
proceedings of the
american mathematical society
Volume 118, Number 4, August 1993

A CENTRAL LIMIT THEOREM
ON HEISENBERG TYPE GROUPS. II

PETER OHRING

(Communicated by Palle E. T. Jorgensen)

Abstract. We present a Liapounov type central limit theorem for random

variables associated to a commutative Banach algebra of "radial" measures on

Heisenberg type groups. This theorem improves on a result presented by the

author in Proc. Amer. Math. Soc. 113 (1991), 529-536.

0. Introduction

In [Oh] we introduced a commutative algebra of "radial", bounded, Borel

measures on Heisenberg type groups (H-type groups). For probability measures

in this algebra satisfying certain integrability conditions we proved a central

limit theorem analogous to one of the classical Euclidean versions [Oh, Theorem

4.1]). The proof exploited explicit formulas for the Gelfand transform on the

above mentioned commutative algebra.

In this paper we present a Liapounov type version of the central limit theorem

on H-type groups. The awkward integrability hypothesis of [Oh] is replaced by

a more standard third moment integrability hypothesis.

As in [Oh] we exploit some of the many parallels between analysis on H-

type groups and Euclidean analysis (cf. [Fa]). In particular use is made of

homogeneous Taylor polynomials on H-type groups.

The main result is presented in §2. Section 1 is devoted to preliminaries on H-

type groups, homogeneous Taylor polynomials, group valued random variables,

and the heat semigroup that provides us with a notion of normal distributions.

1. Preliminaries

A group of type H is a connected, simply connected, real Lie group whose

Lie algebra is of type H. A Lie algebra n is of type H if n = d ©3; 0,3 real

Euclidean spaces, with a Lie algebra structure such that 3 is the center of n

and for all v £ 0 of length one, adv is a surjective isometry of the orthogonal

complement of keraa*„ in 0 , onto 3 .

Let Jf be a type H group and n = 0 © 3 its Lie algebra. There is a natural

dilation structure on Jf. For s > 0 define 8s(v , z) = (sv , s2z).
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We fix a basis Xx, X2, ... , Xn for n consisting of eigenvectors for the di-

lations 8S with eigenvalues rd*, ... , rdn (a", = 1 or 2) in such a way that

Xx, X2, ... , Adimo forms a basis for d . For a multi-index I = (i\, i2, ... , i„)

let d(I) = d\ ix + d2i2 H-h d„i„ .  d(I) is the homogeneous degree of X' =

X?---X„".
The left Taylor polynomial of f at g of homogeneous degree a is the

unique homogeneous polynomial P of homogeneous degree less than or equal
to a such that X'P(0) = X'f(g) for all multi-indices 7 with a"(7) < a .

In [FS, Theorem 1.42] Folland and Stein prove that if / £ Ck+X(yf) with
bounded derivatives of order (k + 1) and Pg is the left Taylor polynomial of

homogeneous degree k, then

\f(gg') ~ Pg(g')\ < K\g\k+l    for g,g'£jT.

(Here \g\ denotes the homogeneous norm of g on yT.)

For example, on the three-dimensional Heisenberg whose Lie algebra is

spanned by three vectors X, Y, Z , [X, Y] = Z , the left Taylor polynomial

of / at g of homogeneous degree 2 is given by

Pg(x ,y,z) = f(g) + (Xf)(g)x + (Yf)(g)y + (Zf)(g)z

,  (X2f){g)„i ,  (Y2f)(g)„2 ,  ((XY+YX)f)(g)_
2! 2! 2!

where g £Jf~. Thus it follows that

LASS')-W)I<WI3   for g,g'£jr,

provided / has uniformly bounded third derivatives.

An yT-valued random variable is a measurable function from some probabil-

ity space (Q, &, 3°) to JV. For each JV random variable £ we can define
a probability measure p^ on JV by p$(A) = £P(£~X(A)), AtZJV.

If cp: JV —> R we define the tp expectation of the random variable £ to be

MO= /   <P(g)dp((g).
Jjr

For F: yf ^ yy we can define a random variable F(£) by composition. The

tp expectation of this random variable is given by

e,(F(£))= f tp(F(g))dpi(g).
Jjr

If cp is one of the coordinate functions, tp(xx, x2, ... , x„) = Xj for some

0 < i < n, then eXj will denote the corresponding expectation.

A measurable function a: 0.x Q. —> jV x yV is a vector valued ./f-random

variable. Let p2 be the corresponding probability measure on jV x yV . The

prime example of this that we will use is a(cox, co2) = (£((DX), n(co2)) for two

independent random variables £ and n , in which case pi equals the product

of the measures p$ and p„.

Let F:jV xJf -+jV. Then

ty(F(a)) =  II cp(F(g, g'))dnidp.n.
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For F(g, g') = g • g' we have

e9(F(a)) =  II tp(g-g')dpidp„.

This generalizes in a straightforward manner to products of more than two

independent random variables. (For more on group-valued random variables

see [He].)
A bounded measure p £ M^(yV) is said to be u radial if dp(Av, z) =

dp(v, z) for all A £ 0(d) , the orthogonal group of o. Let Mb(Jff denote
the Banach algebra generated by the o-radial measures. In [Oh] we showed that

Mb(jV)^ is a commutative Banach algebra.

Let A be the usual Laplacian on o. We will denote by {pt}t>o the semigroup

of solutions of the heat equation corresponding to A on the group Jf. The

following properties of pt are well known (cf. [Hu]):

(1) P,>0.
(2) pt is o-radial and in C°°(yT).
(3) JJp,(v, z)dvdz=l.

If t - (v , z) denotes dilation of (v , z) by t then it is well known that the heat

semigroup satisfies

pt(v,z) = t-Q/2Px(rl'2-(v,z)),

where Q = dime + 2dim3 is the homogeneous dimension of the group. Fur-

thermore it is well known that the heat semigroup is rapidly decaying at infinity.

It follows that

(1.1)

/ \(v,z)\3pt(v,z)dvdz= f \(v , z)\3rQ/2px(rx/2 -(v , z))dvdz
JjV JjT

= j \tx/2-(v,z)\3px(v,z)dvdz = t3/2  f \(v, z)\3px(v, z)dvdz.

A similar calculation shows that

(1.2) /   \v\2p,(v , z)dvdz = t /   \v\2px(v, z)dvdz.
Jjr JA

Equations (1.1) and (1.2) imply that

(1.3) J \(v,z)\3pt((v,z))dvdz = c(j \v\2pt(v,z)dvdz\

for some constant c. We will exploit this relationship in the sequel.

2. Main result

In this section we present our central limit theorem. The statement and proof

are based on Liapounov's and Lindeberg's theorem and proof, respectively (cf.

[Ch]). We follow the notation used in [Ch] whenever possible. In the sequel

expressions of the form £ / s, £ an yf-valued random variable and s a positive

real number should be interpreted as the JV -valued random variable given by

composition of £ with 8s-\.
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Theorem 2.1. Let {£j} be a sequence of independent Jf-valued random variables

such that

(1) p^£Mb(JT)^;
(2) e9(£j) = 0 for all tp of the form tp(v , z) = (z, z'), z'ej;

(3) o2(£j) = a2 = ev(£j) < oo, where tp(v , z) = \v\2;

(4) e(|</|3) = yj = e9(Zj) < oc, where tp(v , z) = \(v , z)|3.

Set
mm m

Sm = Y[£j,        s2m = Y,ah        Fm = YJ7j-
>=1 7=1 7=1

If Fm/sl, —► 0 as m —► oo then psm/sm —* P\ dvdz weakly, where px is the

element of the heat semigroup corresponding to t = 1.

Proof. The idea is to approximate £x • £2 ■ ■ ■ £m by replacing one £ at a time

with a comparable "normal" random variable £ as follows: Let {£j}JLx be

jV -valued random variables having absolutely continuous distributions with

Radon-Nikodym derivatives pa] (from heat semigroup). Let all the £j 's and

£j 's be totally independent. Set

r\j = £x • • ■ Cj-x • £j+[ ■ ■ ■ £m ,        1 < 7 <m,

with the convention that

n\=£l---£m, *Jm = Cl •■•Cm-l-

Let / : / -» / be C3 with bounded derivatives of orders up to and

including three. Since all the measures p^ , p„ , and pr   commute, we have

-£M'(£)M'(£)}]-
for all 1 < i < n .

We would like to estimate the terms in the right-hand side of (2.1). Let

fx, ... , f" be the components of / and Px, ... , Pjj the corresponding ho-

mogeneous Taylor polynomials of degree 2 at g . It follows from the definition

of the expectation of an yT-valued random variable and the Taylor polynomial

that

\^,{f(£r])}-ex,{P,(£)}\=    II      (f^gg^-P^g'^dpzdpn
J JyTxA

< II       \f(gg')-P&')\dmdnv<M f |£'|3a7^ = A/£{|c;|3}
JJjr^jr Jj,-

where M represents a constant that depends on / and i. A similar argument

can be carried out with £ replacing £. Putting this all together we obtain

(2.2)    \ex,{f(£n)} - eXi{f(£n)} + eXi{P„(£)} - ex,{Pn(£)}\ < M£{\£\3 + |C|3}.

Our choice of £j implies eXi{Pnj(£j)} = EXi{Pnj(£j)}: To see this we note that

Pg(g') = f(g) + YJ(Xkf')(g)xk + l- Y^(XkX,f)(g)XjXk ,
k=\ k,t
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where g' = (xx, x2, ... , x„), and where the last sum is over k,I =1,2,... ,

dim d . It follows that

*Mj(tj)}= II Pg(g')dpit(g')d^(g)

= l^f(g)dpnJ(g) + J2[ljXkf)(g)dpnl(g)- J   Xkdll^g'fj

+ \zZ(ljX^X'fi^S)dpn](g)- I XkX/dmM')) ■

The terms in the first sum are equal to zero as a consequence of hypotheses

(1) and (2) of Theorem 2.1. Terms in the second sum are equal to zero when

k ^ I: xkxi is integrable with respect to p% as a consequence of hypothesis

(3) in Theorem 2.1 and the simple observation that \xkxi\ < j(x2 + xf). Since

P{ is n-radial, a rotation of n radians in the xkX\-plane yields

/  xkx,dpij(g') = -      x,xkdpz(g').

Hence
. . dim d    .

**,W</)}= /  fi(g)dp„J(g) + ^dimt,-o2- £ / (X2f)(g)dpnj(g).
JjV ^ ,_. JjV

Similar considerations lead to the the same value for eXi{Pnj(£j)} .

Using this, the inequality in (2.2) becomes

\ex,{f(£tl)} - eXl{f(£r,)}\ < Me{\£f + |C|3}.

Substituting £j/sm , r\,lsm , £j/sm for £, n, £ into this inequality and returning

to (2.1), we obtain

hK^)H'M^)}|
;= i   1      ^w sm      ) i=:X     Sm Sm

m P

<M'Y^ = M'-^.
— i-^l  ci ri

; = 1     m m

In this last inequality we have used the fact that o~j < yj (Holder's inequality

with p = 3/2) and that e{|C/|3} = cer,3 for some constant c (follows directly

from the relationship in (1.3) and the definitions of these expectations).

Thus we have shown that for all / : Jf —► JV with bounded derivatives of

orders up to and including three, and for all i = 1,2, ... , n ,

-{'(£)}-*<Hso(*)-
where N denotes a random variable with probability distribution px . These

functions are dense Ct)(JV). The last inequality is equivalent to

1/ fi(g)d(pil/Sm*Pi2/sm*---*nim/sJ- I f'(g)Px(g)dg <o(5r)
I Jjf JjV \ Jm /
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since by the definition of convolution

I ■■ j f'(g\ ■■■gm) dpil/Sm ■ ■ ■ dpinlSm = I f'(g) d(pii/Sm *■■■* pim/Sm).

Thus we obtain the required weak convergence.   D

We would like to thank Michael Lacey for suggesting this approach to the

central limit theorem.
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