1 Tw{x)dxde-
Js»-'JQ(s)Jo Un" (t + \x ~ y\r J     l

For x £ Q(s) and y £ (Q*(s)c, we have (s + \x -y\) « \x - y\ « (t + \x - y\).

Thus, the expression in square brackets in (2.6) is dominated by a constant

times

6)'7, (irra^^c (0"°lM-
where the last inequality follows by a slight variant of a classical argument of

Fefferman Stein [FS] (see, e.g., [Stz, Lemma 2.2]). Lemma 2.3 may now be

obtained by plugging this last expression into (2.6).

3. Proof of Theorem 1.4

The proof is based on ideas developed by Lewis and Murray in [LM, §3].

Our objective is to prove

(3.1) / [°°\QsKaf(x)\2J^w(x)dx< Ca ! \f(x)\2w(x)dx,
Jm Jo s Jm

where, without loss of generality, we assumed that ||#||* = 1 (recall that A =

Iaa, a £ BMO). Here, w £ A2 if \ < a < 1, or w £ Ax if 0 < a < 1 .
We smoothly truncate the kernel of Ka as follows. Choose a radial <p £ Cq° ,

0 < <p < 1, where tp = 1 on {|jc| < 100} and tp = 0 on {\x\ > 101}. For fixed
s, we write

T-'yff"2 H [A(X) - m]1 (|X -yrl~°* (^)

(3-2) ^-^(i-p(^))}

= [A(x) - A(y)]2{js(x -y) + ks(x - y)} .

We consider first the term corresponding to js, which is essentially the same

as 0i in [LM, (3.10)] (the term 62 in [LM] will not arise in the present argu-

ment and their term 6^ corresponds to ks). The part of the left side of (3.1)

corresponding to js is crudely bounded by

[°° f\l [ \¥s(x - z)\(A(z) - A(y))2js(z - y)\f(y)\dzdy\  w(x)dx^.
Jo   Jm Um. Jm J s

Since convolution with | y/s \ is controlled by the Maximal Function, by Muck-

enhoupt's theorem the last expression is no larger than a constant times

f°° f \f(A(x)-A(y))2js(x-y)\f(y)\dy\   w(x)dx-^
Jo   Jm Um J s
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for all w £ A2. In analogy with [LM, (3.15)—(3.17)], we apply Minkowski's
integral inequality to obtain the bound

= C||C2(|/|)||2jU,,

where C2 is the second-order fractional commutator with kernel

0.3) ^(,.y)5'-w;ff);.
But C2 is bounded on unweighted L2 by a result of Murray [M2]. Furthermore,

since A £ 7Q(BMO) C Lip a, the kernel £(2) satisfies "standard" Calderon-

Zygmund estimates, so C2 is bounded on L2,, w £ A2, by the usual arguments

(see, e.g., Coifman and Fefferman [CF]).

We now turn to the part of (3.1) corresponding to ks. We consider the kernel

of the composition of Qs with the operator

/ - j[A(x) - A(y)]2ks(x - y)f(y) dy.

Since Qs\ = 0, this kernel equals

/ y/s(x - z)[A(z) - A(y)]2[ks(z - y) - ks(x - y)] dz
Jm

(14) + / ¥s(x - z)([A(z) - A(y)]2 - [A(x) - A(y)]2)ks(x - y) dz
Jm

= Hs(x, y) + Ls(x, y).

The terms 77s and Ls correspond to ox  and o2 in [LM, (3.24) and (3.25)].

We treat Ls first, and following [LM, (3.32)] we write

(A(z) - A(y))2 - (A(x) - A(y))2

= (A(z) - A(x))2 + 2(A(z) - A(x))(A(x) - A(y)).

Since J y/ = 0, the part of Ls containing the second part of (3.5) equals twice

(3.6) QsA(x)[A(x) - A(y)]ks(x - y).

Recall that A = Iaa, with a £ BMO. Plugging (3.6) into (3.1) in place of

QsKa, we obtain

f   f°°  ~ d<t
(3.7) /   /    \Qsa(x)CUioosf(x)\2—w(x)dx,

JmJo s

where Qs = s~aQsIa and CXjoos is the smoothly truncated first fractional

commutator with kernel

But \Qsa(x)\2w(x) y dx is a weighted Carleson measure for all w £ A2

(see [J, pp. 85-87]), so by a standard argument (3.7) is no larger than

||N(Ci, 100^ 7") 111 w ' wnere N is the nontangential maximal operator Ngs(xo) =
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suP|x-x0|<i \Ss(x)\. Now Cx is bounded on L? by [Ml], and since the kernel

(A(x) - A(y))\x-y\~x~a satisfies "standard" Calderon-Zygmund estimates, the

corresponding maximal singular integral

Ci,./ = sup|CMooJl
s>0

is bounded on L^, w £ A2. Thus, as in [LM, (3.39)], the nontangential

maximal function N(Cx>Xoosf) is bounded on L2,. In fact, the observation

in [LM] holds for any Calderon-Zygmund operator T with "standard" kernel

k(x, y), since for \x - Xo\ < s , we have

(3g)   \Tl0osf(x)\< J\k(x,y)0(\x-y\/s)-k(xo,y)<S>(\xo-y\/s)\\f(y)\dy

+ Tj(x0),

where <P = 1 - tp . The first term on the right side of (3.8) is no larger than

by the standard kernel conditions for k(x, y).

Next, we consider the part of Ls containing the first term in (3.5). We need

to estimate

(3.9)

//      / ¥s(x-z)[A(z)-A(x)]2dz / ks(x-y)f(y)dy   -J-w{x)dx.
JmJo    \Jm Jm s

Now, \ks(x - y)\ < C/(\h\ + \x - y\)l+a for \h\ < s . Furthermore, A £ LipQ ,
so by the change of variables z —> z + x, and then z —> sz , we have that (3.9)

is bounded by

(3.10)      [ r(f      \A(x + sz)-A(x)\Pslzl(\f\)(x)dz]   J^-W(x)dx,
JmJo     \J|z|<1 /

where Pt denotes convolution with the kernel ta/(t + |x|)1+a. Now by Min-

kowski's integral inequality, the square root of (3.10) is no larger than

/      (7 [°°\A(x + sz)-A(x)\2(Ps]zl(\f\)(x))2 -^-w(x)dx)     dz.
J\z\<\ \Jm Jo 4 /

The desired estimate now follows by the change of variable s -» s/\z\, and a

standard argument using the weighted Carleson measure condition (2.4), and

the fact that the nontangential maximal function N(Psf) is bounded on L2 ,

W £ A2.

To conclude the proof of Theorem 1.4, it remains to consider 77^ in (3.4).

The part of (3.1) corresponding to this term is dominated by

„„, n(/i'^-*4<r,-^))v^
\2 ,

xX{\z-y\>99s}\f(y)\dydzj w(x)dx^,
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where we have applied the mean value theorem to ks and used the fact that

\x — z\ < s . For w £ A2 , again by Muckenhoupt's Theorem, this last expression

is no larger than a constant times

f°° f ( f (A(x) - A(y))2 (     s     y-°
h    JmKJm    \x-y\x+2"     \\x-y\J

\2 ds
xx{\x-y\>99s}\f(y)\dy) w(x)dx — .

By Minkowski's integral inequality, we have the bound

<Q\C2(\f\)\\lw,
and the theorem follows.

4. Extension to the single layer potential

Consider first the modified single layer potential

Saf(x)= iWa(x,y)f(y)dy,
Jm

where

«//       \     i w-i (A(x)-A(y)2'
Wa(x, y) = \x-y\a 'exp -v      ;_    £'     .

\x   y\

We have the following weighted version of [LM, Theorem 2] (see also [LM,

Theorems 4 and 5]).

Theorem 4.1. Let A = Iaa, and suppose w £ A2 if j < a < 1, or w £ Ax  if
0 < a < 1 . Then

\\(Sa-cJa)f\\In(Li)<Cam\l + \\a\\t)\\fh,w.

Proof of Theorem 4.1. We will follow [LM, Theorem 2] and obtain the theorem

by an easy modification of the proof of Theorem 1.4. The operator Sa - caIa

has kernel

ia^                      i         i°-iJ      [   (A(x) - A(y))2}       \
(4.2) \x - y\      i exp --——^-,, - 1 , .

I     L      \x-y\2n    J     J
The expression in curly brackets in (4.2) is no larger than a constant times

[A(x) - A(y)Y\x - y\~2a, so if we multiply (4.2) by a smooth radial cut-off

factor tp(\x - y\/s), then we get a term that can be handled exactly like the

term corresponding to js in (3.2). It therefore remains to treat (4.2) times

As in (3.4), we must consider the following analogues of (3.47) and (3.48) in

[LM]:

(4,3)   jt^-4^-*^]-'}
X    \Z-y\«-x<Z>(^^\-\X-yrx®0±-yl\}  dz.
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xpc-^rW^J) dz.

These correspond to 77^  and Ls  in (3.4) respectively.   The former can be

handled exactly as before; in fact, we obtain the same upper bound (3.11).

Next, by Taylor's theorem the expression in curly brackets in (4.4) equals

_ \A(z)-A(y))2 _ (A(x)-A(y))2}       f   (A(x) - A(y)f

L   \z-y\2a \x-y\2a    J     [      \x-y\2a    J '

\(A(z)-A(y))2    (A(x) - A(y))2]2
(4-6) +[       |2.y[2a-\x_y\2*       \    E(x,y,z),

where 0 < E(x, y, z) < 1 . By analogy to (3.4) and (3.5),

(A(z)-A(y))2     (A(x)-A(y))2

\z-y\2a \x-y\2a

(4.7) =(^)-^))2[^7F-^7F_
| (A(z)-A(x))2 | 2(^(z)-^(x))(^(x)-^(y))

|x-y|2a l^-yl2"

= Bx(x,y, z) + B2(x,y, z) + B3(x, y, z).

Since \x - z\ < s < \x - y\ (so, in particular, \x - y\ w |z - y\), we can handle

the part of (4.5) corresponding to Bx exactly like TTj in (3.4) (see (3.11)). Since

(4.6) is no larger than C7s(.x, y, z) ^=i(^i(x, y, z))2, and since trivially

|5>|<CM||2ipQ<C||a||2,

the same reasoning applies to the parts of (4.6) corresponding to 7?i. Similarly,

those parts of (4.5) and (4.6) involving B2 may be treated exactly like the first

term in (3.5) (see (3.9), (3.10), and the related discussion). The latter argument

also applies to the term (B^(x, y, z))2E(x, y, z) arising in (4.6).

Thus, it remains only to consider the following part of (4.5): B$(x, y, z)

xexp[-(.4(x)-/l(>'))2/|x-y|2a] (we have ignored multiplication by -2). This is

the only term where we do not reduce matters to the treatment of an appropriate

positive operator, so the presence of a bounded, nonconstant multiplicative

factor can no longer be ignored. If we plug this last expression into (4.4) in

place of { } and let the corresponding operator act on a function /, then we

get (since / y/ = 0)

QsA(x)T\oosf(x),

where Tms has the (truncated) standard kernel

(A(x) - A(y))       r   (A(x) - A(y)n ^(\x-y\\
\x-y\x+a [       \x -y\2n     J     \    s    ) '

As before (see (3.7), (3.8), and the related discussion), the theorem will follow

by weighted Carleson measure theory once we show that the maximal singular

integral

r»/ = sup|r1005/l
s>0
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is bounded on L2^, w £ A2. But this is easy since the mean value theorem

gives

,4.8)    ^{jm^] = i+[im^]E „,„,

with \E\ < 1. The term corresponding to 1 is just the first fractional commuta-

tor Cx, and the term corresponding to the second part of the right side of (4.8)

is no larger than C||/4||LipaC2(|/|), and we are done.

In conclusion, we remark that as in [LM], a straightforward modification of

the above arguments enables one to multiply the kernels that we have considered

(e.g., (4.2) or (1.3)) by x{x - y > 0}. In particular, for a = \ , we can treat

the boundary single layer potential for the heat equation for all w £ A2 and

thus for all p, 1 < p < oo.
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