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POINCARE AND SOBOLEV INEQUALITIES IN PRODUCT SPACES

XIANLIANG SHI AND ALBERTO TORCHINSKY

(Communicated by J. Marshall Ash)

Abstract. Some local Poincare and Sobolev inequalities involving weights in

product spaces are established.

Recently there has been some interest in considering local Poincare and

Sobolev inequalities involving weights; the purpose of this note is to establish

these results in the context of product spaces.

Let w(x, y) be a nonnegative locally integrable function, or weight, defined

in the product space R" x Rm . We say that the weight w satisfies Mucken-

houpt's Ap(Rn x Rm) condition, or that w £ AP(R" x Rm), 1 < p < oo,

provided that

(j^t/ Jw(x,y)dxdy>)(JrJ jw(x,y)-xl{p-X)dxdyy     <c,

where P is the parallelepiped P = I x J , and 7 c R" and J c Rm are arbitrary

open cubes with sides parallel to the coordinate axes. By the Lebesgue differ-

entiation theorem it readily follows that if w £ AP(R" x Rm), then w(x, •) £

Ap(Rm) for almost every x £ R" , with Ap constant independent of x ; simi-

larly for w(-, y).
Given a measurable set E c RnxRm , we denote by |£| its Lebesgue measure

and p(E) = j JEw(x, y)dxdy . It is also convenient to introduce the notation

p(x, A) = JAw(x, y)dy for measurable A c Rm ; similarly for B c R" and

p(B,y).
We say that it), or p , is doubling if

p(2P) < cp(P),        2P = 27 x 2 J, all P.

For 0<a,[l,p,q<oo,-we consider pairs of weights w , v , dv(x, y) =

v (x, y) dx dy , which verify

(\r\y/n (\r\V'm (Hn\xlq < r /W)V/P

U \\I\)     \\J\J      \u(P)J     -c\p(P)J     '

where c is independent of 7" = 7' x J' c P and P. Again by the Lebesgue

differentiation theorem it follows immediately that if w , v satisfy relation (1),
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then for almost every y in J ,

{) \\l\)     K»V,y))    -c\p(i,y))
and for almost every x in 7 ,

/\T\ V'm (v(x,J')\ '/«        //z(x,7Q\ ">

{) \\J\J       \v(x,J)J      -C\p(x,J))      ■
Finally, if f(x, y) is defined in an open subset of R" x Rm, we denote by

Vxf(x, y) the partial gradient of / containing the x-derivatives; similarly for

^if{x, y), the partial gradient of / containing the ^-derivatives.

We may now state our results.

Theorem 1 (Poincare's Inequality). Assume f is a Lipschitz continuous function

on a parallelepiped P, and suppose that the weights w, v satisfy the following

conditions: v is doubling, w e Ap(Rn x Rm), and (1) holds with a+ B < 1 and

l<P<q<oo.Iffp denotes the average of f over P then

{uJF)IIWx>rt-Wd»{x>y)T

(4) <c\I\xl«(^jjp\Vxf(x,y)\pdp(x,y)}   "

+ c\J\'lm(^F)jjp\V2f(x,y)\pdp(x,y)^   \

where c is independent of f and P.

Theorem 2 (Sobolev's Inequality). Under the hypothesis of Theorem 1 and the

additional assumption that f is supported in P, we have

{viml!v(x,y)\«d<x,y))X'9

(5) Kc^l^-^jj^xf(x,y)\pdp(x,y)^   "

+ c\J\x'm[j^F)jjp\V2f(x,y)\pdp(x,y)S\   \

where c is independent of f and P.

Theorem 3. Inequality (5) holds under the hypothesis of Theorem 1 provided

that f vanishes on a subset E of P with \E\ > n\P\, and now the constant c

depends also on n, 0 < n < 1.

We pass now to the proofs, beginning with some preliminary results.

Lemma 1. Suppose f is a Lipschitz continuous function in P = I x J and

(x, y) £ P. Then \f(x ,y) - fp\ does not exceed

r^T / /(|V,/(«, z)\ \u-x\ + \V2f(u, z)\ \z -y\)

tK\ '    ' J   JP
W ,        1/B        |y|l/«V»+«

x min   f—■-r, r—J-r dudz ,
\\u-x\    \z-y\J

where c is a constant independent of f and P.
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Proof. It is clear that \f(x, y) - fP\ < A + B, say, where

A = r-^7      /   /   \Vxf(x + t(u - x), y + t(z - y))\\u - x\dtdudz,
\P\ J Jp Jo

and the expression for B is obtained by replacing V i by V2 above; since both

integrals are handled in a similar fashion we only consider A . If xp denotes

the characteristic function of P then we may rewrite A as

^ j jp\Vxf(u, z)\\u- x\ j\p[x + ^ ,y +Z-^rn-m-{ dtdudz.

Furthermore, since the integrand in the innermost integral above vanishes if

either \u - x\ > t\I\xln or \z-y\> t\J\xlm , it readily follows that

A < 4t  / / |Vi/(«, Z)\ \U - x\ f^ t-n-m-\ dtdudz
\P\ J   JP Vmax(|«-^:|/|/||/",|z-v|/|7||/'")

1 1      [   f (   I7I1/"        \J\l/m\n+m
< -.-r-r-f-.  I  \ \Wxf(u, z)\ Iw-xlmin   -1-1—r, ~—r dudz,
- (n + m)\P\J V "'        '        \\u-x\ '\z-y\J

and the proof is complete.   D

Corollary 1. Let 0 < y, X < 1. Under the hypothesis of Lemma 1 we also have

x        r , (\I\X,n V   f   f |Vi/(M, Z)\ ,     j

+c(E^)'ff.—iv^c.')i      dHdt.
Vl^l1/m/   J Jp \u-x\"-*\z-y\m-(x-V

Proof. Follows at once from estimate (6).   □

Proof of Theorem 1. Fix P = I x J, put X = 1 - y in (7), and choose y so that

a < 1 - y and ft < y; these choices are possible since a + ft < I. By Corollary

1 it suffices to estimate two terms, each corresponding to a summand on the

right-hand side of (7). Since both terms are handled in a similar fashion, we

only consider

v 1/9

x dv(x, y) J

In the first place note that if \p is a nonnegative compactly supported smooth

function on 7?1 and y/t(x) = t~ny/(\x\/t) and y/s(y) = s~my/(\y\/s), then

I   I   1-■    n(M;,Z)    ,-dudz
JRn JRm \u - x\n-(x~y)\z -y\m-y

= /     /    t{x-y)-xs?-xG(x,t,y,s)dtds,
Jo   Jo

where, if c denotes a constant that only depends on xp ,

G(x,t,y,s) = c       /   g(u, z)>ps(x-u)y/s(y-z)dudz.
JR"JRm
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Thus, to estimate the innermost integral in (8), we set

g(u, z) = |Vi/(u, z)\xr(u, z)

in the above expression, and breaking up the domain of integration into four

parts, namely, [0, I7I1/") x [0, \J\x/m), [0, \I\l'n) x [\J\x/m , oo), [|7|'/\ oo) x

[0, \J\x/m), and [I7I1/" , oo) x [\J\x/m , oo), we obtain that (8) is bounded by the

sum of four terms, Ax + A2 + A$ + At,, say, where Ax is equal to

(9) , y/«

x G(x, t ,y, s)dtds\   dv(x,y)\

and where A2, At, , and A4 are defined similarly.

It is easy to estimate A4 ; indeed, since y/t(u) < ct~" and y/s(z) < cs~m , it

readily follows that A4 < c\I\l>"\\g\\x , which, by the AP(R" x Rm) condition,
is a bound of the right order.

We turn now to estimate Ax . For (x, t) a point in 7 x [0, I7I1/"), consider

the integral

r\J\1/n r

I(x,t)= I        s""-1 / G(x,t,y,s)"v(x,y)dyds,
Jo Jj

and observe that if dvq(x, y, s) = v(x, y)sqP~x dy ds and 1/(x, t, X) = {(y, s)

£jx[0, \J\x'm) :G(x,t,y,s)>X}, then

/•OO

(10) I(x,t) = q       Xq-xvq(%(x,t,X))dX.
Jo

Now let

NG(x,t,y)=   sup   G(x, t, z, s),
\y-z\<s

and for X > 0, put
cf = {y £ J : NG(x, t, y) > X}.

By the Whitney decomposition there is a sequence {J^} of nonoverlapping

closed cubes, subcubes of J actually, such that cf = {jk Jk and

%c\J(Jkx[Q,C\Jk\xlm)),

k

where C is a dimensional constant. Whence,

vq{V(x, t, X)) < Y,MJk x [0, C\Jk\x'm))
k

= Y. I s"l!-xds f v(x, y)dy = cYJ\Jk\qPlmy(x, Jk)
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We may now invoke the estimate in (3) and dominate the above expression

by

di) ' '      ( ' )2f\rtx,J))
< c\J\^lmv(x, J)p(x, J)-qlpp(x ,cf(x,t, X)flp .

Substituting (11) into (10) gives
/•OO

7(jc, t) < c\J\qlilmv(x, J)p(x, J)-"'" I    X"-Xp(x,cf(x,t, X)ylpdX.
Jo

Next consider the integral

,|/|"" , /-oo

(12)       B= t"a-x    I(x,t)dxdt<c\J\^lm       X"-xR(X)dX,
Jo Ji Jo

where

<»> *»-l./(a^pyv*-**.
Observe that if F(x, t, X) = p(x, cf(x, t, X))/p(x, J) (< 1) and dpq(x, t)

= v(x, J)tqa~xdxdt, then we may write R(X) as

(14)        \ [ Cq/p-lpq({(x, t)£lx [0, |/|>/») :F(x,t,X)> t})d(.
P Jo

In order to estimate (14), once again we introduce appropriate maximal func-

tions, namely,

NG(x, y) = sup G(u,t,z,s)
\x-u\<t,   \y-z\<s

and

NF(x,X)=   sup  xi(u)F(u,t,X)       (< 1).
\x-u\<l

Let tf'r be the open set {NF(x,X) > Q n 7; 0[ ± a only for C < 1 •

According to the Whitney decomposition there is a sequence {7,;.} of nonover-

lapping cubes so that t?'r = \Jkh, and if 2f(A, () = {(x, t) £ I x [0, |7|'/") :

F(x,t,X)>Q then V(X, £) C \Jk(Ik x [0, C\I\1'*)). Thus, by (1),

^W,C)< $>,('* x[0,C|7|'/"))

^i^(f)E(^)'"',(^)

<ci/r'v(f)E(^i)8".

Whence substituting (15) into (14), we immediately get

(16) R(k) < c'^y ^' C^-1 fe>(4 x •/))      rfC
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Next we estimate the integral in (16). The sum there does not exceed

p(tf'r x /). Furthermore, since cf(x, t, X) c {y £ J : NG(x,y) > X}, it

readily follows that

n^ p(x,{y£J:NG(x,y)>X})
t (x, t, /) <-.

p(x, J)

Thus,

^ c %(X, Q = {x£l:p(x,{y£j: NG(x,y) > X}) > Cp(x, J)},

and the integral in (16) is bounded by

/ Cq/p~l(J Jxm,o(x)w(x,y)dxdyy dC = J P*-lg(Q*"dC,

say.  Moreover, since g(Q decreases with C, it is clear that the last integral

above does not exceed

(17) c(j\(Qddj     =c(jj\mx,Q(x)Mx,J)dCdx)      .

Setting £' = Cp(x, J), it readily follows that the innermost integral in (17)

is bounded by p(x, {y £ J : NG(x, y) > X}), and, consequently, the expres-

sion appearing in (17) does not exceed cp({(x, y) £ P : NG(x, y) > X})qlp .

Substituting this into (16) gives

R(X) < c\irl»v(P) (mx,y)eP.NG(x,y)>X})y

which in turn implies that the integral B in (12) is less than or equal to

c\I\<ialn\J\^lm (4-§)      / X"-Xp({(x ,y)£P: NG(x, y) > X})q'p dX
(18) \M(P)J     Jo ^

< C|/|w»|7|«/»/ml/(i,) ^_l_ j j NG{X t y)P dfi{x; y)y" .

Finally we are ready to estimate Ax. Let 0 < e = a/(\ - y), 8 = B/y < 1,

and observe that by Holder's inequality the integral in (9) is bounded by

r  r ( /•m,/m   r\i\xln , , \qlq'

I /      p-7M-'V-Wl-'*-ldtds\

( r\J\xlm   r\i\"" \

x     / /       t^-y^-lsfSq-xG(x,t,y,s)''dtds\dv(x,y)

= c\I\ql'x~y~aVn\J\q(y~^lm

r  r   rW\"m  r\i\lln

x /       tqa-xsqfs-xG(x,t,y,s)qdtdsdv(x,y).
J Jp Jo        Jo
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Now, using estimate (18) for the above integral, be well-known properties of

AP(R" x Rm) weights, it follows at once that

Ax<c\I\x/"(-jJy)J jpNG(x,y)pdp(x,y)^   "

-c|/|1/" {pin ILxRJp{x'j;)|Vi/(x'ywd^x>y)) " >

which is a bound of the right order.

To handle A2, let

H(x,t)= \Vxf(u,y)\ip-,(x-u)dudy.

Clearly

In order to estimate the integral in (19), let C(7) = {(u, t) : u £ 1, 0 < t <

\I\x/n}, define

NH(x)=   sup  Xc(i)(u, t)H(x, t),
\x-u\<t

and put

T(X) = {(u, t) £ C(I) : H(u ,t)>X}.

If dvq(x,y, t) = v(x, y)tqa~x dx dy dt then the integral in (19) is domi-

nated by q /0°° Xq~xvqlfV(X) x J)dX, and, consequently, by a familiar argument

we also have

A2 < c\I\xl"\J\xlm (J^ J J [j |V,/(x, z)\ dzjdp(x, y)^      .

Now, since w £ Ap(Rn x Rm), this bound is also of the right order. A^ is

treated in an analogous fashion, and the proof is complete.   □

Proof of Theorems 2 and 3. The proof of these results is similar to that of

Theorem 1. In fact, if / is defined on P and vanishes on some subset E of

P with \E\ > n\P\, then for (x, y) £ P,

I/O,y)\< I/O. y) - fp\ + j^i / J I/O. z) - fp\ dudz

<\f(x,y)-fP\ + — J J \f(u,z)-fP\dudz.

Whence, by Corollary 1, for (x, y) £ P, \f(x ,y)\ is also dominated by the

right-hand side in estimate (7), and Theorem 3 has been proved.

If, on the other hand, / is compactly supported and its support is contained

in P, then we may extend / to be 0 off 27", say, and establish Theorem 2

from Theorem 3.   □
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