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ABSTRACT. We study the formation of a flat hat pattern in the profile of the
positive solution of an equation of the type: eApu — u?P~'(1 —u)f =0 (0 <
6 < p—1) in a bounded domain Q. When ¢ tends to 0*, the growth of the
zone where u = u, takes the value 1 in Q is studied.

INTRODUCTION AND STATEMENT OF THE RESULTS

This paper deals with the study of the limit behaviour when ¢ tends to 0*
of the shape of the positive solution u = u, of the problem

) —eApu+ f(u)=0 inQ,
u=0 onodoQ,

where Q is a connected, bounded open subset of RY, N > 2, witha C?
boundary 0Q; A, is the p-Laplace operator defined by

(2) Apu = div(|VulP~2Vu)

with p > 1; and f is continuous with nonpositive values. Such a problem
appears when studying the stationary states of a strongly nonlinear heat equa-
tion in an absorbing-reacting media (see [D] for physical examples and further
references). The precise hypotheses on f are the following:

(H1) f is continuous on [0, co) and r ~ f(r)/r’~! is increasing.

(H2) lim, o f(r)/rP~' = —1.

(H3) There exist C > 0 and 6 € (0, p — 1) such that lim,;, f(r)/(1 - r)?

=-C.

The specific phenomenon we shall study is the formation of a flat hat pattern
inside €, that is, a zone where u takes the value 1 and the growth of this
zone when ¢ tendsto O.

The typical example of a function f satisfying (H1)-(H3) is f(u) = u?~! —
u?, thus problem (1) becomes
3) —eApu=ul""'—u! inQ,

u=0 on 0Q).
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If we set ¢ = 1/A and u = ve!/4+1-P) | then (3) reads as
—Apv =P -9 inQ,
v=0 on 9%Q).

The appearance of the flat zone for the solution of (4) for large A was first
observed by Guedda and Veron. These authors in [GV] studied the structure
of the set of solutions of the nonlinear eigenvalue problem

) ([0 "tox)x = AP o = p*"Mvin (0, 1),
v(0) =v(1)=0.
It is proved in [GV] that for

(4)

(6) g>p—-1>1

and A large enough, the unique positive solution of (5) satisfies v(x)=A/(a+1-p)

for x € [x(A), 1 — x(4)] where x(1) > 0 and x(1) ~ CA~'/P at infinity.

Another consequence described in [GV] is that for A large enough, the set

of solutions v of (5) with k — 1 simple zeros on (0, 1) and v,(0) > 0 is

homeomorphic to the (k — 1)-dimensional unit cube. P. L. Lions asked one of

the authors whether such phenomenon still existed for the N-dimensional case.
If we define

7) i =min{/Q|Vu|”dx//Q|u|”dx ‘ue I/VO"”(Q)\{O}} ,

it is a classical fact that under condition (6), for any A > A; there exists v
positive in Q satisfying (4). As for problem (1) we know from [DS] that if
e < 1/A; and f satisfies (H1), (H2), then there exists a unique u—u, belonging

to C!(Q) which is a positive in Q solution of (1). Moreover if (H3) holds then
u takes its values in [0, 1]. If we define

(8) Q; = {x € Q:v(x)=Al/larl-r}

then Q; is a compact, possibly empty, subset of Q. We have the following
answer to Lions’s question

Theorem 1. Assume (6), 4 > A, v is the positive solution of (4), and Q; is
defined by (8). Then there exists 2* = 2*(Q, p, q) > A, such that:

(1) if A < A* the set Q, is empty,

(i1) if A > A* the set Q, is not empty and

9) dist(Q;, 0Q) < CA~'/P
where C =C(Q,p,q)>0.
Theorem 1 is a consequence of

Theorem 2. Assume (H1)-(H3) with p > 1. Then for ¢ > 0 small enough the
coincidence set Q. of the solution u of (1) defined by

(10) Q. ={xeQ:ulx)=1}
is not empty and there exists a constant C > 0 such that
(11) dist(Q,, 0Q) < Cel'/?.
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PROOFS OF THE RESULTS

We first extend the function f on (—oo, 0) such that the resulting function
defined on R is a continuous odd function. This function is still denoted by

f.

Lemma 1. Let w; and w, be two functions belonging to C(Q)NW"'-?(Q) and
such that

(12) O=w; <w, onoQ

and

(13) w; < ws,

(14) —A,,wl +f(w1) <0,

(15) ~Aywy + f(w) 20

in Q. Then there exists a function w in Co(Q)NW-P(Q) satisfying
(16) w; Sw < W,

(17) —-Apw + f(w) =0

in Q.

This result is due to Deuel and Hess [DeH] and extends previous results of
Amann, Sattinger, and others (see [A] for example).

Lemma 2. Let w € C(Q)N WO1 P(Q) be a positive solution of (17) in Q. Then
Jor C>1 (resp. 0<C < 1) we have

(18) —Ap(Cw) + f(Cw) >0 (resp. —A,(Cw)+ f(Cw) L0)

in Q.

Proof. For C > 1 we have

(19) Ay (Cw) = CP~'A,w = CP~ f(w) = (Cw)P~! f(w)/wP~" .

From (H1) we have f(w)/w?~! < f(Cw)/(Cw)?~!, which yields (18). The
same proof applies for 0 < C < 1.

Lemma 3. Assume (Hi) (i=1, 2, 3) and let u = u, be the positive solution of
(9). Then u, converges to 1 as ¢ tends to 0, uniformly on any compact subset
K of Q.

Proof. By the maximum principle, #, < 1 in Q. The intent of this proof is to
construct a subsolution v of (9) with the form

(20) v=1-—e¥¢ ¢ =¢g/p,

with some y > 0 in Q, vanishing on 9Q ; the function y will be made precise
later. Then |
Vo = ?e"”/"' Vy
and ,
—Apv = (&) e 0TV (p — 1) Ty — ey,

which yields
(21) —eAu + f(v) = [(p - D)|Vy P — Ayyle P~/ 4 f(v).
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Set £y =(p—-1)|Vy|P, E; = -¢'Apy,and y = e~v/¢ . We claim that for
¢’ small enough
(22) Ei+E <—y'"Pf(1-y).
For 0 > 0 we define
Q ={xeQ:y<d}={xeQ:y >¢In(1/0)},
QO ={xeQ:y>d}={xeQ:y<eln/d)}.
From (H3) lim,;o-(—y~%f(1 — y)) = C; henceforth there exists dy € (0, 1)
such that —y~=9f(1 —y) > C/2 for 0 <y < &y, which implies

(23 S (1-9)> 52y e (0, b)

— 5
as p—1—-0>0. We shall take y = ¢! where ¢; is the unique positive
solution with upper bound 1 of

(24) ~Appr =M¢P™! in Q,
61 =0 on 0Q2.
There exists M > 0 such that for any ¢’ € (0, 1] we have
(25) l(p— DIV —eDpw| < M,
and there exists J; € (0, do] such that for J < J,
(26) (p— DVyP —eAw < M < /2677179

in Q, which implies that (22) holds in Q¢ .
For the estimate in QJ note that there exist two positive constants /(§) and
r(é) such that

(27) —f(1=y) 211 -yyP~" vye@,1)
and, consequently,
(28) —f(1=y) =2 r(d)(y/e )y

if d <y<1 or y/e <In(l/d); we used here that (1 —e~?)/p is bounded
below on (0, In(1/d)). In order to have

(29) E < —f(1-y)/y*~!

in Q7 , it is sufficient to assure (with y < 1) that
(30) (0= DVl <r@d)(w/e)y!
or, equivalently,

(31) (&P IVl < I,L‘_‘S—)lwp-' .

As vy = ¢f we have
(32) (P VyPy! =P = (P~ pP |V IP.

For 6 € (0, 4,) fixed, we can choose ¢, > 0 such that (31) holds for 0 < ¢
<g.
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For the remaining term we have

Doy = 8p8h = 07~ (0~ 187V~ dap? O,
As 0¢1/0v <0 on 9Q there exists a neighborhood D of 9Q such that
(33) (P = DXVl > Aigf
in D. For ¢ fixed in (0, d;) there exists & € (0, &) such that for any

¢ €(0,¢), Q5 cD. For such a limitation on ¢ we have A,y >0 in Q7 ,
which implies

(34) Ei+E < -y ?f(1-y)
in Qﬁ. Henceforth, with this restriction on &', v satisfies
(35) —&'Apv + f(v) <0

in Q and v vanishes on Q. Now we compare u and v. By Vazquez’s
maximum principle [V], du/0v < 0 on 9Q; therefore, there exists C > 1
such that Cu > v in Q. Using Lemmas 2 and 1 we get that there exists a
solution u* of (9) such that v < u* < Cu. By uniqueness u* = u > v. For
any compact subset K C Q, there exists #(K) > 0 such that v > 5n(K) on K.
Letting ¢ tend to O implies the claimed result.

Proof of Theorem 2. Let it = @i, = 1 — u. From (H3) there exists dy > 0 such
that -9 f(1 —it) > ¢/2 for 0 < it < &y, which yields

(36) ~Apit + %a" <0

if 0 <@ <. For n >0 let K, be the subset of the x’s in Q such that
dist(x, 0Q) > n. From Lemma 3, for any J € (0, dy) there exists &(d) > 0
such that for 0 < & < ¢(d) we have

(37) max{ii,(x): x € Ky} <9.
Let h = hs be the solution of
“Ah+ %he =0 in B,(0),
h=46 on dBy,(0).

We know from Diaz-Herrero’s paper [DH] (see also [D, p. 41]) that there exists
6 > 0 such that h;(0) = 0. Let xo € K,,. By comparison, i#(x) < hs(x — Xo)
for |x — xo| < n. Thus d(xo) = 0. Therefore ii(x) =0 on K»,.

In order to obtain the final estimate we use a local scaling argument. As 9Q
is C? there exists p > 0 such that for any a € Q the open ball with center
a— p7V, and radius p is included into Q (7°, is the normal unit vector to

0Q at a). As we already proved, there exists ¢, > 0 such that the positive
solution z of

(39)

(38)

~&1Apz+ f(z) =0 in B,(0),
z=0 ondB,(0),

is such that z(x) =1 Vx € B,/;(0). For k > 0 the function z, defined by
zr(x) = z(kx) satisfies

—eik™PAyzi + f(zi) = 0 in B, (0),
Zy = 0 on BB,,/k(O)

(40)
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and is such that z;(x) =1 Vx € B,/»%(0). For 0 <e<¢g let k be (¢/¢e)!/7,
k > 1. For any a € Q such that dist(a, 9Q) > p/k we can compare u(x)
and zx(x —a) in B,,(a). By the same way as in the proof of Lemma 3, we
use Lemmas 2 and 1 with o« > 0 small enough. We get

(41) azi(x —a) <u(x) in B,;(a),
which implies

(42) z(x —a) <u(x) in B, (a).
We deduce that u =1 in B,/5(a), which implies (11).

Remark 1. 1t is clear that the coincidence set ., may be empty if ¢ is too
large. To have an estimate of this minimal ¢ we can proceed as follows: let
d > 0 be the infimum of the distance of two hyperplanes that are parallel and
such that Q is contained into the strip limited by them. As the equation (9)
is equivariant with respect to rotations and translations in R" , we can assume
that

(43) Qc{x=(x;,x)eRxR"':0<x <d}.

Let { be the unique positive solution of

~&(1x P72 x)x + () =0 in (0, d),
£(0)={(d) =0.

It is clear that E (x) = {(x;) satisfies
—eAL+ f(O)=0 inQ,

(44)

(45) Z

(>0 onoQ.
As before there exists a solution # such that for some a < |
(46) cu<i <l

and by uniqueness # = u < {. If 0 < { <1 in (0,d) we deduce that
the coincidence set Q. is empty. In the particular case of equation (1) the
coincidence set is empty if

Al/p gla=1)/(g+1-p)

(47) q + 1 - D " agp \ /P
<2/( 0t e ‘p—1> do

[GV, Remark 2.3].
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