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ON PRIME IDEALS IN RINGS OF SEMIALGEBRAIC FUNCTIONS

J. M. GAMBOA

(Communicated by Louis J. Ratliff, Jr.)

Abstract. It is proved that if p is a prime ideal in the ring S{M) of semi-

algebraic functions on a semialgebraic set M, the quotient field of S(M)/p

is real closed. We also prove that in the case where M is locally closed, the

rings S(M) and P(M)—polynomial functions on M—have the same Krull

dimension. The proofs do not use the theory of real spectra.

Let 7? be a real closed field. The only topology we consider in 7?" is

the euclidean topology. For every semialgebraic subset M c R" we denote

by S(M) the ring of semialgebraic functions on M, i.e., continuous maps

f: M —» 7? whose graph is a semialgebraic subset of 7?"+1 , and P(M) stands

for the ring of polynomial functions on M, i.e., restrictions to M of polyno-

mials in R[xx, ... , x„]. In this note we give elementary proofs of the following

results.

Theorem 1. For every prime ideal p of S(M), the quotient field of S(M)/p is

real closed.

Theorem 2. Let n: SoecS(M) —* SoecP(M) be the map induced by the inclu-
sion P(M) <-* S(M), and assume that M is locally closed. Then:

(1) The fibers of n are Tx-spaces.

(2) The Krull dimensions of P(M) and S(M) are equal.
(3) If M c R" is algebraic, the image of n is the set Specr(M) of real

prime ideals of P(M).

For every ring A , Spec A denotes the prime spectrum of A endowed with

its Zariski topology. The ideal a in A is real if whenever f , ... , fk £ A and

f\ + --- + f\ £ a, then fx, ... , fk e a. Theorem 1 can be deduced from
[9, Corollary 3.26, §1, and Theorem 1.1]. Schwartz's proof involves his theory

of real closed spaces. This can be viewed as the semialgebraic counterpart of

results by Henriksen and Isbell [4] and Isbell [5]. In fact, if m is a maximal

ideal in the ring of real-valued continuous functions on a normal topological

space X , it is proved in [4] that the quotient C(X)/m is a real closed field. In

[5], the normality condition on X is dropped. The second part of Theorem 2
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was proved, using the theory of real spectra by Carral and Coste [2] for locally

closed semialgebraic sets M, and by Gamboa and Ruiz [3, Proposition 1.4] for

arbitrary semialgebraic M.

Let us fix some notation. For each ideal a in S(M), the set of common

zeros in M of functions in o is denoted by Z(a). If a — f • S(M) for some

/ 6 S(M) we abbreviate Z(f) = Z(f - S(M)). Given a subset X c M, the
ideal of all functions / £ S(M) such that X c Z(f) is denoted by J"(X),

while Xz is the smallest algebraic subset of R" containing X. Finally, for

each / e S(M) we denote by \f\ £ S(M) the "absolute value of /".

Proof of Theorem 1. Let A = S(M)/p and let E = q-f(A) be its quotient field.
First we must prove that either x or -x is a square in E for every x £ E.

Write x = (/ + p)(g + p)~x , f,g £ S(M) and g <£ p. If h = fg we get
(\h\ - h)(\h\ + h) = 0 £ p, and so either \h\ - h £ p or \h\ + h £ p. In the
first case, x = (h + p)(g + p)~2 = (\h\ + p)(g + p)~2 is a square in E, since \h\

is a square in S(M). Analogously, -x is a square in E in the second case.

Hence, we must only show that each odd degree polynomial P £ E[T] has at

least one root in E . We may suppose that P £ A[T] is monic. In fact, if we

write P(T) = (a0Tm + axTm + ■■■ + am) • b~x, ax e A , a0,b £ A\{0}, then

we construct the monic polynomial Q(T) = Tm + Y%x aj - aJ0~lTm-j £ A[T],

and if a £ E is a root of Q, then a • a^' £ E is a root of P. Thus, from now

on we put P(T) = Tm + Yf=\{fj+p)Tm~J, f £ S(M), and m is odd. Let us

consider the polynomial F0 = Tm+Y%x XjTm-J e R[xx, ... ,xm,T]. Clearly,

Tyj and its derivatives Fj = dFo/dT', 1 < j < m , are monic (modulo factors

in N) with respect to T, and the family f? = {F0, Fx, ... , Fm} is stable under

derivation (with respect to T). Therefore, if (Aj; C, : 1 < / < A:, 1 < j < k(i))

is a "saucissonage" of fF (see [1, 2.3.4], then functions Cij G S(AX) can be

extended to the closure At by [1, 2.5.6] and so, using the semialgebraic Tietze's

extension theorem [1, 2.6.10], there exist semialgebraic functions rjij £ S(Rm)

such that r\ij restricted to Ai coincides with Jy . By the very definition of

"saucissonage", and since m is odd, there exists for every 1 < i < k an index

/(/) £ {1, ... , k(i)} such that F0(x, »/,■,/(,•)(x)) = 0 for each point x £ A,.
On the other hand, if tp = (f , ... , fm) : M —> Rm, the compositum gi =

ni,i{i) ° 9 belong to S(M), and all reduce to proving that g, + p is a root of P

for some i. For every point y £ M, x = tp(y) £ Rm — Ax U • • • U Ak and so

k k

IIFo(<p(y), gj(y)) = IIF«(*»r,ijU)(x)) = o.
7=1 (=1

Consequently, the polynomial H(T) = Tm + Y^i f, • Tm~x verifies that the

product 77(gi) • • • H(gk) ='0, since for each y £ M,

m

E0(<p(y), gi(y)) = gi(y)m + £ f(y)g?-J(y).

;=i

Finally, since p is prime, 77(g,) e p for some 1 < i < k, i.e., P(gi + p) = 0.

Proof of Theorem 2. (1) We must prove that a n P(M) ^ bn P(M) for given

prime ideals a £ b in S(M).  Let us take / £ b\a.  Its zero-set Z(f) is a
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closed semialgebraic subset of M and so, by the finiteness theorem (see [6]

or [1, 2.7.1]), there exist polynomial functions fij £ P(M) such that Z(f) =

lXi{* £M:fiX(x)>0,..., fk(x) > 0}. Define ht = Y)=x(fj ~ \fij\)2 >
i = 1, ... , m . Then Z(f) = Z(h) for h = hx ■ ■ ■ hm , and so J-(Z(f)) =
S(Z(h)). Hence, by the semialgebraic Nullstellensatz [1, 2.6.7], jf - S(M) =

y/h • S(M). In particular, since f $ a, we conclude that every /z, ^ a and,

from f £ b, also h £ b and so hi £ b for some 1 < i < m. From Theorem

1, the quotient field of S(M)/b is formally real, i.e., b is a real ideal, and

hj £ b for some 1 < i < m. Thus, fij - \fj\ £ b for all 1 < j < k, and since
hi $. a, there exists j with fj - \fj\ £ b\o. To finish we shall check that

g = fj £ [b n P(M)]\[a n P(M)]. In fact, 0 = (g - \g\) • (g + \g\) and since o

is prime, g + \g\ £ a c b . Thus, g = [(g- \g\) + (g + \g\)] •2"1 e b.
On the other hand, if g £ a, then \g\2 = g2 £ a also, i.e., \g\ £ a, which

implies g - \g\ £ a, absurd.
(2) The inequality dim S(M) < dim P(M) is a consequence of part (1). Let

d = dim P(M) = dimAf = dimAf. Then M contains a closed semialgebraic

subset K semialgebraically homeomorphic to the cube I = [-1, l]d c Rd .

From Tietze's theorem [1, 2.6.10], dim S(M) > dim S(K) = dim5(7) and so
it suffices to see that d < dim5(7). In the polynomial ring A = R[xx, ... , xd]

we consider the chain of prime ideals

(0) = po £ px £ • • • g pd;        pk = (xx,... ,xk)-A.

The quotient fields Ek = q • f(A/pk) w R(xk+X, ... , xf) are formally real, and
each ordering in Ek can be extended to Ek_x . So we can choose cones ak

of nonnegative elements in Ek such that (Ek, ak) is an ordered extension of

(Ek+X, ak+x). Now define the ideals

c\k = {f £ S(I): there exists gx, ... , gi £ A such that gi + p^ e afc and

P(gi ,...,g,) = {x£l:gx(x)>0,..., g,(x) > 0} c Z(f)}.

Obviously qo C qi C ••• C t\d and so it is enough to check that q^ is

prime and qk n A = p^ . In what follows ~g denotes the class mod p^ of

g £ A. Let /, g £ S(I) such that fh £ qk . Then Z(f) u Z(h) con-
tains the set P(gx, ... , gr) for some gx, ... , gr £ A with g, £ ak . From

the finiteness theorem [6] we can write Z(f) = \J^LX P(fx, ... , fn), Z(h) =

[JT=\ P{hn, ... , hn) for certain fj, hjj £ A and in case neither / nor h

belong to qk, there exists a family {./},_/(/), ̂,,/(,) : 1 < i < m} such that

fj(i) € ak, hij(i) £ ak. From Artin-Lang theorem [1, 4.1.2] there exists a

homomorphism <9*: A/pk —► 7? such that:

(i)S*(gs)>0; (ii)^(^)<0;
(iii) S*{hm) < 0; (iv) p = (S?(xx), ..., &(xd)) £ I.

Then, each gs(p) = S?(gs) > 0 and so p £ Z(f) U Z(h) which is false since

fj(i)(p) = ^(fj(i)) < 0 and hn(i)(p) < 0 for all i. Hence qk is prime. Also,

for / £ pk we have Z(f) = P(f, -f) and J, -f £ ak , and so pk c qk n A .
Finally, if some / € q^ n A exists, but / £ pk , then Z(f) d P(gx, ... , gr)
for some gt £ A with g, £ ak . Again from the Artin-Lang theorem we get

a homomorphism y/: A/pk —> 7? such that y/(f) ^ 0, y/(gs) > 0, and q =
(<p(xx), ... , y/(xd)) £ I, i.e., q £ P(gx, ... , gr)\ Z(f), which is absurd.
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(3) Each prime ideal in S(M) is real. Hence Specr P(M) contains the image

of n. For the converse, assume first that M is irreducible and p = p0 is the

zero ideal in P(M). Let a £ M be a regular point of dimension d = dim M

of M, and let U be an open neighborhood of a in 7?" such that there exists
a semialgebraic homeomorphism F: Ad = [-1, \]d —> M n U with F(0) - a .

For every e £ R+ let us denote AE = {x £ Ad_x : 0 < x, < e, /' = 1, ... , d-1}.

For every semialgebraic function 5?: A£ —* R+ u {0}, define

Ae{f) = {(x', xd) £ Rd : x' £ A£ and 0 < xd < f(x')} .

Then we construct a prime ideal in S(M) as follows: q = {h £ S(M): there

exists e £ R+ and a semialgebraic function S": Ae -» R+ u {0} with Z(S") =

{a} such that (f\MnU)oF vanishes on AE}. Moreover, qf)P(M) = p0 since

every / e q n P(M) vanishes on Af n 77 and so over M n Uz = M.

If M is irreducible and p is an arbitrary prime ideal in P(M), the zero

set TV = Z(p) c M is an irreducible algebraic set and so there exists a prime

ideal q^ of S(N) lying over the zero ideal of P(N). Let r*: SpecS(N) -+
SpecS(A7) be the map induced by the restriction homomorphism r: S(M) -*

S(N). Then q = r*(qN) verifies q n P(M) = p, by the real Nullstellensatz [1,
4.4.3].

Finally let M be arbitrary with irreducible components Mx, ... , Mk and

let p be a real prime ideal in P(M). Write A — R[xi, ... , xn] and 7 (resp.

/,) the ideal of polynomials in A vanishing on M (resp. Mt). There exists a

prime ideal p* in A containing 7 = Ix n ■ • ■ n Ik such that p = p*/7. We can
suppose that p* contains 7i and so p] = p*/7i is a real prime ideal in P(MX).

Hence there exists a prime ideal qi in S(M\) such that qi n P(M{) — px and

so, if n : S(M) —» S(MX) is the restriction homomorphism, we get q = r*(qx) £

Spec S(M) such that q n P(M) = p .

Remark. Part (3) of Theorem 2 is no longer true for more general semialgebraic

subsets M c R" . Consider for example a nonfinite semialgebraic subset M of

R, M ■£ R, a point a £ R\M, and the function / : M —> 7? defined by
f(x) = x - a . Then a = f-P(M) is a real ideal but since Z(f) is empty there

is no prime ideal in S(M) lying over p .
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