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PROFINITE ORTHOMODULAR LATTICES
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(Communicated by Jeffry N. Kahn)

Abstract. We prove that any compact topological orthomodular lattice L is

zero dimensional. This leads one to show that L is profinite iff it is the product

of finite orthomodular lattices with their discrete topologies. We construct a

completion L of a residually finite orthomodular lattice L having the property

that every element of L is the join of meets of elements of L . Necessary and

sufficient conditions for L that L is the MacNeille completion are obtained.

In this paper, we initiate the study of topological orthomodular lattices (ab-

breviated: TOMLs). We prove that any compact TOML is zero dimensional

and atomic; and, further, we provide a simple description of such a compact

topology in terms of the intervals generated by atoms and coatoms. This leads

to determining that the profinite OMLs are precisely the products of finite or-

thomodular lattices with their discrete topologies.

We introduce a zero-dimensional completion L of a residually finite OML

L. L is a completion of L having the property that every element of L is

the join of meets of elements of (an isomorphic copy of) L. This result is of

interest, because the MacNeille completion of an OML need not be again an

OML; thus there is an OML P such that there is no completion of P with the

property that each of its elements is the join of elements of P. Essentially the

only known example of this phenomenon is the OML of all finite or cofinite-

dimensional subspaces of an inner product space (over the reals or complexes)

which is not a Hilbert space [4]. Finally, we show that L is the MacNeille

completion of L if and only if the center of L is isomorphic to the MacNeille
completion of the center of L.

By a topological lattice, we mean a pair (L,x), where L is a lattice and t is

a Hausdorff topology on L for which the two lattice-operations are continuous.

For a lattice (L, A, V) and for a pair of subsets A and B of L, we shall use

A A B and A V B to denote the set {a A b\a £ A and b £ B} and {a V b\a e A
and b £ B}, respectively. It is known [5] that if L is a topological lattice and

if A is a compact subset of L, then A A L and AM L are both closed, and

hence a A L and aN L are both closed for each a £ L.

The following facts are well known in the theory of topological lattices:
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Fact 1 [5, 12]. Every compact lattice is a complete lattice.

Fact 2 [5]. The connected component of an element in a topological lattice is a

closed convex sublattice.

Fact 3 [1]. If U is open in a topological lattice then so are U A L and U V L.

Fact 4 [8, 12]. Every compact Boolean algebra Is complete and atomic, i.e., it is

isomorphic to a power set lattice.

A topological orthomodular lattice is defined to be an OML, which is a topo-

logical lattice for which the orthocomplementation operation is also continuous.

For the other terminologies and definitions we mainly follow those in [9] for

OMLs, and those in [5, 12] for topological lattices.

1. Topological OMLs

In this section we observe basic properties of TOMLs and prove that a com-

pact TOML must be totally disconnected (zero-dimensional) and atomic; more-

over, its topology is completely characterized by the atoms of L. For a subset

M of a TOML, M' is the set {m'\m £ M}.

Lemma 1. Let L be a TOML. If there exists an isolated point in L, then L is

a discrete TOML.

Proof. First, we prove the lemma in the case that 0 is an isolated point. Take

any element x £ L. Since x A x' = 0, there exists neighborhoods (= nbds)

Ux and U2 of x such that Ux A U{ = {0}. Setting Ux n U2 = Wx, we have
Wx a W[ = {0} . There are nbds U3 and C/4 of x such that U3 A U3 C Wx and

C4 V C4 c Wx since x A x = x and x V x = x . Setting W2 = U3C\U4, we have

W2l\W2c Wi and W2 v W2 c Wx . We claim that Wx n W2 = {x}. Indeed, if

y £ Wxr\W2 , then x\/y = (x/\y)\/[(x\/y)A(xAy)']. Since x\/y and xAy £ Wx,
we have (x V y) A (x A y)' = 0, and hence x = y . Thus L is discrete. Now if

x is any isolated point in L, then there exist nbds U and Co of x and 0,

respectively, such that U V Co = {x}. It follows that Co C x A L. On the other

hand, x A L is itself a TOML under its relative topology. Therefore, the unit

element x in xAL is an isolated point. Hence the (relative) orthocomplement

0 in x A L of x is an isolated point. Thus there exists a nbd V of 0 in L

such that V n (x A L) = {0} . Hence V n C0 = {0} . The proof is complete.

Recall that a block of an OML I is a Boolean subalgebra maximal with

respect to set theoretic inclusion. It is easy to see that the blocks of L are pre-

cisely the subsets B of L satisfying B = C(B) where C(B) is the commutator

of B.

Lemma 2. If L is a TOML, then for each a £ L, the commutator C(a) of a

is closed, and hence every block Is closed.

Proof. If {xa\a £ D} is a net in C(a), which converges to x, then the net

{(xa V a) A (xa V a')\a £ D}, which is the same as {xa}, converges to

(x V a) A (x V a'), which is x. Thus x e C(a). If B is a block of L,

then B = C(B) = f]{C(b)\b £ B} is closed.

Corollary 1. If L is a compact TOML, then

(i) the center C(L) of L is isomorphic to a power set lattice, and

(ii) every block is also Isomorphic to a power set lattice.
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Proof. This follows from Lemma 2 and Fact 4.

Corollary 2. If L is a compact TOML, then L is atomic.

Proof. It is easy to see that every atom of a block is also an atom of L. Hence

every nonzero element of L dominates an atom of L, since it is in some block.

Lemma 3. Every compact TOML is totally disconnected.

Proof. Let C be the connected component of an element x of L. By Fact

2, C is a closed convex sublattice of L. Thus C is a compact topological

lattice with its relative topology. By Fact 1, C = [z, y] (= z V (y A L) where

z <y) for some z and for y £ L. Assume that z < y . Then y A z' > 0. By

Corollary 2 there exists an atom a of L such that 0<a<j'Az'. Then a AC

is connected, since it is the image of C under a continuous map. On the other

hand, a A C = [0, a] = {0, a}, which is not connected. This is a contradiction.

Hence z = y = x and C = {x}.

Lemma 4. If L is a TOML, then for any atom a of L, a V L is open, and

hence a' A L is open.

Proof. Take a nbd U of a with 0 ^ U, and take an open nbd V of a such

that V A V c U. Then we have V c a V L because 0 <£ U. It follows that
a\l L= V' V L, which is open by Fact 3.

Theorem 1. The topology x of a compact TOML L is generated by the family

{ay L, a' AL\a is an atom of L} .

Proof. Let p be the topology on L generated by the family of the intervals

a V L and a' A L for all atoms a of L. By Lemma 4, p < x. We now show

that p is Hausdorff. For x ^ y , there exists an atom a of L such that a < x

and a ^ y . Therefore, since y' ■£ a', again we have an atom b of L such that

y < b' and a ^ V . Clearly (a V L) n (b' A L) = 0 , where a V L and V A L are
both open subsets containing x and y, respectively, by Lemma 4. Consider

the identity map i: (L, x) —> (L, p). Then i is continuous because p < x.

Furthermore, / is a closed map because x is compact and p is Hausdorff.
Recall that a closed continuous bijection is a homeomorphism. Hence we have

x = p.

2. Profinite OMLs

By a profinite OML we mean a compact TOML L, which is a projective limit

(i.e., inverse limit) of finite OMLs with their discrete topologies; an equivalent

condition [2, 8] is that the intersection of all closed and open (= clopen) con-

gruences on L is trivial. The following question has interested many authors [2,

8] and has still remained as open: what are necessary and sufficient conditions

for a zero-dimensional compact universal algebra to be profinite. Among many

different partial solutions of the question, it is proved [6] that if the universal al-

gebra is (generalized) associative and distributive, then every zero-dimensional

compact universal algebra is profinite. Typical examples of profinite algebras of

any type are all discrete finite algebras or, more generally, any product of finite

algebras with their discrete topologies. In this section, we characterize profinite

OMLs as follows: A compact OML is profinite iff it is a product of finite OMLs

with their discrete topologies. However, the above question in the case of OML
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is still open. Namely, is every compact TOML (and hence zero dimensional by

Lemma 3) a product of finite TOMLs?
Recall that any compact TOML is zero dimensional and atomic; furthermore,

the center C(L) is always closed for any TOML L. Therefore, in the compact

case, C(L) is itself a complete atomic Boolean algebra.

Lemma 5. Let L be a compact TOML. If a £ C(L) and if aAL is open in L,
then a = qx A ■ ■ ■ A qn for finitely many coatoms qk of C(L), and furthermore,

qk A L is also open for k = 1, 2, ... ,n .

Proof. Since (C(L), xc) is a compact Boolean algebra under its relative topol-

ogy xc, it is algebraically and topologically isomorphic to the power set lattice

(2^1, tp) , where A is the set of atoms of C(L) and xp is the product topol-

ogy of two point discrete spaces. Let JJ. a = (a A L) n C(7.) (= a A C(L)).

Then iya is an open subset in C(L) (or in 2^1). Since the product topology

xp has a subbasis {JJ. qa, itPs\Qa e ^ > Pp e ^} > -v- a is a union of intervals

of the form [px A ■ ■ ■ A pm , qx A ■ ■ ■ A qn] in C(L) (or in 2^1) where pj and

q'k £ A : j = 1, 2, ... , m and k = 1,2,... ,n. Hence a = qx A ■■ ■ A q„
for finite coatoms qk of C(L). Now show that qk A L is also open in L for

k = 1,2,...,«. Assume that qx A L is not open in L. Then there exists a

net {xq|q £ D} in L - (qx A L) such that it converges to x and x £ qx A L .

Clearly {xQ A q2 A ■ ■■ A qn} converges to x A q2 A ■ ■ ■ A qn. On the other hand,

x0 A q2 A ■ ■ ■ A q„ £ aAL for any a £ D , but x A q2 A ■ ■ ■ A qn £ a AL, which

is open by hypothesis. This is a contradiction. Similarly, qk A L is open for

k = 2, ... , n .

The following lemma is important in the sequel:

Lemma 6. If L is a compact TOML, then L is algebraically and topologically

isomorphic to the product Y\peA(p A L), where A is the set of atoms of C(L)

and each p AL has its relative topology.

Proof. It is well known that the map 8: L -* \~[p€A(p A L) defined by 8(x) =

(p A x)p€a is an algebraical isomorphism. Since Y\(p A L) has the product

topology, 8 is continuous if and only if qp o 8 is continuous for any p £ A ,

where qp: Y\(pAL)^pAL is the pth projection. But (qp °8)(x) = p Ax for
each x £ L, which is clearly continuous for each p £ A . Furthermore, L is

compact and Y\(p A L) is Hausdorff. It follows that 8 is a homeomorphism.

We are now in a position to prove our main theorem.

Theorem 2. Let L be a compact TOML. Then the following statements are

equivalent:

(i) L is a profinite OML.
(ii) For any x / 0, there exists a £C(L) such that aAL is open in L and

x ■£ a.

(iii) For any coatom q of C(L), q A L is open in L.
(iv) L  is algebraically and topologically isomorphic to a product of finite

OMLs with their discrete topologies.

Proof, (i) => (ii). Since the intersection f|{^/lz e 1} °f clopen congruences

on L is the trivial congruence Al , for any x / 0 there exists 0,- such that

x ^ 0/0,   (= the congruence class containing 0). Note that 0/0, is a clopen
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p-ideal of L. Thus 0/0, is a convex compact sublattice of L, and hence it is

of the form aAL for some a £ L. Therefore a £ C(L) and x ^ a , because

(a\/y')Ay is perspective to (yWa')Aa for all y £ L by the parallelogram law.

(ii) => (iii). For x ^ 0, there exists a £ C(L) such that a A L is open and

x ^ a. By Lemma 5, a = qx A ■ ■ ■ A qn for coatoms qk of C(L) and qk A L is

open fox k = 1,2, ... , n . Thus x ^ qk for some k. Hence for any x / 0,

there exists a coatom q0, say, such that x ^ qo and ?oAl is open. Now let

q be any coatom of C(L). We claim that q A L is open in L. Indeed, letting

x = q' in the above, we have a coatom qo of C(L) such that q' ^ <7o and

qo A L is open. But <fo must be q since C(L) is a Boolean algebra, proving

that q A L is open in L.

(iii) => (iv). Let {a,|/ 6 7} be the set of all atoms of L, and let A be the
set of all atoms of C(L). Now take any coatom q of C(L). By Corollary 2,

Lemma 4, and (iii), {a, VL|i £ I and a, ^ q} U {<? aL} is an open cover of L.

Therefore, there exists a finite subcover {ak V L\k = 1, 2, ... , «} u {q A L}. It

follows that (7' = s\xp{ak\k = 1,2,... ,n} and q' £ A . Thus <?' A L is a finite
OML for each coatom q of C(L). By Lemma 6, we have 7. = Y[peA(p A L),

where p AL has its discrete topology for each p £ A .

(iv) => (i). This is obvious.

Corollary 3. (i) Every irreducible profinite OML is finite.

(ii) Let L be a compact TOML. Then L is profinite iff each atom of p of

C(L) is a finite join of atoms of L.
(iii) Let L be a compact TOML with finitely many blocks. Then L is profinite

iff L is isomorphic to B x Lo, where B is a compact Boolean algebra and Lo

is a finite discrete OML.

Proof, (i) and (ii) are obvious. For (iii), by Theorem (1.2) of [3], L = B x

Lx x • • • x L„ algebraically, where B is a Boolean algebra and each L, is an

irreducible OML. Considering the corresponding relative topologies for each

of the factors B, Lx, ... , Ln , we have that the isomorphism is topological as

well because L is compact and the isomorphism is continuous. Clearly, each

Li with its relative topology is profinite because L is. By (i), L, is finite

(i = 1, 2, ... , n). Setting L0 = Lx x ■ • ■ xL„ , we have the required result. The

converse is trivial.

3. Zero-dimensional COMPLETIONS

By a residually finite OML we mean an OML that can be algebraically embed-

ded into a product of finite OMLs. The study that an OML can be embedded

into a complete OML is an important work with implications in the axiomatic

foundations of quantum mechanics (see [11]). For example, [4] studies the

problem of finding a completion of a given OML, by a purely algebraic method.

In this section, we define a special type of completion, called a zero-dimensional

completion, characterize OMLs having such a completion—they turn out to be

precisely the residually finite OMLs—and investigate conditions for an OML L

so that the zero-dimensional completion of L is isomorphic to the MacNeille

completion of L.

For an OML L, a profinite OML L is called a zero-dimensional completion

of L if there exists an (OML)-embedding j: L -> L such that j(L) is a

topologically dense subset of L (i.e., j is a dense embedding).
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Theorem 3. Let L be an_ OML. L is residually finite iff there exists a zero-

dimensional completion L of L such that p AL is a finite OML for each atom

of the center of L.

Proof. Suppose that L is residually finite, and suppose that it is embedded

into a product n^; (' e I) °f finite OMLs. Let each L, have the discrete

topology so that Y[Lj is a compact TOML. Setting L = T(j(L)), where T
is the topological closure operation and j is the embedding, we have a zero-

dimensional completion L of L because the closure of a subalgebra of FJ 7.,

is again a (compact) subalgebra. Hence L is profinite [2]. Let A be the set of

all atoms of C(L). Now show that pAL is a finite OML for each p £ A . Take

p £ A, and let q = p'. Then q A L is clopen in L by Theorem 2. Therefore,

q A L induces a clopen congruence 6a on L such that L/Qq = p A L, which

is finite. Conversely, suppose that L is a zero-dimensional completion of L

such that p AL is finite for any p £ A . By Theorem 2, L is a product of finite

OMLs p AL.
Henceforth, A is the set of all atoms of C(L) where L is a zero-dimensional

completion of L.

Lemma 1. If L is a zero-dimensional completion of a residually finite OML L

then, for each p £ A, p is a meet of elements of L (identifying L and J(L)).

Proof. Let p £ A and let q = p'. Then there exists a net {xa\a £ D} in L

(= j(L)) converging to q in L. Since qAL is open, there exists ao £ D such

that xa £ q A L for all a > ao . So we may assume that {xa\a £ D} is a net in

qAL. Now take any r £ A . Then the net {rAxa|a 6 D} converges to r Aq in

r A L, which is a finite OML. Thus there exists a x £ D such that r A xa = r A q

for all a > ax . It follows that

sup{r Axa|a > ax} = r A sup{xQ|o; >ai} = rA^    for each r £ A.

This implies that sup{xa|a > ax} = q . Hence p = inf{x^|a > ax} .

Lemma 8. Under the same hypothesis of Lemma 1, we have p A L = p A L in

L for each p £ A.

Proof. Clearly p AL c p AL for each p £ A . If p A x £ p A L (x £ L),
then xa —> x for some net {xa} in L. For any p £ A , p A xa -* p A x in

p A L. Hence, there exists an a0 such that p A x = p A xa for all a > a0 . Thus

P AX £p AL.

Theorem 4. If L is a zero-dimensional completion of residually finite OML L,

then every element of L is a join of meets of elements of L (identifying L and

J(L)).

Proof. Let 8 be the isomorphism between L and Ylp€A(p A L). By Lemma

8, Y\p€A(p A L) = Y\p€A(p A L). Let x £ L. Then for each p £ A there exists

xp £ L such that 8(x) = (p A x)peA = (p A xp)peA . By Lemma 7, we have for

each p in A, p = infyap where yQjP e L. Therefore

x = sup(p A xp) = sup[inf(ya)P) A xp].
p€A
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Remark. The above result shows that any residually finite OML L has a com-

pletion, each element of which is a join of meets of elements of L. Such a com-

pletion was first obtained (strictly by algebraic means) by Bruns and Greechie

(unpublished).

Let L be a poset. A complete lattice L in which L is embedded is called a

MacNeille completion of L if L is join dense and meet dense in L. Any two

MacNeille completions of a poset are isomorphic. A MacNeille completion of

an ortholattice L inherits, in a natural way, an orthocomplementation which

extends that of L. We thus regard a MacNeille completion of an ortholattice

as an ortholattice.

Theorem 5. Let L be a residually finite OML and L a zero-dimensional com-

pletion of L. Then the following statements are equivalent:

(i) L is isomorphic to L.

(ii) Every atom of the center of L belongs to L (identifying L with j(L)).

(iii) C(L) is isomorphic to the MacNeille completion of C(L).

Proof, (i) => (ii). Let A be the set of all atoms of C(L) again. Take p £ A .

Since L = L, p = sup{xQ} for some {xa} c L. Thus xa £ p A L for all a.

But p AL is a finite OML. Therefore, the sup must be a finite sup, and hence

p £ L.
(ii) => (i). Again let 8 be the isomorphism between L and Y[p€A(p A L).

For any x £ L, 8(x) = (p A x)peA = (p A xp)peA where p A xp £ L for each

p £ A. Since 8(p A xp) = (..., 0, ... , 0, p A xp,0, ...) £ 8(L), we have

8(x) = snppeA8(p Axp). Hence 8(L) (equivalently L) is join dense in 8(L)

(equivalently L). Dually 8(L) is also meet dense in 8(L).

(ii) => (iii). We claim that C(L) c C(L). Indeed, if c £ C(L) and zel
then xa —> z for some net {xQ} in L. Since c commutes with every xQ, c

commutes with z. Since A c C(L) and every element of C(7,) is a join of

elements of A, C(L) is join dense and hence meet dense in C(L).

(iii) => (ii). For each p £ A, p = sup{ba} for some {ba} C C(L). Since

C(L) c C(L), ba £ {0, p} for all a. Hence p = ba for some a . The proof

is complete.
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