ON PRIME IDEALS IN RINGS OF SEMIALGEBRAIC FUNCTIONS

J. M. GAMBOA

(Communicated by Louis J. Ratliff, Jr.)

ABSTRACT. It is proved that if $\mathfrak p$ is a prime ideal in the ring S(M) of semi-algebraic functions on a semialgebraic set M, the quotient field of $S(M)/\mathfrak p$ is real closed. We also prove that in the case where M is locally closed, the rings S(M) and P(M)—polynomial functions on M—have the same Krull dimension. The proofs do not use the theory of real spectra.

Let R be a real closed field. The only topology we consider in R^n is the euclidean topology. For every semialgebraic subset $M \subset R^n$ we denote by S(M) the ring of semialgebraic functions on M, i.e., continuous maps $f: M \to R$ whose graph is a semialgebraic subset of R^{n+1} , and P(M) stands for the ring of polynomial functions on M, i.e., restrictions to M of polynomials in $R[x_1, \ldots, x_n]$. In this note we give elementary proofs of the following results.

Theorem 1. For every prime ideal \mathfrak{p} of S(M), the quotient field of $S(M)/\mathfrak{p}$ is real closed.

Theorem 2. Let π : Spec $S(M) \to \operatorname{Spec} P(M)$ be the map induced by the inclusion $P(M) \hookrightarrow S(M)$, and assume that M is locally closed. Then:

- (1) The fibers of π are T_1 -spaces.
- (2) The Krull dimensions of P(M) and S(M) are equal.
- (3) If $M \subset \mathbb{R}^n$ is algebraic, the image of π is the set $\operatorname{Spec}^r(M)$ of real prime ideals of P(M).

For every ring A, Spec A denotes the prime spectrum of A endowed with its Zariski topology. The ideal a in A is real if whenever $f_1, \ldots, f_k \in A$ and $f_1^2 + \cdots + f_k^2 \in a$, then $f_1, \ldots, f_k \in a$. Theorem 1 can be deduced from [9, Corollary 3.26, §1, and Theorem 1.1]. Schwartz's proof involves his theory of real closed spaces. This can be viewed as the semialgebraic counterpart of results by Henriksen and Isbell [4] and Isbell [5]. In fact, if m is a maximal ideal in the ring of real-valued continuous functions on a normal topological space X, it is proved in [4] that the quotient C(X)/m is a real closed field. In [5], the normality condition on X is dropped. The second part of Theorem 2

Received by the editors October 31, 1991 and, in revised form, December 23, 1991.

¹⁹⁹¹ Mathematics Subject Classification. Primary 13B20; Secondary 13B30.

Partially supported by CICYT PB 89/0379/C02/01 and Science Plan ERB 4002 PL 910021-(91100021).

was proved, using the theory of real spectra by Carral and Coste [2] for locally closed semialgebraic sets M, and by Gamboa and Ruiz [3, Proposition 1.4] for arbitrary semialgebraic M.

Let us fix some notation. For each ideal $\mathfrak a$ in S(M), the set of common zeros in M of functions in $\mathfrak a$ is denoted by $Z(\mathfrak a)$. If $\mathfrak a=f\cdot S(M)$ for some $f\in S(M)$ we abbreviate $Z(f)=Z(f\cdot S(M))$. Given a subset $X\subset M$, the ideal of all functions $f\in S(M)$ such that $X\subset Z(f)$ is denoted by $\mathscr I(X)$, while $\overline X^z$ is the smallest algebraic subset of R^n containing X. Finally, for each $f\in S(M)$ we denote by $|f|\in S(M)$ the "absolute value of f".

Proof of Theorem 1. Let $A = S(M)/\mathfrak{p}$ and let $E = q \cdot f(A)$ be its quotient field. First we must prove that either x or -x is a square in E for every $x \in E$. Write $x = (f + \mathfrak{p})(g + \mathfrak{p})^{-1}$, $f, g \in S(M)$ and $g \notin \mathfrak{p}$. If h = fg we get $(|h|-h)(|h|+h)=0\in\mathfrak{p}$, and so either $|h|-h\in\mathfrak{p}$ or $|h|+h\in\mathfrak{p}$. In the first case, $x = (h + \mathfrak{p})(g + \mathfrak{p})^{-2} = (|h| + \mathfrak{p})(g + \mathfrak{p})^{-2}$ is a square in E, since |h| is a square in S(M). Analogously, -x is a square in E in the second case. Hence, we must only show that each odd degree polynomial $P \in E[T]$ has at least one root in E. We may suppose that $P \in A[T]$ is monic. In fact, if we write $P(T) = (a_0 T^m + a_1 T^m + \dots + a_m) \cdot b^{-1}, \ a_1 \in A, \ a_0, b \in A \setminus \{0\}, \ \text{then}$ we construct the monic polynomial $Q(T) = T^m + \sum_{j=1}^m a_j \cdot a_0^{j-1} T^{m-j} \in A[T]$, and if $\alpha \in E$ is a root of Q, then $\alpha \cdot a_0^{-1} \in E$ is a root of P. Thus, from now on we put $P(T) = T^m + \sum_{j=1}^m (f_j + \mathfrak{p}) T^{m-j}$, $f_j \in S(M)$, and m is odd. Let us consider the polynomial $F_0 = T^m + \sum_{j=1}^m x_j T^{m-j} \in R[x_1, \dots, x_m, T]$. Clearly, F_0 and its derivatives $F_j = \partial F_0 / \partial T^j$, $1 \le j \le m$, are monic (modulo factors in N) with respect to T, and the family $\mathscr{F} = \{F_0, F_1, \dots, F_m\}$ is stable under derivation (with respect to T). Therefore, if $(A_i; \zeta_{ij}: 1 \le i \le k, 1 \le j \le k(i))$ is a "saucissonage" of \mathcal{F} (see [1, 2.3.4], then functions $\zeta_{ij} \in S(A_1)$ can be extended to the closure \overline{A}_i by [1, 2.5.6] and so, using the semialgebraic Tietze's extension theorem [1, 2.6.10], there exist semialgebraic functions $\eta_{ij} \in S(R^m)$ such that η_{ij} restricted to A_i coincides with ζ_{ij} . By the very definition of "saucissonage", and since m is odd, there exists for every $1 \le i \le k$ an index $l(i) \in \{1, \ldots, k(i)\}$ such that $F_0(x, \eta_{i, l(i)}(x)) = 0$ for each point $x \in A_i$.

On the other hand, if $\varphi = (f_1, \ldots, f_m) : M \to R^m$, the compositum $g_i = \eta_{i,l(i)} \circ \varphi$ belong to S(M), and all reduce to proving that $g_i + \mathfrak{p}$ is a root of P for some i. For every point $y \in M$, $x = \varphi(y) \in R^m = A_1 \cup \cdots \cup A_k$ and so

$$\prod_{j=1}^{k} F_0(\varphi(y), g_j(y)) = \prod_{i=1}^{k} F_0(x, \eta_{i,l(i)}(x)) = 0.$$

Consequently, the polynomial $H(T) = T^m + \sum_{j=1}^m f_j \cdot T^{m-1}$ verifies that the product $H(g_1) \cdots H(g_k) = 0$, since for each $y \in M$,

$$F_0(\varphi(y), g_i(y)) = g_i(y)^m + \sum_{i=1}^m f_j(y)g_i^{m-j}(y).$$

Finally, since \mathfrak{p} is prime, $H(g_i) \in \mathfrak{p}$ for some $1 \le i \le k$, i.e., $P(g_i + \mathfrak{p}) = 0$.

Proof of Theorem 2. (1) We must prove that $a \cap P(M) \subsetneq b \cap P(M)$ for given prime ideals $a \subsetneq b$ in S(M). Let us take $f \in b \setminus a$. Its zero-set Z(f) is a

closed semialgebraic subset of M and so, by the finiteness theorem (see [6] or [1, 2.7.1]), there exist polynomial functions $f_{ij} \in P(M)$ such that $Z(f) = \bigcup_{i=1}^m \{x \in M: f_{i1}(x) \geq 0, \ldots, f_{ik}(x) \geq 0\}$. Define $h_i = \sum_{j=1}^k (f_{ij} - |f_{ij}|)^2$, $i = 1, \ldots, m$. Then Z(f) = Z(h) for $h = h_1 \cdots h_m$, and so $\mathcal{F}(Z(f)) = \mathcal{F}(Z(h))$. Hence, by the semialgebraic Nullstellensatz [1, 2.6.7], $\sqrt{f \cdot S(M)} = \sqrt{h \cdot S(M)}$. In particular, since $f \notin \mathfrak{a}$, we conclude that every $h_i \notin \mathfrak{a}$ and, from $f \in \mathfrak{b}$, also $h \in \mathfrak{b}$ and so $h_i \in \mathfrak{b}$ for some $1 \leq i \leq m$. From Theorem 1, the quotient field of $S(M)/\mathfrak{b}$ is formally real, i.e., \mathfrak{b} is a real ideal, and $h_i \in \mathfrak{b}$ for some $1 \leq i \leq m$. Thus, $f_{ij} - |f_{ij}| \in \mathfrak{b}$ for all $1 \leq j \leq k$, and since $h_i \notin \mathfrak{a}$, there exists j with $f_{ij} - |f_{ij}| \in \mathfrak{b} \setminus \mathfrak{a}$. To finish we shall check that $g = f_{ij} \in [\mathfrak{b} \cap P(M)] \setminus [\mathfrak{a} \cap P(M)]$. In fact, $0 = (g - |g|) \cdot (g + |g|)$ and since \mathfrak{a} is prime, $g + |g| \in \mathfrak{a} \subset \mathfrak{b}$. Thus, $g = [(g - |g|) + (g + |g|)] \cdot 2^{-1} \in \mathfrak{b}$.

On the other hand, if $g \in \mathfrak{a}$, then $|g|^2 = g^2 \in \mathfrak{a}$ also, i.e., $|g| \in \mathfrak{a}$, which implies $g - |g| \in \mathfrak{a}$, absurd.

(2) The inequality $\dim S(M) \leq \dim P(M)$ is a consequence of part (1). Let $d = \dim P(M) = \dim \overline{M}^z = \dim M$. Then M contains a closed semialgebraic subset K semialgebraically homeomorphic to the cube $I = [-1, 1]^d \subset R^d$. From Tietze's theorem [1, 2.6.10], $\dim S(M) \geq \dim S(K) = \dim S(I)$ and so it suffices to see that $d \leq \dim S(I)$. In the polynomial ring $A = R[x_1, \ldots, x_d]$ we consider the chain of prime ideals

$$(0) = \mathfrak{p}_0 \subsetneq \mathfrak{p}_1 \subsetneq \cdots \subsetneq \mathfrak{p}_d; \qquad \mathfrak{p}_k = (x_1, \ldots, x_k) \cdot A.$$

The quotient fields $E_k = q \cdot f(A/\mathfrak{p}_k) \approx R(x_{k+1}, \ldots, x_d)$ are formally real, and each ordering in E_k can be extended to E_{k-1} . So we can choose cones α_k of nonnegative elements in E_k such that (E_k, α_k) is an ordered extension of (E_{k+1}, α_{k+1}) . Now define the ideals

$$\mathfrak{q}_k = \{ f \in S(I) : \text{there exists } g_1, \ldots, g_l \in A \text{ such that } g_i + \mathfrak{p}_k \in \alpha_k \text{ and}$$

$$P(g_1, \ldots, g_l) = \{ x \in I : g_1(x) \ge 0, \ldots, g_l(x) \ge 0 \} \subset Z(f) \}.$$

Obviously $q_0 \subset q_1 \subset \cdots \subset q_d$ and so it is enough to check that q_k is prime and $q_k \cap A = \mathfrak{p}_k$. In what follows \overline{g} denotes the class $\operatorname{mod} \mathfrak{p}_k$ of $g \in A$. Let $f, g \in S(I)$ such that $fh \in q_k$. Then $Z(f) \cup Z(h)$ contains the set $P(g_1, \ldots, g_r)$ for some $g_1, \ldots, g_r \in A$ with $\overline{g}_i \in \alpha_k$. From the finiteness theorem [6] we can write $Z(f) = \bigcup_{i=1}^m P(f_{i1}, \ldots, f_{il})$, $Z(h) = \bigcup_{i=1}^m P(h_{i1}, \ldots, h_{il})$ for certain f_{ij} , $h_{ij} \in A$ and in case neither f nor h belong to q_k , there exists a family $\{f_{i,j(i)}, h_{i,l(i)} : 1 \leq i \leq m\}$ such that $\overline{f_{ij(i)}} \in \alpha_k$, $\overline{h_{ij(i)}} \notin \alpha_k$. From Artin-Lang theorem [1, 4.1.2] there exists a homomorphism $\mathscr{S}: A/\mathfrak{p}_k \to R$ such that:

$$\begin{array}{ll} \text{(i) } \mathscr{S}(\overline{g}_s) \geq 0 \,; & \text{(ii) } \mathscr{S}(\overline{f_{ij(i)}}) < 0 \,; \\ \text{(iii) } \mathscr{S}(\overline{h_{ij(i)}}) < 0 \,; & \text{(iv) } p = (\mathscr{S}(\overline{x}_1) \,, \, \ldots \,, \, \mathscr{S}(\overline{x}_d)) \in I \,. \end{array}$$

Then, each $g_s(p) = \mathcal{S}(\overline{g}_s) \ge 0$ and so $p \in Z(f) \cup Z(h)$ which is false since $f_{ij(i)}(p) = \mathcal{S}(\overline{f_{ij(i)}}) < 0$ and $h_{il(i)}(p) < 0$ for all i. Hence \mathfrak{q}_k is prime. Also, for $f \in \mathfrak{p}_k$ we have Z(f) = P(f, -f) and $\overline{f}, -\overline{f} \in \alpha_k$, and so $\mathfrak{p}_k \subset \mathfrak{q}_k \cap A$. Finally, if some $f \in \mathfrak{q}_k \cap A$ exists, but $f \notin \mathfrak{p}_k$, then $Z(f) \supset P(g_1, \ldots, g_r)$ for some $g_i \in A$ with $\overline{g}_i \in \alpha_k$. Again from the Artin-Lang theorem we get a homomorphism $\psi \colon A/\mathfrak{p}_k \to R$ such that $\psi(\overline{f}) \neq 0$, $\psi(\overline{g}_s) \geq 0$, and $q = (\psi(\overline{x}_1), \ldots, \psi(\overline{x}_d)) \in I$, i.e., $q \in P(g_1, \ldots, g_r) \setminus Z(f)$, which is absurd.

(3) Each prime ideal in S(M) is real. Hence Spec' P(M) contains the image of π . For the converse, assume first that M is irreducible and $\mathfrak{p}=\mathfrak{p}_0$ is the zero ideal in P(M). Let $a\in M$ be a regular point of dimension $d=\dim M$ of M, and let U be an open neighborhood of a in R^n such that there exists a semialgebraic homeomorphism $F: \Delta_d = [-1, 1]^d \to M \cap U$ with F(0) = a. For every $\varepsilon \in R^+$ let us denote $A_\varepsilon = \{x \in \Delta_{d-1} : 0 < x_i < \varepsilon, i = 1, \ldots, d-1\}$. For every semialgebraic function $\mathscr{S}: \overline{\Delta}_\varepsilon \to R^+ \cup \{0\}$, define

$$A_{\varepsilon}(\mathcal{S}) = \{(x', x_d) \in \mathbb{R}^d : x' \in \Delta_{\varepsilon} \text{ and } 0 < x_d < \mathcal{S}(x')\}.$$

Then we construct a prime ideal in S(M) as follows: $\mathfrak{q}=\{h\in S(M): \text{ there exists } \epsilon\in R^+ \text{ and a semialgebraic function } \mathcal{S}\colon \overline{\Delta}_\epsilon \to R^+ \cup \{0\} \text{ with } Z(\mathcal{S})=\{a\} \text{ such that } (f|M\cap U)\circ F \text{ vanishes on } A_\epsilon\}$. Moreover, $\mathfrak{q}\cap P(M)=\mathfrak{p}_0$ since every $f\in \mathfrak{q}\cap P(M)$ vanishes on $M\cap U$ and so over $\overline{M\cap U}^z=M$.

If M is irreducible and $\mathfrak p$ is an arbitrary prime ideal in P(M), the zero set $N=Z(\mathfrak p)\subset M$ is an irreducible algebraic set and so there exists a prime ideal $\mathfrak q_N$ of S(N) lying over the zero ideal of P(N). Let $r^*\colon \operatorname{Spec} S(N)\to \operatorname{Spec} S(M)$ be the map induced by the restriction homomorphism $r\colon S(M)\to S(N)$. Then $\mathfrak q=r^*(\mathfrak q_N)$ verifies $\mathfrak q\cap P(M)=\mathfrak p$, by the real Nullstellensatz [1, 4.4.3].

Finally let M be arbitrary with irreducible components M_1, \ldots, M_k and let $\mathfrak p$ be a real prime ideal in P(M). Write $A = R[x_1, \ldots, x_n]$ and I (resp. I_i) the ideal of polynomials in A vanishing on M (resp. M_i). There exists a prime ideal $\mathfrak p^*$ in A containing $I = I_1 \cap \cdots \cap I_k$ such that $\mathfrak p = \mathfrak p^*/I$. We can suppose that $\mathfrak p^*$ contains I_1 and so $\mathfrak p_1 = \mathfrak p^*/I_1$ is a real prime ideal in $P(M_1)$. Hence there exists a prime ideal $\mathfrak q_1$ in $S(M_1)$ such that $\mathfrak q_1 \cap P(M_1) = \mathfrak p_1$ and so, if $r_1 \colon S(M) \to S(M_1)$ is the restriction homomorphism, we get $\mathfrak q = r_1^*(\mathfrak q_1) \in \operatorname{Spec} S(M)$ such that $\mathfrak q \cap P(M) = \mathfrak p$.

Remark. Part (3) of Theorem 2 is no longer true for more general semialgebraic subsets $M \subset \mathbb{R}^n$. Consider for example a nonfinite semialgebraic subset M of R, $M \neq R$, a point $a \in R \setminus M$, and the function $f: M \to R$ defined by f(x) = x - a. Then $a = f \cdot P(M)$ is a real ideal but since Z(f) is empty there is no prime ideal in S(M) lying over \mathfrak{p} .

ACKNOWLEDGMENT

I thank Professor Delzell who pointed out a mistake in the original proof of Part (3) of Theorem 2.

REFERENCES

- 1. J. Bochnak, M. Coste, and M. F. Roy, *Géométrie algébrique réelle*, Ergeb. Math. Grenzgeb. (3), vol. 12, Springer-Verlag, Berlin and New York, 1987.
- M. Carral and M. Coste, Normal spectral spaces and their dimensions, J. Pure Appl. Algebra 301 (1983), 227-235.
- 3. J. M. Gamboa and J. M. Ruiz, On rings of semialgebraic functions, Math. Z. 206 (1991), 527-532.
- 4. M. Henriksen and J. R. Isbell, On the continuity of the real roots of an algebraic equation, Proc. Amer. Math. Soc. 4 (1953), 431-434.
- 5. J. R. Isbell, More on the continuity of the real roots of an algebraic equation, Proc. Amer. Math. Soc. 5 (1954), 439.

- 6. T. Recio, Una descomposición de un conjunto semialgebraico, Proc. A.M.E.L. Mallorca, 1977.
- 7. J. J. Risler, Le théoreme des zéros en géométries algébrique et analytique rélles, Bull. Soc. Math. France 104 (1976), 113-127.
- 8. J. M. Ruiz, Cônes locaux et complétions, C.R. Acad. Sci. Paris Sér. I Math. 302 (1986), 67-69.
- 9. N. Schwartz, *The basic theory of real closed spaces*, Mem. Amer. Math. Soc., no. 397, Amer. Math. Soc., Providence, RI, 1989.

FACULTAD DE MATEMÁTICAS, UNIVERSIDAD DE COMPLUTENSE, 28040 MADRID, SPAIN