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Abstract. It is shown that if M is a finitely presented completely pure injec-

tive object in a locally finitely generated Grothendieck category C such that

S = Endc M is von Neumann regular, then 5 is semisimple. This is a gener-

alized version of a well-known theorem of Osofsky, which includes also a result

of Damiano on PCI-rings. As an application, we obtain a characterization of

right hereditary rings with finitely presented injective hull.

In [11, 12] Osofsky showed that a ring, all of whose cyclic right modules

are injective, is semisimple (Artinian). Faith [6] studied the structure of right

PCI-rings, i.e., rings whose proper right cyclic modules are injective, and he

left open the question of whether right PCI-rings must be right Noetherian. In

[3] Damiano gave an affirmative answer to Faith's question. The key result

in [3] was the fact that a proper cyclic finitely presented module Mr over a

right PCI-domain 7? has a semisimple endomorphism ring S [3, Proposition].

Damiano's proof uses the von Neumann regularity of S that was observed

earlier by Faith [6] and a modification of a constructive technique of Osofsky

[12].
In this note we prove a general version for Grothendieck categories of

Osofsky's theorem [11, 12], which includes also the above-mentioned result
of Damiano. Furthermore, our arguments provide a simple proof of this result.

We show that if Af is a finitely presented completely (pure) A7-injective object
in a locally finitely generated Grothendieck category C such that S = Endc M

is von Neumann regular, then S is semisimple. Consequently, if Af is a projec-

tive completely injective object in C, then Af = ©/6/ A,, where Endc Aj are
division rings and the subobjects of Ai are linearly ordered. As an application

to rings, we obtain a characterization of the right hereditary rings 7? such that

the injective hull E(Rr) is finitely presented. This extends a result of Colby

and Rutter [2]. Note that even in the module case, Damiano's arguments cannot

be applied for proving our main theorem.

Let C be a Grothendieck category. An object M of C is finitely presented

if it is finitely generated and every epimorphism A —> M, where A is finitely

Received by the editors June 20, 1991 and, in revised form, November 29, 1991.

1991 Mathematics Subject Classification. Primary 16D50, 16S50; Secondary 16D80, 16D90,
18E15.

The first and second authors gratefully acknowledge the support of the Spanish Ministry of

Education and Science (DGICYT PB87-0703).

©1993 American Mathematical Society
0002-9939/93 $1.00+ $.25 per page

1029



1030 J. L. GOMEZ PARDO, N. V. DUNG, AND R. WISBAUER

generated, has a finitely generated kernel. C is said to be locally finitely gener-

ated if it has a family of finitely generated generators. A short exact sequence

0->X-+Y—>Z^0 inC will be called a pure sequence when the in-

duced morphism p: Homc(F, Y) -* Homc(7r, Z) is an epimorphism for ev-

ery finitely presented object F of C. In this case, X is called a pure subobject

of r". An object E of C is called pure injective when it has the injectivity

property with respect to all pure sequences in C (cf. [16]). If E and M are

objects of C and if E is injective with respect to all pure sequences with mid-

dle term Af, then we will say that E is pure Af-injective. An object M is

called completely injective (resp. completely pure AT-injective) provided every

quotient of Af is injective (resp. pure Af-injective).

Clearly, an object E is pure injective in C iff E is pure Af-injective for

every object Af in C. However, in some sense pure Af-injective objects are

far from pure injectivity. If M is pure injective in C and S = Endc Af, then

it is well known that S/J(S) is von Neumann regular (see, e.g., [16, Corollary

1.6]). Suppose that 7? is a right noetherian ring. Then it is easy to see that a

right ideal A of 7? is a pure submodule of RR iff A is a direct summand of

Rr . Thus every right 7v-module (in particular, RR) is pure 7?-injective. But

indeed R/J(R) need not be a von Neumann regular ring.

Now we are ready to prove our main result.

Theorem 1. Let C be a locally finitely generated Grothendieck category and M

a finitely presented object of C which is completely pure M-Injective and has a

von Neumann regular endomorphism ring S. Then S is a semisimple ring.

Proof. Using Osofsky's theorem [11, 12], it will be enough to prove that each

cyclic right S-module is injective. By [9, Theorem VI.3.1], the functor

Homc(Af, -) from C to Mod-5 has a left adjoint, which we denote by

- ®5 Af: Mod-5 -» C, and it is not difficult to check that S ®s M ^ M
canonically. Let /: K —> C be an S-homomorphism from a right ideal K

of S to a cyclic right ^-module C. We must show that / has an extension

to a homomorphism g: S —> C. We may write K = lim Kt, where {K,}/ is

the direct system of all the finitely generated right ideals of S contained in K ,

and, similarly, C = lim Cj, where the Cj's are finitely presented cyclic right

S-modules. Since -S is von Neumann regular, the K, 's and the Cj's are direct

summands of Ss. Thus, since - <8>s M is an additive functor, we have that

for each i £ I and j £ J , Kj ®s M and Cj ®s M are isomorphic to direct

summands of M. Clearly, the adjunction morphisms

K, -» Homc(A7, K, <% Af), Cj -» Homc(M, Cj ®s M)

are isomorphisms. The functor -<8>s Af, being a left adjoint, preserves colimits

and, in particular, direct limits. Also, since Af is a finitely presented object

of C, the functor Homc(Af, -) preserves direct limits (see [17, Proposition

V.3.4]). Thus we see that the canonical homomorphisms

K -» Homc(Af, K ®s M),        C -» Homc(Af, C ®s Af)

are isomorphisms, and from this it follows that / can be identified with the

homomorphism Homc(Af, f ®s Af).
On the other hand, if we take an epimorphism S —> C —> 0 in Mod-S, we

see that since — ®s M is right exact, C ®s Af is a quotient object of Af in C



COMPLETE PURE INJECTIVITY AND ENDOMORPHISM RINGS 1031

and hence is pure Af-injective. The induced morphism K®SM —► S<S>s Af — Af

is the direct limit of the split monomorphisms Kj ®$ M —> S <8>s Af and hence

is a pure monomophism (see, e.g., [19, 33.8]). Thus we have in C a diagram

with exact row

0^K®sM^S®sM?*M

f®SM  yn

C®SM

which can be completed by the pure Af-injectivity of C ®s M. By applying

the functor Homc(Af, -) to this diagram, we obtain the ^-homomorphism

Homc(Af, h): S —> C which extends f:K^C. This shows that C is indeed
an injective right S-module.

Remarks, (a) It is easy to see that, in the above proof, C <g>s Af is a quotient of

Af by a pure submodule. Thus Theorem 1 remains true if we merely assume

that every quotient of Af by a pure subobject is pure Af-injective. There is

a good supply of modules satisfying this condition; for example, all the pure

injective modules over a ring of right pure global dimension < 1 (and, in

particular, over any countable ring [7, Theoreme 7.10]). Observe also that, in

fact, the same arguments show that for a finitely presented object M satisfying

the above condition, every flat cyclic right S-module is pure S-injective (without

assuming that S is regular).

(b) It is natural to ask whether the finitely presented condition of Af in

Theorem 1 could be weakened. In particular, it would be interesting to know

if Theorem 1 still remains valid when Af is finitely generated. We remark

that, in fact, the above arguments will work if Af is assumed to be finitely

generated and the functor Homc(Af, -) preserves direct limits of objects which

are isomorphic to direct summands of Af.

Corollary 2. Let C be a locally finitely generated Grothendieck category and

M a finitely generated projective completely injective object in C. Then S =
Endc Af is semisimple.

Proof. Clearly Af is finitely presented. Let / be any element in S\ Then

Im(/) is injective and hence is a direct summand of Af. It follows that Im(/)

is projective, so Ker(/) is a direct summand of Af. Thus S is a von Neumann

regular ring (see, e.g., [17, exercise 10, p. 110]). By Theorem 1, S is semisimple.

The next result is well known for modules over a ring (see, e.g., [8, Corollary
13.6.7]).

Lemma 3. Let M be a projective injective object in a locally finitely generated

Grothendieck category C. Then M is a coproduct of finitely generated objects.

Proof. A categorical version of Kaplansky's theorem on projective modules was

proved in [13, Lemma 3.8]. Using this, the module-theoretic arguments of [8,

Corollary 13.6.7] may be carried over verbatim.

Corollary 4. Let C be a locally finitely generated Grothendieck category and M

a projective completely injective object in C. Then M = ®(6/ A,■, where for

each i £ I, S,■ = Endc Aj is a division ring and the subobjects of Aj are linearly

ordered.
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Proof. By Lemma 3, Af = © €J Mj, where each Af, is finitely generated.

By Corollary 2, EndcAf, is semisimple, hence Mj is a finite direct sum of

indecomposable subobjects (see, e.g., [17, Proposition XIV. 1.7]). Therefore,

we have Af = ©,6/ Ai, where each Ai is an indecomposable object. Clearly

Si = Endc M is a division ring, which implies that Aj has a unique maximal

subobject Kj containing every proper subobject of Aj (e.g., [19, 19.7]). Now a

standard argument, similar to the proof of [14, Proposition 3], shows that the

subobjects of A, are linearly ordered.

Let 7? be an associative ring with identity and Mr a unitary right 7?-

module. Denote by o[M] the full subcategory of Mod-7? whose objects are

submodules of Af-generated modules. Then o[M] is a locally finitely generated

Grothendieck category and Theorem 1 can be applied.

Corollary 5. Let Mr be a completely pure M-injective module which is finitely

presented in o[M] and has a von Neumann regular endomorphism ring S. Then

S is semisimple.

Note that a module Mr which is finitely presented in <r[Af] need not be

finitely presented in Mod-7?; for instance, any finitely generated self-projective

module (see [19] for the definition) is finitely presented in cr[Af]. In partic-

ular, any simple module Af is finitely presented in cr[Af], but, obviously, it

need not be finitely presented in Mod-7?. We also have natural interpreta-

tions of Corollaries 2 and 4 in a[Af], with Af being completely Af-injective

and finitely generated quasi-projective or X-quasi-projective (i.e., projective in

cr[Af]), respectively. These extend [4, Corollary 5], where the semisimplicity of

S = End(Afs) was obtained under the stronger hypotheses that Mr is (cyclic)

quasi-projective and every cyclic module in tr[Af] is Af-injective.

Finally, we apply our main theorem to hereditary rings. In [2, Theorem

3.2], Colby and Rutter showed that R is a right hereditary ring with E(RR)
projective iff 7? is a (two-sided) hereditary Artinian QF-3 ring. Clearly, if R

is a ring such that E(RR) is projective, then E(RR) is finitely generated and

hence finitely presented (see, e.g., [8, Lemma 13.6.6]). Thus our next result may

be regarded as an extension of Colby-Rutter's theorem.

Corollary 6. The following conditions are equivalent for a ring R:

(1) 7? is right hereditary and E(Rr) is finitely presented.

(2) R is right hereditary right Artinian and every injective right R-module

is a direct sum of finitely generated modules.

(3) R is a right hereditary right Artinian ring with Morita duality.

Proof. (1) => (2). Clearly 7? is right nonsingular, hence S = End(E(RR))
is von Neumann regular (e.g., [17, Theorem XIV.1.2]). Also, E(RR) is com-
pletely injective, so by Corollary 5, S is semisimple. It follows that E(Rr) ,

and hence Rr , have finite uniform dimension. By [15, Corollary 2], 7? is right

Noetherian. Since E(RR) is finitely generated, it follows that 7? is right Ar-

tinian by [18, Theorem A]. Let C = R/A be any cyclic right 7?-module. Then
clearly E(RR)/A is injective and finitely generated. Thus C, being contained in

E(RR)/A , has a finitely generated injective hull. Now let Mr be any injective

module. Then Mr = ©,€/ Nt, where each TV,- is indecomposable injective. So

TV,- is uniform and hence is the injective hull of any nonzero cyclic submodule

C C TV,■. This shows that TV, is finitely generated for each i £ I.
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(2) => (3). This follows from the well-known fact that a right Artinian ring

R has Morita duality iff the injective hull of each simple right 7v-module is

finitely generated (see, e.g., [19, 47.15]).
(3) => (1). This is clear.

Remarks, (a) In the recent work [14], Osofsky and Smith proved a general theo-

rem on cyclic completely CS-modules from which they obtained as a corollary

the fact that right PCI-rings are right Noetherian. Corollary 2 was also obtained

in [5] (for modules), by adapting the techniques of [14]. However, there are ap-

parently no direct relationships between our Theorem 1 and the Osofsky-Smith

theorem [14].

(b) The rings satisfying Corollary 6 need not be QF-3. An example of this can

be found in [1, p. 353] if the division ring A from that example is, furthermore,

assumed to be finite. However, by [10, Corollary 3.7], a right hereditary ring R

with E(Rr) cyclic finitely presented is semisimple. On the other hand, we do

not know if Corollary 6 still remains true if the ring 7? is right hereditary and

E(Rr) is finitely generated.
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