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THE NULL SET OF THE FOURIER TRANSFORM
FOR A SURFACE CARRIED MEASURE

LIMIN SUN

(Communicated by J. Marshall Ash)

Abstract. Let du be a smooth positive measure carried by a smooth compact

hypersurface 5 that is strictly convex and without boundary in R" (n > 2).

Assume that both S and du are symmetric about the origin. If du denotes the

Fourier transform of du then we show that the null set of du is a disjoint union

of a compact set and countably many hypersurfaces that are all diffeomorphic

to the unit sphere S"~x .

1. Introduction

The Fourier transforms of surface carried measures play an important role

in many research areas related to harmonic analysis such as the restriction the-

orems and the maximal averages over hypersurfaces (cf. [2] and the literature

cited therein). It turns out that the geometric property of the hypersurface is

crucial to those investigations.

For a smooth measure du on some smooth hypersurfaces 5 in 7?", the

Fourier transform of du is defined by

du(y)= I e~ix'y du(x),       y £ R" .
Js

Let N(S, du) = {y £ R"; du(y) = 0} be the null set of du.  If do is the
standard surface measure on the unit sphere 5'"-1 , then

do(y) = (2ny'2J{n-2),2(\y\) -\yr{"-2)/2.

Hence, the null set of da consists of countably many hyperspheres in Rn , i.e.,
oo

N(Sn~[, do) = \J{y £ R" ; \y\ = r}}    (disjoint union),

j=i

where rj   (j = 1, 2, ...) is the enumeration of the positive zeros of the Bessel

function J(n-2)/2(r) ■

From the geometric point of view, it is natural to ask what happens to

N(S, du) if du is a general smooth positive measure on some smooth hy-

persurface S with nonzero Gaussian curvature.
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In this paper, the smooth hypersurface S is assumed to be strictly convex

(i.e., with positive Gaussian curvature) and without boundary. Assume further

that both S and du are symmetric about the origin (i.e., x £ S implies -x £

S, and du(E) = du(-E) for any measurable set E c S). The main result is

as follows.

Theorem. Let du be a smooth positive measure carried by a smooth compact

hypersurface S in R" (n>2). Suppose that S and du satisfy the assumptions

stated above. Then N(S, du) = AtjU(U^i Nj) (disjoint union), where A0 is a

compact set and Nj   (j = 1, 2, ...) is diffeomorphic to the unit sphere Sn~x.

2. Preliminaries

In order to prove the theorem, we should understand the principal part of

du as well as that of the derivative of du in radial direction. For this purpose,

we need an exact formula of du. For y £ R" , write r = \y\ and 9 = y/\y\.

The following result is due to Greenleaf [1].

Lemma 1. Let S and du be given as in the theorem. Then

du(y) = Cn • d(9)n~2 • [(r{n-2)l2J(n-2)i2(t)) * g(9, t)](rd(d)),

where C„ is a constant, d(d) £ C°°(S"-X), g(9, s) £ C°°(S"-X x 7?), and

g(6, s) £ Cq°(7v) for each fixed 9 £ S"~x ; g(9, t) is the Fourier transform of

g(6, s) about the variable s;   * denotes the convolution about the variable t.

Remark 1. Lemma 1 is a particular case of Lemma 6 in [1], which deals with

general smooth measures (without the restriction of positiveness and symmetric-

ity).

Proposition 1. Let d(6) and g(6, s) be as in Lemma 1. Then d(9) > 0 for

all 0£S"-X and g(6, s) ± 0 for all (9, s) £ S"~x x[-l, 1].

Proof. From the proof of Lemma 6 in [1], it is obvious that d(6) > 0. More-

over, g(6, s) is an extension of the function f(9; d(8)s). In fact, for (9, s) £

S"-'x[-l, 1],

(i)       g(d,s) = f(d;d(d)s) = J^  f(e-d(d)s,x')-x^dd(x'),

where dv is the induced Lebesgue measure on S, do(x') is the standard

surface measure on Sn~2, and / is smooth and nonzero (cf. [1, pp. 529-

530]). Since we assume that du is positive, the three measures that appeared

in (1) are all positive. Thus, the conclusion follows.

Proposition 2. The value of g(8, s) can be modified such that g(6, s) is an

even function of s and g(6, s) = 0 for all 9 £ S"~x and \s\ > 2. Meanwhile,

the conclusion of Lemma 1 remains true.

Proof. Again from the proof of Lemma 6 in [1], one easily sees that the central

symmetricity of S and du ensures that f(6; d(9)s) is an even function of

5. Moreover, for each fixed 6 £ S"~x , g(0, s) is an arbitrary extension of

f(9;d(8)s) (s £ [-1, 1]) to an element of Cq°(7v) . Hence, we can easily

make g(9, s) be even about s. Choose an even function k(s) £ Cq°(7v) such
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that k(s) = 1 for 5 6 [-1, 1] and k(s) = 0 for \s\ > 2. Then the conclu-
sion of Lemma 1 remains true when g(9, s) is replaced by g(9, s)k(s). This

completes the proof of Proposition 2.

Let <9*(R) be the Schwartz class of rapidly decreasing functions on R .

Lemma 2. Suppose that h(t) £ ^(R) is an even function. For p > q > 0, let

H(r) — \(t~qJp{t)) * ̂ (0](r)> where Jp is the pth Bessel function. Then there

exists a constant Cx independent of r such that

H(r)=(-}     .r(i+xl2X  h(l)cos(r-]-np-^n\ + Rx(r)

and |7vi(r)| < Cir-1 for r > 1, where h is the Fourier transform of h .

Proof. Since h(t) £ S*(R), Cq>h = SupreR \h(t)\ • |<|<«+3> < 00 . Then

(2)    /       \h(t)\ dt<C„ h- [       \t\-{"+3) dt<Cq-Cq h- r-(«+2)   for r > 0
J\t\>r/2 J\t\>r/2

and

(7 \h(t)\^dt) <cqjf \t\-^wdt)
\J\t\>r/2 J \J\l\>rl2 J

<Cq-Cqth-r-^+3W   f0rr>l.

Write ap = ^np + \n . Since h(t) is even, h(l) = J^htf) cos tdt. Thus we

have

H(r) -i-\     • h(l)r-(«+x'V cos(r - ap) = 7, + 72 + 73,

h= I       [(r-t)">.Jp(r-t)
J\t\<r/2

/2\l/2
(4) I ~[~)     r~((1+xl2) cos(r-ap) cos t]h(t)dt,

h= I       (r-t)-"Jp(t)h(t)dt,
J\t\>r/2

1  l"J

/3 = _(±)     r-{"+x'2)cos(r-ap)- f       h(t)costdt.

It follows from (2) that for r > 1 ,

\h\<(l)     r-(^'/2'/       \h(t)\dt
(5) \nj J\t\>r/2

< Cq ■ Cqy-«>+xIVr-^ < Cq • Cqy-^<+W .

An application of Holder's inequality together with (3) yields

\h\<(f       \(r-t)-«.Jp(r-t)\Ut)      (f       \h(t)\*>3dt)
(6) \J\t\>r/2 / \J\t\>r/2 J

a 00 \ 1/4\r" • Jp(t)\4 dtj     r^l2\        r>\.
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For p > q > 0, the well-known fact that

lim/o(0/^ < oo   and    lTm |7„(/)/1/2| < oc

implies J™ \t~g Jp(t)\4 dt < oo . Summarizing the above discussion, we get

(7) \h\ + \h\<C(p,q,h)-r-{<1+i'2)    forr>l.

Next recall the asymptotic formula Jp(t) = (2/n)x/2rx/2cos(t - ap) + Q(t),

where \Q(t)\ < Cp • |/|-3^2 for all t £ R and Cp is a constant dependent on p

alone. Then, we have

(8) 'IX=I'X+H2 + I'3,

1 f)

I[ = (I)      [       [(r - t)-("+U2) _ r-(?+i/2)j cos(r _ t _ ap)h(t) dt f
\nJ        ft\<r/2

< /2\1/2 f
I2= (-)     /--(9+1/2) • /        [cos(r -t-ap)- cos(r - ap) cos t]h(t) dt,

\nJ J\t\<r/2

n= f       (r-t)-"Q(r-t)h(t)dt.

But \r-t\> r/2 for |/| < r/2. Hence,

/i    \ -(9+3/2)    ^oo

(9) %\<Cp[^rj J     \h(t)\dt.

Note that h is even. A direct calculation shows

(10) l'2 = -(-\     sin(r-ap)r-{ci+[l2) j       h(t)sintdt = 0.
\n J J\t\<r/2

Furthermore, it is easy to check that for \t\ < \r,

(,-iY*""-,| s (, +1),»..«.f
This fact yields

/ 9 \ 1/2 r / A-(<?+l/2)

|/||< (-)     -r-^W / 1 --) - 1  -\h(t)\dt
rn) v^y 7|/i<r/2 v    *•/

< (<7 + I) 2(9+1/2) • /-(?+3/2> j°° \th(t)\ dt.

From (8)-(ll), we get

(12) |7,| <C(p,q,h)r~(q+3/2)   forr>0.

Lemma 2 follows from (4), (7), and (12) immediately.

Lemma 3. Let  h(t)   be given as in Lemma 2.    For p  >  0,  let  H(r)  =

[(t~p ■ Jp(t)) * h(t)](r). Then

*Wp. = _fl\      .r-(P+i/2).   h(l)sm(r-[-np-l-7i\+R2(r)

and |7v2(r)| < C2- r~x for r > 1, where C2 is a constant independent of r.
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Proof. Note that

^^=l(j-t(rP-Jp(t)))*h(t)](r)   and    ^(rp • Jp(t)) = -t~p ■ Jp+X(t).

Since cos(r - \n(p + 1) - \n) = sin(r - \np - j\n), Lemma 3 is a direct
consequence of Lemma 2.

Remark 2. The basic knowledge about the Bessel function used in the proofs

of Lemmas 2 and 3 can be found in Watson's book [3].

3. Proof of the theorem

Let H(9,r) = [(r("-2V2J{n-2)/2(t)) * g(8, OK'). where g is given as in
Lemma 1. For each fixed 9, since g(9, s) £ Cq°(R) is even (see Proposition

2), g(9, t) £ y(R) is also even. Applying Lemmas 2 and 3 we get

H(9,r)= f|V    r-<"-')/2

(13) •   g(9, l)cos (r-ln(n- 2) - J*) + Rx(9, r)

= (§)     f-("-'>/2  g(9,-l)cos(r-^7tn + ^7t\+Rx(9,r)

and

dH(9,r)      _(2\l/2r(n_i)/2

(14) dr W

•   ^(0, -l)sinfr--7r« + -7rj + R2(9, r)   .

Moreover, there exist constants Cx(6) and C2(9) independent of r such that

l^i(6>, r)| < dC^)?--1 and \R2(9, r)\ < C2(9)r~x for r > 1 .

Proposition3. There exists a constant Co independent of 9 such that |Ci(0)|<

C0 and \C2(9)\ < C0 for all 9 £ S"~x .

Proof. We easily see from the proof of Lemma 2 that, besides the dimension

n, Ci(9) and C2(9) depend only on

/oo /*oo

\g(9,t)\dt,        /     \tg(9,t)\dt.

Recall that, for any fixed 9 , g(9, t) is the Fourier transform of g(9, s) whose

support lies in an interval independent of 9 (see Proposition 2). This fact

implies that the first term in (15) is uniformly bounded about 9 , and hence the

two integrals in (15) are also uniformly bounded. The proof of Proposition 3

is complete.

On the other hand, g(9, -1) / 0 (see Proposition 1) and g(9, -1) e

C°°(S"-X) implies Min(|g(0, -1)|) ^ 0. This fact, together with Proposi-
tion 3 combining (13) and (14), shows that there exists an absolute constant

7v0 > 0 such that for any fixed 9 £ Sn~x ,

{r>Ro;H(9,r) = 0} = {rj(8); j=l,2,...},
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where rh(9) # rh(9)   (ji *h) and

^ #0,       ,= ,,2,....°r r=rj(e)

Apparently, H(9, r) £ C°°(S"~X x 7?). Then the implicit function theorem

asserts that r;(0) £ C°°(S"-X).
Let 7v0 = 7vo/Min(ri(0)). According to Lemma 1 and the above discussion,

we know that

N(S, du) n {y £ R";\y\ > R'0} C Q | j|||0; 0 € S"-1} .

Obviously, rj(9)9/d(9) (9 £ Sn~x) is a hypersurface diffeomorphic to S"-1.

We conclude the proof of the theorem by mentioning that N(S, du) n {y £

Rn ; \y\ < R'0} is a compact set.
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