FLAT CORE PROPERTIES ASSOCIATED TO THE *p*-LAPLACE OPERATOR

SHOSHANA KAMIN AND LAURENT VERON

(Communicated by Barbara L. Keyfitz)

ABSTRACT. We study the formation of a flat hat pattern in the profile of the positive solution of an equation of the type: $\varepsilon \Delta_p u - u^{p-1} (1-u)^\theta = 0$ (0 < $\theta < p-1$) in a bounded domain Ω . When ε tends to 0^+ , the growth of the zone where $u=u_\varepsilon$ takes the value 1 in Ω is studied.

INTRODUCTION AND STATEMENT OF THE RESULTS

This paper deals with the study of the limit behaviour when ε tends to 0^+ of the shape of the positive solution $u = u_{\varepsilon}$ of the problem

(1)
$$\begin{aligned} -\varepsilon \Delta_p u + f(u) &= 0 & \text{in } \Omega, \\ u &= 0 & \text{on } \partial \Omega, \end{aligned}$$

where Ω is a connected, bounded open subset of \mathbb{R}^N , $N \geq 2$, with a C^2 boundary $\partial \Omega$; Δ_p is the p-Laplace operator defined by

(2)
$$\Delta_p u = \operatorname{div}(|\nabla u|^{p-2} \nabla u)$$

with p > 1; and f is continuous with nonpositive values. Such a problem appears when studying the stationary states of a strongly nonlinear heat equation in an absorbing-reacting media (see [D] for physical examples and further references). The precise hypotheses on f are the following:

- (H1) f is continuous on $[0, \infty)$ and $r \mapsto f(r)/r^{p-1}$ is increasing.
- (H2) $\lim_{r\downarrow 0} f(r)/r^{p-1} = -1$.
- (H3) There exist C > 0 and $\theta \in (0, p-1)$ such that $\lim_{r \uparrow 1} f(r)/(1-r)^{\theta} = -C$.

The specific phenomenon we shall study is the formation of a flat hat pattern inside Ω , that is, a zone where u takes the value 1 and the growth of this zone when ε tends to 0.

The typical example of a function f satisfying (H1)-(H3) is $f(u) = u^{p-1} - u^q$, thus problem (1) becomes

(3)
$$-\varepsilon \Delta_p u = u^{p-1} - u^q \quad \text{in } \Omega,$$
$$u = 0 \qquad \text{on } \partial \Omega.$$

Received by the editors May 6, 1991 and, in revised form, November 26, 1991. 1991 Mathematics Subject Classification. Primary 35J60, 35J70.

If we set $\varepsilon = 1/\lambda$ and $u = v\varepsilon^{1/(q+1-p)}$, then (3) reads as

(4)
$$\begin{aligned} -\Delta_p v &= \lambda v^{p-1} - v^q & \text{in } \Omega, \\ v &= 0 & \text{on } \partial \Omega \end{aligned}$$

The appearance of the flat zone for the solution of (4) for large λ was first observed by Guedda and Veron. These authors in [GV] studied the structure of the set of solutions of the nonlinear eigenvalue problem

(5)
$$-(|v_x|^{p-2}v_x)_x = \lambda |v|^{p-2}v - |v|^{q-1}v \quad \text{in } (0, 1),$$

$$v(0) = v(1) = 0.$$

It is proved in [GV] that for

(6)
$$q > p - 1 > 1$$

and λ large enough, the unique positive solution of (5) satisfies $v(x) = \lambda^{1/(q+1-p)}$ for $x \in [x(\lambda), 1-x(\lambda)]$ where $x(\lambda) > 0$ and $x(\lambda) \sim C\lambda^{-1/p}$ at infinity. Another consequence described in [GV] is that for λ large enough, the set of solutions v of (5) with k-1 simple zeros on (0,1) and $v_x(0) > 0$ is homeomorphic to the (k-1)-dimensional unit cube. P. L. Lions asked one of the authors whether such phenomenon still existed for the N-dimensional case.

If we define

(7)
$$\lambda_1 = \min \left\{ \int_{\Omega} |\nabla u|^p dx / \int_{\Omega} |u|^p dx : u \in W_0^{1,p}(\Omega) \setminus \{0\} \right\},$$

it is a classical fact that under condition (6), for any $\lambda > \lambda_1$ there exists v positive in Ω satisfying (4). As for problem (1) we know from [DS] that if $\varepsilon < 1/\lambda_1$ and f satisfies (H1), (H2), then there exists a unique $u-u_{\varepsilon}$ belonging to $C^1(\overline{\Omega})$ which is a positive in Ω solution of (1). Moreover if (H3) holds then u takes its values in [0, 1]. If we define

(8)
$$\Omega_{\lambda} = \{ x \in \Omega : v(x) \equiv \lambda^{1/(q+1-p)} \}$$

then Ω_{λ} is a compact, possibly empty, subset of Ω . We have the following answer to Lions's question

Theorem 1. Assume (6), $\lambda > \lambda_1$, v is the positive solution of (4), and Ω_{λ} is defined by (8). Then there exists $\lambda^* = \lambda^*(\Omega, p, q) > \lambda_1$ such that:

- (i) if $\lambda < \lambda^*$ the set Ω_{λ} is empty;
- (ii) if $\lambda \geq \lambda^*$ the set Ω_{λ} is not empty and

(9)
$$\operatorname{dist}(\Omega_{\lambda}, \partial \Omega) \leq C \lambda^{-1/p},$$

where $C = C(\Omega, p, q) > 0$.

Theorem 1 is a consequence of

Theorem 2. Assume (H1)–(H3) with p > 1. Then for $\varepsilon > 0$ small enough the coincidence set Ω_{ε} of the solution u of (1) defined by

(10)
$$\Omega_{\varepsilon} = \{ x \in \Omega : u(x) = 1 \}$$

is not empty and there exists a constant C > 0 such that

(11)
$$\operatorname{dist}(\Omega_{\varepsilon}, \partial \Omega) \leq C \varepsilon^{1/p}.$$

PROOFS OF THE RESULTS

We first extend the function f on $(-\infty, 0)$ such that the resulting function defined on R is a continuous odd function. This function is still denoted by f.

Lemma 1. Let w_1 and w_2 be two functions belonging to $C(\overline{\Omega}) \cap W^{1,p}(\Omega)$ and such that

$$(12) 0 = w_1 < w_2 on \partial \Omega$$

and

$$(13) w_1 \leq w_2,$$

$$(14) -\Delta_p w_1 + f(w_1) \leq 0,$$

$$(15) -\Delta_p w_2 + f(w_2) \ge 0$$

in Ω . Then there exists a function w in $C_0(\Omega) \cap W^{1,p}(\Omega)$ satisfying

$$(16) w_1 \leq w \leq w_2,$$

$$(17) -\Delta_p w + f(w) = 0$$

in Ω .

This result is due to Deuel and Hess [DeH] and extends previous results of Amann, Sattinger, and others (see [A] for example).

Lemma 2. Let $w \in C(\overline{\Omega}) \cap W_0^{1,p}(\Omega)$ be a positive solution of (17) in Ω . Then for C > 1 (resp. 0 < C < 1) we have

$$(18) -\Delta_p(Cw) + f(Cw) \ge 0 (resp. -\Delta_p(Cw) + f(Cw) \le 0)$$

in Ω .

Proof. For C > 1 we have

(19)
$$\Delta_p(Cw) = C^{p-1}\Delta_p w = C^{p-1}f(w) = (Cw)^{p-1}f(w)/w^{p-1}.$$

From (H1) we have $f(w)/w^{p-1} \le f(Cw)/(Cw)^{p-1}$, which yields (18). The same proof applies for 0 < C < 1.

Lemma 3. Assume (Hi) (i = 1, 2, 3) and let $u = u_{\varepsilon}$ be the positive solution of (9). Then u_{ε} converges to 1 as ε tends to 0, uniformly on any compact subset K of Ω .

Proof. By the maximum principle, $u_{\varepsilon} \leq 1$ in $\overline{\Omega}$. The intent of this proof is to construct a subsolution v of (9) with the form

(20)
$$v = 1 - e^{-\psi/\varepsilon'}, \qquad \varepsilon' = \varepsilon^{1/p},$$

with some $\psi > 0$ in Ω , vanishing on $\partial \Omega$; the function ψ will be made precise later. Then

$$\nabla v = \frac{1}{\varepsilon'} e^{-\psi/\varepsilon'} \nabla \psi$$

and

$$-\Delta_p v = (\varepsilon')^{-p} e^{-(p-1)\psi/\varepsilon'} \{ (p-1) |\nabla \psi|^p - \varepsilon' \Delta_p \psi \} ,$$

which yields

(21)
$$-\varepsilon \Delta_p v + f(v) = [(p-1)|\nabla \psi|^p - \varepsilon' \Delta_p \psi] e^{-(p-1)\psi/\varepsilon'} + f(v).$$

Set $E_1=(p-1)|\nabla\psi|^p$, $E_2=-\varepsilon'\Delta_p\psi$, and $y=e^{-\psi/\varepsilon'}$. We claim that for ε' small enough

(22)
$$E_1 + E_2 \le -y^{1-p} f(1-y).$$

For $\delta > 0$ we define

$$\Omega_{-}^{\delta} = \{ x \in \Omega : y \le \delta \} = \{ x \in \Omega : \psi \ge \varepsilon' \ln(1/\delta) \},
\Omega_{+}^{\delta} = \{ x \in \Omega : y > \delta \} = \{ x \in \Omega : \psi < \varepsilon' \ln(1/\delta) \}.$$

From (H3) $\lim_{y\downarrow 0^+}(-y^{-\theta}f(1-y)) = C$; henceforth there exists $\delta_0 \in (0,1)$ such that $-y^{-\theta}f(1-y) > C/2$ for $0 < y < \delta_0$, which implies

(23)
$$-\frac{1}{v^{p-1}}f(1-y) > \frac{C}{2\delta^{p-1-\theta}} \quad \forall y \in (0, \, \delta_0)$$

as $p-1-\theta>0$. We shall take $\psi=\phi_1^p$ where ϕ_1 is the unique positive solution with upper bound 1 of

(24)
$$\begin{aligned} -\Delta_p \phi_1 &= \lambda_1 \phi_1^{p-1} & \text{in } \Omega, \\ \phi_1 &= 0 & \text{on } \partial \Omega. \end{aligned}$$

There exists M > 0 such that for any $\varepsilon' \in (0, 1]$ we have

$$(25) |(p-1)|\nabla \psi|^p - \varepsilon' \Delta_p \psi| \leq M,$$

and there exists $\delta_1 \in (0, \delta_0]$ such that for $\delta < \delta_1$

(26)
$$(p-1)|\nabla \psi|^p - \varepsilon' \Delta_p \psi \le M \le c/2\delta^{p-1-\theta}$$

in Ω , which implies that (22) holds in Ω_{-}^{δ} .

For the estimate in Ω_+^{δ} note that there exist two positive constants $l(\delta)$ and $r(\delta)$ such that

(27)
$$-f(1-y) \ge l(\delta)(1-y)^{p-1} \quad \forall y \in (\delta, 1)$$

and, consequently,

$$(28) -f(1-y) \ge r(\delta)(\psi/\varepsilon')^{p-1}$$

if $\delta < y \le 1$ or $\psi/\varepsilon' < \ln(1/\delta)$; we used here that $(1 - e^{-\rho})/\rho$ is bounded below on $(0, \ln(1/\delta))$. In order to have

(29)
$$E_1 \le -f(1-y)/y^{p-1}$$

in Ω_+^{δ} , it is sufficient to assure (with $y \leq 1$) that

$$(30) (p-1)|\nabla \psi|^p \le r(\delta)(\psi/\varepsilon')^{p-1}$$

or, equivalently,

(31)
$$(\varepsilon')^{p-1} |\nabla \psi|^p \le \frac{r(\delta)}{p-1} \psi^{p-1}.$$

As $\psi = \phi_1^p$ we have

(32)
$$(\varepsilon')^{p-1} |\nabla \psi|^p \psi^{1-p} = (\varepsilon')^{p-1} p^p |\nabla \phi_1|^p.$$

For $\delta \in (0, \delta_1)$ fixed, we can choose $\varepsilon_0' > 0$ such that (31) holds for $0 < \varepsilon' \le \varepsilon_0'$.

For the remaining term we have

$$\Delta_p \psi = \Delta_p \phi_1^p = p^{p-1} (p-1)^2 \phi_1^{(p-1)^2 - 1} |\nabla \phi_1|^P - \lambda_1 p^{p-1} \phi_1^{p(p-1)}.$$

As $\partial \phi_1/\partial \nu < 0$ on $\partial \Omega$ there exists a neighborhood **D** of $\partial \Omega$ such that

$$(33) (p-1)^2 |\nabla \phi_1|^p > \lambda_1 \phi_1^p$$

in **D**. For δ fixed in $(0, \delta_1)$ there exists $\varepsilon_1' \in (0, \varepsilon_0')$ such that for any $\varepsilon' \in (0, \varepsilon_1')$, $\Omega_+^{\delta} \subset \mathbf{D}$. For such a limitation on ε' we have $\Delta_p \psi > 0$ in Ω_+^{δ} , which implies

(34)
$$E_1 + E_2 \le -y^{1-p} f(1-y)$$

in Ω^{δ}_{+} . Henceforth, with this restriction on ε' , v satisfies

$$-\varepsilon' \Delta_p v + f(v) \le 0$$

in Ω and v vanishes on $\partial\Omega$. Now we compare u and v. By Vazquez's maximum principle [V], $\partial u/\partial\nu<0$ on $\partial\Omega$; therefore, there exists C>1 such that $Cu\geq v$ in Ω . Using Lemmas 2 and 1 we get that there exists a solution u^* of (9) such that $v\leq u^*\leq Cu$. By uniqueness $u^*=u\geq v$. For any compact subset $K\subset\Omega$, there exists $\eta(K)>0$ such that $\psi\geq\eta(K)$ on K. Letting ε tend to 0 implies the claimed result.

Proof of Theorem 2. Let $\tilde{u} = \tilde{u}_{\varepsilon} = 1 - u$. From (H3) there exists $\delta_0 > 0$ such that $-\tilde{u}^{-\theta} f(1 - \tilde{u}) > c/2$ for $0 < \tilde{u} \le \delta_0$, which yields

$$-\Delta_p \tilde{u} + \frac{c}{2} \tilde{u}^{\theta} \le 0$$

if $0 < \tilde{u} \le \delta_0$. For $\eta > 0$ let K_{η} be the subset of the x's in Ω such that $\operatorname{dist}(x, \partial \Omega) \ge \eta$. From Lemma 3, for any $\delta \in (0, \delta_0)$ there exists $\varepsilon(\delta) > 0$ such that for $0 < \varepsilon < \varepsilon(\delta)$ we have

(37)
$$\max\{\tilde{u}_{\varepsilon}(x): x \in K_{\eta}\} < \delta.$$

Let $h = h_{\delta}$ be the solution of

(38)
$$-\Delta_{p}h + \frac{c}{2}h^{\theta} = 0 \quad \text{in } B_{\eta}(0),$$
$$h = \delta \quad \text{on } \partial B_{\eta}(0).$$

We know from Diaz-Herrero's paper [DH] (see also [D, p. 41]) that there exists $\delta > 0$ such that $h_{\delta}(0) = 0$. Let $x_0 \in K_{2\eta}$. By comparison, $\tilde{u}(x) \le h_{\delta}(x - x_0)$ for $|x - x_0| < \eta$. Thus $\tilde{u}(x_0) = 0$. Therefore $\tilde{u}(x) \equiv 0$ on $K_{2\eta}$.

In order to obtain the final estimate we use a local scaling argument. As $\partial \Omega$ is C^2 there exists $\rho > 0$ such that for any $a \in \partial \Omega$ the open ball with center $a - \rho \overrightarrow{\nu}_a$ and radius ρ is included into Ω ($\overrightarrow{\nu}_a$ is the normal unit vector to $\partial \Omega$ at a). As we already proved, there exists $\varepsilon_1 > 0$ such that the positive solution z of

(39)
$$\begin{aligned} -\varepsilon_1 \Delta_p z + f(z) &= 0 \quad \text{in } B_\rho(0) \,, \\ z &= 0 \quad \text{on } \partial B_\rho(0) \,, \end{aligned}$$

is such that $z(x) \equiv 1 \ \forall x \in B_{\rho/2}(0)$. For k > 0 the function z_k defined by $z_k(x) = z(kx)$ satisfies

(40)
$$\begin{aligned} -\varepsilon_1 k^{-p} \Delta_p z_k + f(z_k) &= 0 \quad \text{in } B_{\rho/k}(0), \\ z_k &= 0 \quad \text{on } \partial B_{\rho/k}(0) \end{aligned}$$

and is such that $z_k(x) \equiv 1 \quad \forall x \in B_{\rho/2k}(0)$. For $0 < \varepsilon < \varepsilon_1$ let k be $(\varepsilon_1/\varepsilon)^{1/p}$, k > 1. For any $a \in \Omega$ such that $\operatorname{dist}(a, \partial \Omega) \ge \rho/k$ we can compare u(x) and $z_k(x-a)$ in $B_{\rho/k}(a)$. By the same way as in the proof of Lemma 3, we use Lemmas 2 and 1 with $\alpha > 0$ small enough. We get

(41)
$$\alpha z_k(x-a) \le u(x) \quad \text{in } B_{\rho/k}(a),$$

which implies

$$(42) z_k(x-a) \le u(x) \text{in } B_{a/k}(a).$$

We deduce that $u \equiv 1$ in $B_{\rho/2k}(a)$, which implies (11).

Remark 1. It is clear that the coincidence set Ω_{ε} may be empty if ε is too large. To have an estimate of this minimal ε we can proceed as follows: let d>0 be the infimum of the distance of two hyperplanes that are parallel and such that Ω is contained into the strip limited by them. As the equation (9) is equivariant with respect to rotations and translations in \mathbb{R}^N , we can assume that

(43)
$$\Omega \subset \{x = (x_1, x') \in \mathbb{R} \times \mathbb{R}^{N-1} : 0 < x_1 < d\}.$$

Let ζ be the unique positive solution of

(44)
$$-\varepsilon(|\zeta_{x_1}|^{p-2}\zeta_{x_1})_{x_1} + f(\zeta) = 0 \quad \text{in } (0, d), \\ \zeta(0) = \zeta(d) = 0.$$

It is clear that $\widetilde{\zeta}(x) = \zeta(x_1)$ satisfies

(45)
$$-\varepsilon \Delta_{p} \widetilde{\zeta} + f(\widetilde{\zeta}) = 0 \quad \text{in } \Omega,$$

$$\widetilde{\zeta} > 0 \quad \text{on } \partial \Omega.$$

As before there exists a solution \tilde{u} such that for some $\alpha < 1$

$$(46) \alpha u \leq \tilde{u} \leq \zeta$$

and by uniqueness $\tilde{u}=u\leq \zeta$. If $0<\zeta<1$ in (0,d) we deduce that the coincidence set Ω_{ε} is empty. In the particular case of equation (1) the coincidence set is empty if

(47)
$$\lambda^{1/p} d^{(q-1)/(q+1-p)} < 2 \int_0^1 \left(\frac{q+1-p}{(p-1)(q+1)} + \frac{p}{(p-1)(q+1)} \sigma^{q+1} - \frac{\sigma^p}{p-1} \right)^{-1/p} d\sigma$$

[GV, Remark 2.3].

ACKNOWLEDGMENTS

This work was initiated while the second author was visiting Tel Aviv University in the framework of the Scientific Cooperation between France and Israel.

REFERENCES

- [A] H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev. 18 (1976), 620-709.
- [D] J. I. Diaz, Nonlinear partial differential equations and free boundaries, vol. I Elliptic equations, Research Notes in Math., vol. 106, Pitman, New York, 1985.

- [DeH] J. Deuel and P. Hess, A criterion for the existence of solutions of nonlinear elliptic boundary value problems, Proc. Roy. Soc. Edinburgh Sect. A 74 (1975), 49-54.
- [DH] J. K. Diaz and M. A. Herrero, Estimates on the support of the solutions of some nonlinear elliptic and parabolic problems, Proc. Roy. Soc. Edinburgh Sect. A 89 (1981), 249-258.
- [DS] J. I. Diaz and J. E. Saa, Existence et unicité de solutions positives pour certaines équations elliptiques quasilinéaires, C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), 521-524.
- [GV] M. Guedda and L. Veron, Bifurcation phenomena associated to the p-Laplace operator, Trans. Amer. Math. Soc. 310 (1988), 419-431.
- [T] P. Tolksdorf, On the Dirichlet problem for quasilinear equations in domain with conical boundary points, Comm. Partial Differential Equations 8 (1983), 773-817.
- [V] J. L. Vazquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim. 12 (1984), 191-202.

SCHOOL OF MATHEMATICS, RAYMOND AND BEVERLY SACKLER FACULTY OF EXACT SCIENCES, TEL AVIV UNIVERSITY, ISRAEL

E-mail address: KAMIN@TAURUS.BITNET

Département de Mathématiques, Faculté des Sciences et Techniques, Parc de Grandmont, 37200 Tours, France

E-mail address: VERONL@FRUTRS51.BITNET