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Abstract. We give an example of a left amenable discrete semigroup S such

that l°°(S) has weak*-closed selfadjoint left translation invariant subalgebras

that are weak*-complemented but not invariantly complemented in l°°(S).

This resolves negatively a problem raised by Lau.

Let S be a (discrete) semigroup and let l°°(S) be the Banach algebra of

bounded complex-valued functions on S with pointwise operations and supre-

mum norm. Following [2] we say that a weak*-closed left translation invariant

subspace X of l°°(S) is invariantly complemented in l°°(S) if X admits a

left translation invariant closed complement, or equivalently, X is the range

of a continuous projection on l°°(S) commuting with left translations. In [3,

Problem 3] Lau asked if left amenability of S implies each of the following
properties:

(C) Each weak*-closed left translation invariant complemented subspace of

l°°(S) is invariantly complemented in l°°(S).

(C)   Each weak*-closed selfadjoint left translation invariant subalgebra of

l°°(S) is invariantly complemented in l°°(S).

Notice that Lau's argument in the proof of Theorem 3.3 in [2] shows that

each of (C) and (C) implies left amenability of 5. We also note that each of

(C) and (C) is equivalent to left amenability of S when S is a group (see [2,

Theorem 3.3; 4, Theorem 1]). The purpose of the present note is to give an

example that shows the answer to Lau's problem is negative. Our example also

solves a question in [2, p. 232] negatively.

Recall that a weak*-closed subspace X of l°°(S) is called weak*-comple-

mented in /°°(5) if there exists a weak*-weak* continuous projection from

l°°(S) onto X. Our example is a direct consequence of the following result.
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Theorem. Let S be a semigroup and let E be a subset of S with the following

properties:

(a) Ec (the complement of E in S) is a left ideal of S.

(b) There exists t £ S such that tS n Ec n (tEc)c is nonempty.

Let XE be the set of all functions of l°° (S) that vanish on Ec. Then XE is

a weak*-closed selfadjoint left translation invariant subalgebra of l°°(S) that is

weak*-complemented but not Invariantly complemented in l°°(S).

Proof. Obviously XE is a weak*-closed selfadjoint subalgebra of /°°(S). It also

follows immediately from the assumption (a) on E and the definition of XE

that XE is left translation invariant. For each / e l°°(S), define Pf £ l°°(S)

as follows: Pf(s) = f(s) if s £ E and Pf(s) = 0 if s £ Ec. Then P
is a continuous projection from l°°(S) onto XE. Furthermore, P is weak*-

weak* continuous because P is the conjugate operator of the continuous linear

operator Q on lx(S) (the Banach space of all absolutely summable complex-

valued functions on 5") obtained by the same method as that P was defined.

Thus XE is weak*-complemented in l°°(S). It remains to show that XE is not

invariantly complemented in l°°(S). To see this, suppose that XE is invariantly

complemented in l°°(S) and denote by Y a left translation invariant closed

complement. Our assumption (b) implies that there exist t and u in S such

that tu £ Ec n (tEc)c. Now consider / = X{tu} (the characteristic function of

one element set {tu}) and represent f as

f=g + h       (g £ XE and h £ Y).

If s £ E then s ^ tu because tu £ Ec. Thus f(s) = 0 and, therefore,

h(s) = -g(s). Let s £ Ec and s ^ tu. Then f(s) = 0. Since g £ XE, it

follows that g(s) = 0. Hence we have h(s) = 0. If s £ Ec and s = tu, then
f(s) = 1 and g(s) = 0, and so h(s) = 1 . Thus we have

{0 if s £ Ec and s ^ tu,

1 if s £ Ec and s = tu,

—g(s)   otherwise.

Let s £ Ec. Then ts £ Ec. Since tu £ (tEc)c, it follows that ts ^ tu. Thus

we have L,h(s) = 0 for each s £ Ec. (Lth denotes the left translate of h by

t.) Hence Lth is an element of XE . L,h is also contained in Y because Y

is left translation invariant. Consequently Lth must be equal to the constant

function 0. But, since L,h(u) = h(tu) = 1 , we obtain a contradiction. This

completes the proof.

Let us now give a typical example of a left amenable semigroup satisfying

the assumption of our theorem.

Example. Let S be the direct product of the additive semigroup N of positive

integers and a left amenable semigroup T. Since N is abelian, N is amenable

and hence S is also amenable [1, Theorems (17.5) and (17.18)]. For n £ N,

let

E(n) = {(k, t) £ S : k £ N with k < n and t e T}.
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Then E(n) satisfies the assumption of our theorem for each n . Indeed, it is

clear that E(n)c is a left ideal of S. Now choose and fix arbitrary elements /

and u in T. Put x = (1, t) and y = (n, u). Then

xy = (1 + n, tu) £ E(nf n E(n + 1).

Since E(n + 1) is contained in (xE(n)c)c, it follows that xy £ (xE(n)c)c.

Thus we have
xy£xSf)E(n)cn(xE(n)c)c,

and hence E(n) satisfies assumption (b) of the Theorem.  Consequently, for
P3Crl   Yi

XE{n) = {f £l°°(S):f = 0 off E(n)}

is a weak*-closed selfadjoint left translation invariant subalgebra of l°°(S) that

is weak*-complemented but not invariantly complemented in l°°(S). This re-

solves Lau's problem [3, Problem 3] negatively. We also see that the answer to

Lau's problem is negative even when S is abelian.

Remark. In [2, p. 232] Lau raised the question: If S is a left amenable semi-

group and if X is a weak*-complemented left translation invariant weak*-closed

subspace of l°°(S), then is X invariantly complemented? Notice that the an-

swer is affirmative when S is a group (see [2, Corollary 4.2]). Our example

gives a negative answer to this question.
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