ON PRIME IDEALS IN RINGS OF SEMIALGEBRAIC FUNCTIONS

J. M. GAMBOA
(Communicated by Louis J. Ratliff, Jr.)

Abstract

It is proved that if \mathfrak{p} is a prime ideal in the ring $S(M)$ of semialgebraic functions on a semialgebraic set M, the quotient field of $S(M) / \mathfrak{p}$ is real closed. We also prove that in the case where M is locally closed, the rings $S(M)$ and $P(M)$-polynomial functions on M-have the same Krull dimension. The proofs do not use the theory of real spectra.

Let R be a real closed field. The only topology we consider in R^{n} is the euclidean topology. For every semialgebraic subset $M \subset R^{n}$ we denote by $S(M)$ the ring of semialgebraic functions on M, i.e., continuous maps $f: M \rightarrow R$ whose graph is a semialgebraic subset of R^{n+1}, and $P(M)$ stands for the ring of polynomial functions on M, i.e., restrictions to M of polynomials in $R\left[x_{1}, \ldots, x_{n}\right]$. In this note we give elementary proofs of the following results.

Theorem 1. For every prime ideal \mathfrak{p} of $S(M)$, the quotient field of $S(M) / \mathfrak{p}$ is real closed.

Theorem 2. Let $\pi: \operatorname{Spec} S(M) \rightarrow \operatorname{Spec} P(M)$ be the map induced by the inclusion $P(M) \hookrightarrow S(M)$, and assume that M is locally closed. Then:
(1) The fibers of π are T_{1}-spaces.
(2) The Krull dimensions of $P(M)$ and $S(M)$ are equal.
(3) If $M \subset R^{n}$ is algebraic, the image of π is the set $\operatorname{Spec}^{r}(M)$ of real prime ideals of $P(M)$.

For every ring $A, \operatorname{Spec} A$ denotes the prime spectrum of A endowed with its Zariski topology. The ideal \mathfrak{a} in A is real if whenever $f_{1}, \ldots, f_{k} \in A$ and $f_{1}^{2}+\cdots+f_{k}^{2} \in \mathfrak{a}$, then $f_{1}, \ldots, f_{k} \in \mathfrak{a}$. Theorem 1 can be deduced from [9 , Corollary $3.26, \S 1$, and Theorem 1.1]. Schwartz's proof involves his theory of real closed spaces. This can be viewed as the semialgebraic counterpart of results by Henriksen and Isbell [4] and Isbell [5]. In fact, if \mathfrak{m} is a maximal ideal in the ring of real-valued continuous functions on a normal topological space X, it is proved in [4] that the quotient $C(X) / \mathfrak{m}$ is a real closed field. In [5], the normality condition on X is dropped. The second part of Theorem 2

[^0]was proved, using the theory of real spectra by Carral and Coste [2] for locally closed semialgebraic sets M, and by Gamboa and Ruiz [3, Proposition 1.4] for arbitrary semialgebraic M.

Let us fix some notation. For each ideal \mathfrak{a} in $S(M)$, the set of common zeros in M of functions in \mathfrak{a} is denoted by $Z(\mathfrak{a})$. If $\mathfrak{a}=f \cdot S(M)$ for some $f \in S(M)$ we abbreviate $Z(f)=Z(f \cdot S(M))$. Given a subset $X \subset M$, the ideal of all functions $f \in S(M)$ such that $X \subset Z(f)$ is denoted by $\mathscr{J}(X)$, while \bar{X}^{2} is the smallest algebraic subset of R^{n} containing X. Finally, for each $f \in S(M)$ we denote by $|f| \in S(M)$ the "absolute value of f ".

Proof of Theorem 1. Let $A=S(M) / \mathfrak{p}$ and let $E=q \cdot f(A)$ be its quotient field. First we must prove that either x or $-x$ is a square in E for every $x \in E$. Write $x=(f+\mathfrak{p})(g+\mathfrak{p})^{-1}, f, g \in S(M)$ and $g \notin \mathfrak{p}$. If $h=f g$ we get $(|h|-h)(|h|+h)=0 \in \mathfrak{p}$, and so either $|h|-h \in \mathfrak{p}$ or $|h|+h \in \mathfrak{p}$. In the first case, $x=(h+\mathfrak{p})(g+\mathfrak{p})^{-2}=(|h|+\mathfrak{p})(g+\mathfrak{p})^{-2}$ is a square in E, since $|h|$ is a square in $S(M)$. Analogously, $-x$ is a square in E in the second case. Hence, we must only show that each odd degree polynomial $P \in E[T]$ has at least one root in E. We may suppose that $P \in A[T]$ is monic. In fact, if we write $P(T)=\left(a_{0} T^{m}+a_{1} T^{m}+\cdots+a_{m}\right) \cdot b^{-1}, a_{1} \in A, a_{0}, b \in A \backslash\{0\}$, then we construct the monic polynomial $Q(T)=T^{m}+\sum_{j=1}^{m} a_{j} \cdot a_{0}^{j-1} T^{m-j} \in A[T]$, and if $\alpha \in E$ is a root of Q, then $\alpha \cdot a_{0}^{-1} \in E$ is a root of P. Thus, from now on we put $P(T)=T^{m}+\sum_{j=1}^{m}\left(f_{j}+\mathfrak{p}\right) T^{m-j}, f_{j} \in S(M)$, and m is odd. Let us consider the polynomial $F_{0}=T^{m}+\sum_{j=1}^{m} x_{j} T^{m-j} \in R\left[x_{1}, \ldots, x_{m}, T\right]$. Clearly, F_{0} and its derivatives $F_{j}=\partial F_{0} / \partial T^{j}, 1 \leq j \leq m$, are monic (modulo factors in \mathbb{N}) with respect to T, and the family $\mathscr{F}=\left\{F_{0}, F_{1}, \ldots, F_{m}\right\}$ is stable under derivation (with respect to T). Therefore, if ($A_{i} ; \zeta_{i j}: 1 \leq i \leq k, 1 \leq j \leq k(i)$) is a "saucissonage" of \mathscr{F} (see [1, 2.3.4], then functions $\zeta_{i j} \in S\left(A_{1}\right)$ can be extended to the closure \bar{A}_{i} by [1, 2.5.6] and so, using the semialgebraic Tietze's extension theorem [1, 2.6.10], there exist semialgebraic functions $\eta_{i j} \in S\left(R^{m}\right)$ such that $\eta_{i j}$ restricted to A_{i} coincides with $\zeta_{i j}$. By the very definition of "saucissonage", and since m is odd, there exists for every $1 \leq i \leq k$ an index $l(i) \in\{1, \ldots, k(i)\}$ such that $F_{0}\left(x, \eta_{i, l(i)}(x)\right)=0$ for each point $x \in A_{i}$.

On the other hand, if $\varphi=\left(f_{1}, \ldots, f_{m}\right): M \rightarrow R^{m}$, the compositum $g_{i}=$ $\eta_{i, l(i)} \circ \varphi$ belong to $S(M)$, and all reduce to proving that $g_{i}+\mathfrak{p}$ is a root of P for some i. For every point $y \in M, x=\varphi(y) \in R^{m}=A_{1} \cup \cdots \cup A_{k}$ and so

$$
\prod_{j=1}^{k} F_{0}\left(\varphi(y), g_{j}(y)\right)=\prod_{i=1}^{k} F_{0}\left(x, \eta_{i, l(i)}(x)\right)=0 .
$$

Consequently, the polynomial $H(T)=T^{m}+\sum_{j=1}^{m} f_{j} \cdot T^{m-1}$ verifies that the product $H\left(g_{1}\right) \cdots H\left(g_{k}\right)=0$, since for each $y \in M$,

$$
F_{0}\left(\varphi(y), g_{i}(y)\right)=g_{i}(y)^{m}+\sum_{j=1}^{m} f_{j}(y) g_{i}^{m-j}(y)
$$

Finally, since \mathfrak{p} is prime, $H\left(g_{i}\right) \in \mathfrak{p}$ for some $1 \leq i \leq k$, i.e., $P\left(g_{i}+\mathfrak{p}\right)=0$.
Proof of Theorem 2. (1) We must prove that $\mathfrak{a} \cap P(M) \varsubsetneqq \mathfrak{b} \cap P(M)$ for given prime ideals $\mathfrak{a} \nsubseteq \mathfrak{b}$ in $S(M)$. Let us take $f \in \mathfrak{b} \backslash \mathfrak{a}$. Its zero-set $Z(f)$ is a
closed semialgebraic subset of M and so, by the finiteness theorem (see [6] or [1, 2.7.1]), there exist polynomial functions $f_{i j} \in P(M)$ such that $Z(f)=$ $\bigcup_{i=1}^{m}\left\{x \in M: f_{i 1}(x) \geq 0, \ldots, f_{i k}(x) \geq 0\right\}$. Define $h_{i}=\sum_{j=1}^{k}\left(f_{i j}-\left|f_{i j}\right|\right)^{2}$, $i=1, \ldots, m$. Then $Z(f)=Z(h)$ for $h=h_{1} \cdots h_{m}$, and so $\mathscr{J}(Z(f))=$ $\mathscr{I}(Z(h))$. Hence, by the semialgebraic Nullstellensatz [1, 2.6.7], $\sqrt{f \cdot S(M)}=$ $\sqrt{h \cdot S(M)}$. In particular, since $f \notin \mathfrak{a}$, we conclude that every $h_{i} \notin \mathfrak{a}$ and, from $f \in \mathfrak{b}$, also $h \in \mathfrak{b}$ and so $h_{i} \in \mathfrak{b}$ for some $1 \leq i \leq m$. From Theorem 1 , the quotient field of $S(M) / \mathfrak{b}$ is formally real, i.e., \mathfrak{b} is a real ideal, and $h_{i} \in \mathfrak{b}$ for some $1 \leq i \leq m$. Thus, $f_{i j}-\left|f_{i j}\right| \in \mathfrak{b}$ for all $1 \leq j \leq k$, and since $h_{i} \notin \mathfrak{a}$, there exists j with $f_{i j}-\left|f_{i j}\right| \in \mathfrak{b} \backslash \mathfrak{a}$. To finish we shall check that $g=f_{i j} \in[\mathfrak{b} \cap P(M)] \backslash[\mathfrak{a} \cap P(M)]$. In fact, $0=(g-|g|) \cdot(g+|g|)$ and since \mathfrak{a} is prime, $g+|g| \in \mathfrak{a} \subset \mathfrak{b}$. Thus, $g=[(g-|g|)+(g+|g|)] \cdot 2^{-1} \in \mathfrak{b}$.

On the other hand, if $g \in \mathfrak{a}$, then $|g|^{2}=g^{2} \in \mathfrak{a}$ also, i.e., $|g| \in \mathfrak{a}$, which implies $g-|g| \in \mathfrak{a}$, absurd.
(2) The inequality $\operatorname{dim} S(M) \leq \operatorname{dim} P(M)$ is a consequence of part (1). Let $d=\operatorname{dim} P(M)=\operatorname{dim} \bar{M}^{z}=\operatorname{dim} M$. Then M contains a closed semialgebraic subset K semialgebraically homeomorphic to the cube $I=[-1,1]^{d} \subset R^{d}$. From Tietze's theorem [1, 2.6.10], $\operatorname{dim} S(M) \geq \operatorname{dim} S(K)=\operatorname{dim} S(I)$ and so it suffices to see that $d \leq \operatorname{dim} S(I)$. In the polynomial ring $A=R\left[x_{1}, \ldots, x_{d}\right]$ we consider the chain of prime ideals

$$
(0)=\mathfrak{p}_{0} \varsubsetneqq \mathfrak{p}_{1} \varsubsetneqq \cdots \varsubsetneqq \mathfrak{p}_{d} ; \quad \mathfrak{p}_{k}=\left(x_{1}, \ldots, x_{k}\right) \cdot A
$$

The quotient fields $E_{k}=q \cdot f\left(A / \mathfrak{p}_{k}\right) \approx R\left(x_{k+1}, \ldots, x_{d}\right)$ are formally real, and each ordering in E_{k} can be extended to E_{k-1}. So we can choose cones α_{k} of nonnegative elements in E_{k} such that $\left(E_{k}, \alpha_{k}\right)$ is an ordered extension of $\left(E_{k+1}, \alpha_{k+1}\right)$. Now define the ideals
$\mathfrak{q}_{k}=\left\{f \in S(I)\right.$: there exists $g_{1}, \ldots, g_{l} \in A$ such that $g_{i}+\mathfrak{p}_{k} \in \alpha_{k}$ and

$$
\left.P\left(g_{1}, \ldots, g_{l}\right)=\left\{x \in I: g_{1}(x) \geq 0, \ldots, g_{l}(x) \geq 0\right\} \subset Z(f)\right\}
$$

Obviously $\mathfrak{q}_{0} \subset \mathfrak{q}_{1} \subset \cdots \subset \mathfrak{q}_{d}$ and so it is enough to check that \mathfrak{q}_{k} is prime and $\mathfrak{q}_{k} \cap A=\mathfrak{p}_{k}$. In what follows \bar{g} denotes the class $\bmod \mathfrak{p}_{k}$ of $g \in A$. Let $f, g \in S(I)$ such that $f h \in \mathfrak{q}_{k}$. Then $Z(f) \cup Z(h)$ contains the set $P\left(g_{1}, \ldots, g_{r}\right)$ for some $g_{1}, \ldots, g_{r} \in A$ with $\bar{g}_{i} \in \alpha_{k}$. From the finiteness theorem [6] we can write $Z(f)=\bigcup_{i=1}^{m} P\left(f_{i 1}, \ldots, f_{i l}\right), Z(h)=$ $\bigcup_{i=1}^{m} P\left(h_{i 1}, \ldots, h_{i l}\right)$ for certain $f_{i j}, h_{i j} \in A$ and in case neither f nor h belong to q_{k}, there exists a family $\left\{f_{i, j(i)}, h_{i, l(i)}: 1 \leq i \leq m\right\}$ such that $\overline{f_{i j(i)}} \in \alpha_{k}, \overline{h_{i j(i)}} \notin \alpha_{k}$. From Artin-Lang theorem [1, 4.1.2] there exists a homomorphism $\mathscr{S}: A / \mathfrak{p}_{k} \rightarrow R$ such that:
(i) $\mathscr{S}\left(\bar{g}_{s}\right) \geq 0$;
(ii) $\mathscr{S}\left(\overline{f_{i j(i)}}\right)<0$;
(iii) $\mathscr{S}\left(\overline{h_{i j(i)}}\right)<0$;
(iv) $p=\left(\mathscr{S}\left(\bar{x}_{1}\right), \ldots, \mathscr{S}\left(\bar{x}_{d}\right)\right) \in I$.

Then, each $g_{s}(p)=\mathscr{S}\left(\bar{g}_{s}\right) \geq 0$ and so $p \in Z(f) \cup Z(h)$ which is false since $f_{i j(i)}(p)=\mathscr{S}\left(\overline{f_{i j(i)}}\right)<0$ and $h_{i l(i)}(p)<0$ for all i. Hence \mathfrak{q}_{k} is prime. Also, for $f \in \mathfrak{p}_{k}$ we have $Z(f)=P(f,-f)$ and $\bar{f},-\bar{f} \in \alpha_{k}$, and so $\mathfrak{p}_{k} \subset \mathfrak{q}_{k} \cap A$. Finally, if some $f \in \mathfrak{q}_{k} \cap A$ exists, but $f \notin \mathfrak{p}_{k}$, then $Z(f) \supset P\left(g_{1}, \ldots, g_{r}\right)$ for some $g_{i} \in A$ with $\bar{g}_{i} \in \alpha_{k}$. Again from the Artin-Lang theorem we get a homomorphism $\psi: A / \mathfrak{p}_{k} \rightarrow R$ such that $\psi(\bar{f}) \neq 0, \psi\left(\bar{g}_{s}\right) \geq 0$, and $q=$ $\left(\psi\left(\bar{x}_{1}\right), \ldots, \psi\left(\bar{x}_{d}\right)\right) \in I$, i.e., $q \in P\left(g_{1}, \ldots, g_{r}\right) \backslash Z(f)$, which is absurd.
(3) Each prime ideal in $S(M)$ is real. Hence $\operatorname{Spec}^{r} P(M)$ contains the image of π. For the converse, assume first that M is irreducible and $\mathfrak{p}=\mathfrak{p}_{0}$ is the zero ideal in $P(M)$. Let $a \in M$ be a regular point of dimension $d=\operatorname{dim} M$ of M, and let U be an open neighborhood of a in R^{n} such that there exists a semialgebraic homeomorphism $F: \Delta_{d}=[-1,1]^{d} \rightarrow M \cap U$ with $F(0)=a$. For every $\varepsilon \in R^{+}$let us denote $A_{\varepsilon}=\left\{x \in \Delta_{d-1}: 0<x_{i}<\varepsilon, i=1, \ldots, d-1\right\}$. For every semialgebraic function $\mathscr{S}: \bar{\Delta}_{\varepsilon} \rightarrow R^{+} \cup\{0\}$, define

$$
A_{\varepsilon}(\mathscr{S})=\left\{\left(x^{\prime}, x_{d}\right) \in R^{d}: x^{\prime} \in \Delta_{\varepsilon} \text { and } 0<x_{d}<\mathscr{S}\left(x^{\prime}\right)\right\}
$$

Then we construct a prime ideal in $S(M)$ as follows: $\mathfrak{q}=\{h \in S(M)$: there exists $\varepsilon \in R^{+}$and a semialgebraic function $\mathscr{S}: \bar{\Delta}_{\varepsilon} \rightarrow R^{+} \cup\{0\}$ with $Z(\mathscr{S})=$ $\{a\}$ such that $(f \mid M \cap U) \circ F$ vanishes on $\left.A_{\varepsilon}\right\}$. Moreover, $\mathfrak{q} \cap P(M)=p_{0}$ since every $f \in \mathfrak{q} \cap P(M)$ vanishes on $M \cap U$ and so over $\overline{M \cap U}^{2}=M$.

If M is irreducible and \mathfrak{p} is an arbitrary prime ideal in $P(M)$, the zero set $N=Z(\mathfrak{p}) \subset M$ is an irreducible algebraic set and so there exists a prime ideal \mathfrak{q}_{N} of $S(N)$ lying over the zero ideal of $P(N)$. Let $r^{*}: \operatorname{Spec} S(N) \rightarrow$ $\operatorname{Spec} S(M)$ be the map induced by the restriction homomorphism $r: S(M) \rightarrow$ $S(N)$. Then $\mathfrak{q}=r^{*}\left(\mathfrak{q}_{N}\right)$ verifies $\mathfrak{q} \cap P(M)=\mathfrak{p}$, by the real Nullstellensatz [1, 4.4.3].

Finally let M be arbitrary with irreducible components M_{1}, \ldots, M_{k} and let \mathfrak{p} be a real prime ideal in $P(M)$. Write $A=R\left[x_{1}, \ldots, x_{n}\right]$ and I (resp. I_{i}) the ideal of polynomials in A vanishing on M (resp. M_{i}). There exists a prime ideal \mathfrak{p}^{*} in A containing $I=I_{1} \cap \cdots \cap I_{k}$ such that $\mathfrak{p}=\mathfrak{p}^{*} / I$. We can suppose that \mathfrak{p}^{*} contains I_{1} and so $\mathfrak{p}_{1}=\mathfrak{p}^{*} / I_{1}$ is a real prime ideal in $P\left(M_{1}\right)$. Hence there exists a prime ideal \mathfrak{q}_{1} in $S\left(M_{1}\right)$ such that $\mathfrak{q}_{1} \cap P\left(M_{1}\right)=\mathfrak{p}_{1}$ and so, if $r_{1}: S(M) \rightarrow S\left(M_{1}\right)$ is the restriction homomorphism, we get $\mathfrak{q}=r_{1}^{*}\left(\mathfrak{q}_{1}\right) \in$ $\operatorname{Spec} S(M)$ such that $\mathfrak{q} \cap P(M)=\mathfrak{p}$.

Remark. Part (3) of Theorem 2 is no longer true for more general semialgebraic subsets $M \subset R^{n}$. Consider for example a nonfinite semialgebraic subset M of $R, M \neq R$, a point $a \in R \backslash M$, and the function $f: M \rightarrow R$ defined by $f(x)=x-a$. Then $\mathfrak{a}=f \cdot P(M)$ is a real ideal but since $Z(f)$ is empty there is no prime ideal in $S(M)$ lying over \mathfrak{p}.

Acknowledgment

I thank Professor Delzell who pointed out a mistake in the original proof of Part (3) of Theorem 2.

References

1. J. Bochnak, M. Coste, and M. F. Roy, Géométrie algébrique réelle, Ergeb. Math. Grenzgeb. (3), vol. 12, Springer-Verlag, Berlin and New York, 1987.
2. M. Carral and M. Coste, Normal spectral spaces and their dimensions, J. Pure Appl. Algebra 301 (1983), 227-235.
3. J. M. Gamboa and J. M. Ruiz, On rings of semialgebraic functions, Math. Z. 206 (1991), 527-532.
4. M. Henriksen and J. R. Isbell, On the continuity of the real roots of an algebraic equation, Proc. Amer. Math. Soc. 4 (1953), 431-434.
5. J. R. Isbell, More on the continuity of the real roots of an algebraic equation, Proc. Amer. Math. Soc. 5 (1954), 439.
6. T. Recio, Una descomposición de un conjunto semialgebraico, Proc. A.M.E.L. Mallorca, 1977.
7. J. J. Risler, Le théoreme des zéros en géométries algébrique et analytique rélles, Bull. Soc. Math. France 104 (1976), 113-127.
8. J. M. Ruiz, Cônes locaux et complétions, C.R. Acad. Sci. Paris Sér. I Math. 302 (1986), 67-69.
9. N. Schwartz, The basic theory of real closed spaces, Mem. Amer. Math. Soc., no. 397, Amer. Math. Soc., Providence, RI, 1989.

Facultad de Matemáticas, Universidad de Complutense, 28040 Madrid, Spain

[^0]: Received by the editors October 31, 1991 and, in revised form, December 23, 1991.
 1991 Mathematics Subject Classification. Primary 13B20; Secondary 13B30.
 Partially supported by CICYT PB 89/0379/C02/01 and Science Plan ERB 4002 PL 910021(91100021).

