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ON THE DIVERGENCE OF LAGRANGE INTERPOLATION
WITH EQUIDISTANT NODES

X. LI AND R. N. MOHAPATRA

(Communicated by J. Marshall Ash)

Abstract. This paper is concerned with the optimal rate of divergence of La-

grange interpolation of f(x) = \x\ at equidistant nodes.

1. Main results

In this note we discuss a problem in the divergent aspect of Lagrange interpo-

lation. Denote xk n '■= -1 + 2(fc - 1)/(« - 1), k = 1,2,..., n, n = 2,3, ... .
Recall that given a function f(x) defined on [-1, 1], the Lagrange interpola-

tion polynomial L„(f; x), of degree at most n - 1, is (uniquely) defined by

the conditions

Ln(f\xki„) =f(xk,n)       (k= 1,2, ... ,n;n = 2,3, ...).

The following divergent result of Bernstein is well known (cf. [N, p. 30]).

Theorem 1 (Bernstein, 1918). For function f(x) = \x\, the sequence {L„(f; x):

n = 2,3, ...} diverges if 0 < |x| < 1.

Recently, Byrne, Mills, and Smith [BMS] considered the rate of this diver-

gence process. More precisely, they proved

Theorem 2 (Byrne, Mills, and Smith, 1990 [BMS]). For the function f(x) = |x|,
we have

limsupn_1log|L„(/;x)- |x| | = ^[(1 +x)log(l +x) + (l -x)log(l - x)]
n—Kx>

if 0 < |x| < 1.

From now on, we will write L„(x) = L„(f; x) if f(x) = \x\.

The result of Byrne, Mills, and Smith tells us that for every x with 0 <

|x| < 1, there exists a subsequence, say {Ln(x): n = n\,ni,n$,...}, of
{L„(x): n = 2, 3, ...}, whose rate of divergence is geometrically fast; but

it seems that the sequence {«i, «2, «3, ...} should depend on x . We will

show that there actually exists a subsequence that works for almost all x (with

0 < |x| < 1) as implied by the following results.
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Theorem 3. For all x £ R, we have

Ln(x) - \X\   '/n

»hiS, Wn(x) =e'

where Wn(.x) := Y[nk={(x - xk n).

Corollary 4. Let {pk: k = 1,2,3,...}  be the sequence of all positive prime

integers with px < pi < Pi < ■ ■ ■ . Then for 0 < \x\ < 1, we have

limsuprz-1 log|7_„(x) - |x| | = limsup^ + l)"1 log\LPk+x(x) - \x\ |
l\\ «->oo fc->oo

= \[( 1 + x) log(l + x) + (1 - x) log( 1 - x)].

Furthermore, ifwedenote T := {x £ [-1, lJlliminf^oo minx<k<n \x - xkn\xln

< 1}, then T is of Lebesgue measure zero and for x £ [-1, 1]\7\

(2) lim(pyt + l)-1log|LPA+1(x)-|x|| = i[(l+x)log(l+x) + (l-x)log(l-x)].
k—>oo

Remark. Such a set T is not empty. A number x* in T can be constructed

as follows. Set 10<'> := 10, 10<2> := 1010<,>, ... , 10<*+1> = 1010<i>, ... . Then

*_ _L   _i_ _L       2
x ~ 10(0    io<2> +'"+ io<2*-»    low +'"

is a number in (0, 1). It is easy to see that if nj := 10<2j> + 1 , then

1 2 1 2
Xk(nj),nj - 7007 _ ToW + " ' +  10<2j-l> ~ JxJ{2jj

and

0<X*-Xk{nj)tnj  <   W{2j + Xy

So

IX*    -Xlr, S l1^"-1'     <     —lA Ak(nj).n,\ 10 '

thus x* £ T.
We shall assume Theorem 3 for the moment and prove Corollary 4.   The

proof of Theorem 3 will be given in §2.

We need the following elementary result for the proof of Corollary 4.

Lemma 5. Let W„(x) be as in Theorem 3 and T as in Corollary 4.1fx is an

irrational number in [-1, 1]\T or a real number in (—oo, -1) U (1, oo), then

(3) lim \Wn(x)\xln =e~x\l +x|(1+x)/2|l -x|(1"-v)/2.
n—>oo

If x is a rational number in [-1, 1], define

Ax := {n: n = 1, 2, 3, ... and n + x(n - 1) is an odd integer};

then

Wn(x) = 0      (n£Ax)

and

(4) limsup|W/„(x)|1/"=   Hm   \Wn(x)\x/n = e~x(l + x)iX+x)/2(l - x){]~x)/2."7Z
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This result may be well known. We include a proof for the sake of complete-

ness. For relevant discussions, see [D, p. 84; IK, Chapter 6, §3.6].

Proof of Lemma 5. First, if x is a real number in (-oo, -1) U (1, oo), then

log|x — t\ is a continuous function of / over the interval [-1, 1] and

1 1 1    "~l

—-\o%\W„(x)\- —j-log|x- i| =—-j-£ log |x-**,„!

k=\

is just a Riemann sum of the integral \ /_, log |x - t\dt; thus

(5) lim —l—lof>\W„(x)\=l- [   log\x-t\dt.
n->oo n — 1 I J_x

Since

1   /"' 1
- /   lo%\x-t\dt = -[(1 +x)log|l +x| + (l -x)log|l -x\\- 1

for all x £ R, it follows that (5) implies (3).
Next, when x is an irrational number in [-1, 1], we show

(6) lim-  V  log(x-x/t,„) = - /   log(x-/)^
n^oc n   +^ 2J_X

and

1      " 1   /"'
(7) lim-    V    log(jcfc,„-jr) = ■= /   log(f-*)<//,

Jt=fc(n)+2 ^x

where k(n) := max{k: k > 1 and xk<„ < x}. (The dependence of k(n) on x

is omitted for simplicity of notation.)

We only prove (6), the proof of (7) is similar.

Let the irrational x e [-1, 1] be fixed. Since log(x - t) is a decreasing

function of t for t < x , we have

1   /"**•" 1
-/        log(x - t)dt < -—rlog(x-x*_i,n)
2V,.„ n~l

for all k < k(n) and k>2. Summing both sides for k = 2,3, ..., k(n), we
get

1 K  /**•« 1     ̂
(8) -J]/        iOg(jc-0rfr<—-rI>g(*-**-!,„).

k=2Jx"->" k=2

Since the left side equals \ /_*,""'" log(x - /) <af? and x^(„) ,„ —► x as n -* oc, the

existence of the improper integral /*, log(x - /) dt implies that the left side of

(8) tends to \ /f, log(x - t)dt as n —► oo. Thus, letting « -» oo in (8), we get

(9) -/   log(JC-0^< Hminf-—r  V  log(x - x*,„).
1 /_, «->oc   n — 1   *-^

J  x k=\
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On the other hand, we have

1 1   fXk • ■
-r\0%(X-Xk,n)<~ log(x-t)dt.
"-1 2V..»

Summing both sides for k = 2, 3, ... ,k(n) - 1 and using arguments similar

to those used to prove (9), we obtain

,       fc(n)-! j     nx

(10) limsup-  V  log(x-xfc „) < x /   lo%(x-t)dt.
n-oo    1-1    ^ 2 J_x

From (9) and (10), equality (6) follows.
Now, if irrational x is not in T, since we have

—-j-logf minjx-x^jj < ^—-j-log|(x - xk{n)i„)(x -xk(n)+\,n)\ <0,

then

(11) lim -—T\og\(x-xkWt„)(x-xm+x,n)\ = f}.
n—>oo AJ — 1

Applying (6), (7), and (11), we conclude (3).
We have proved the first half of the lemma. Next, we assume x is a rational

number in [-1, 1]. If n £ Ax , then

X = X(n+x(n-\)+\)l2,n >

hence

Wn(x) = rV„(x(n+x{n-\)+l)/2,n) = 0.

Thus the first equality in (4) follows if we can prove the second equality. If

n £ Ax , then x ^ xk„, k = 1, 2, ... ,n , n = 1,2,3, ... . Since numbers

in 7\{-l, 0, 1} must be transcendental by Liouville's theorem (cf. [HW,

Theorem 191, p. 161]), we also have x ^ T. So (11) still holds. Then, similar

to the proof of (6), we can show

j fe(»)-i j   pX

lim   -  V  log(x-xj. „) = x /   log(x-t)dt
n—>oo   ri    t-^ I  I   t
n$Kx k=X J~X

and
1      " 1   /"'

lim   -    V    log{xk<n-x)=,      log(t-x)dt,
n$Kx       k=k(n)+2 Jx

which, together with (11), imply the second equality in (4).   □

Proof of Corollary 4. From equality (3), for irrational x e [-1, 1]\T,
lim„_00 |H^,(jc)| 1/w exists; so limk^00\Wrpk+x(x)\x/{Pk+X) exists and is equal to

lim)l_00|»;(x)|1/»,i.e.,

(12) lim \W„(x)\x'n = lim \WPk+x(x)\xl(Pk+X) = -(1 + x){X+x)/2(l -x)(1"x)/2.
n—>oo ' k—>oo e

Now, for rational x with 0 < |x| < 1 , say x = p/q with (p, q) = 1 and

q > 1, note that

n £ Ax   implies   (n - \)/q is an integer;
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we conclude that {pk + 1: Pk > q} n Ax = 0 . Then (4) implies

(13) lim \WPk+x(x)\x'(p*+V =   lim   \Wn(x)\xl" = -(1+x){x+x)>2(l -xfx~x^2.
k—>oo "T*?3 &

n$\x

Combining (12) and (13), by Theorem 3 we obtain (2).
To prove (1), in view of Theorem 3 and equations (12) and (13), it suffices

to show (no matter whether x £ T or not)

limsup|I^(x)|1/',=limsup|^+i(x)|,/to+1)
n->oo k-*oo

= -(l+x)(1+*)/2(l-x)('-x)/2,       xe(-l, 1).

Note that for x £ (-1, 1) and n large enough,

-10g|W„(x)| < ilog   -.-^-r   .
n n (X - Xk(„),„)(X - Xk(n)+\,n)

Using (6) and (7), the left side tends to \ J_{ log|x - t\ dt. So letting n -> oo

gives

1 1   /"'
lim sup - log | ̂ (x) | < x /   \og\x-t\dt.

n—>oo    1 2 y_|

We need only to show

1 1   /"'
hmsup——-log\Wp+x(x)\ > - /   log|x-f|rf/.

it—oo    Pk + 1 ^ J-X

In fact, since (6) and (7) hold with pk + 1 replacing n , we only have to show

(14) limsup -log\{x-xk(H)t„)(x-xk{n)+liH)\ = 0,        |x| < 1.
n=Pj+\—»oo "

If (14) is false, then there exists r < 0 such that, for j large enough,

(15) -log\(x-Xk{n),n)(x-Xk{„)+x,„)\<r<0, n=Pj+\.

Assume Ix-x^.jJ = mini <*<„ |x-*&,,, |; then h(n) = k(n) or k(n)+ 1 and

|(X - Xk(n),n)(x ~ Xk(„)+X,n)\ >  *(„ _ 1 JX ~~ XA(n),nl-

Using this inequality in (15), we have, for some p £ (0, 1) and j large enough,

\x-xh{n),„\< p",        n=pj + l.

So

(16) \x„(n),n -^(n'J.n'l < I* ~ Xn(n),n\ + \x - *A(/!'),n'l < 2/>"

with « = Pj■ + 1 and n' = pj+x + 1. Denote Sj = h(n) - 1 and sJ+x = h(n') - 1.
Then (16) can be written as

2sl_2sj±1 <

Pj      Pj+i

or, equivalently,

\SjPj+x - Sj+xPj\ < PjPj+xp"'   for ;' large enough.
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Now using the famous Bertrand's Postulate in number theory (cf. [HW, Theo-

rem 418, p. 343]), we know pj+x < 2pj. So

\SjPJ+x - Sj+xPj\ < 2p2pp> -+ 0   as j — oo.

Since SjPj+l - sj+xpj is an integer, it follows that

SjPj+x - sJ+xpj = 0   for j large enough.

But this is absurd because 0 < Sj < Pj and 0 < sJ+x < pj+x for j large enough

and both pj and Pj+X are primes. So (14) must be true, thus (1) holds.

Finally, we prove T is of Lebesgue measure zero. Note that

oo    oo    oo     n      / f 1\" / 1  \ "\

r-unuu(*..-('-i) -'-*-'
m=Xj=ln=jk=\   x v ' \ /    /

Let p* denote the Lebesgue outer measure. Then

m=\ \A:=1 /

oo / 1  \"

< V lim sup 2«    1-=0.
'     n—>oo \ ml

This completes the proof of Corollary 4.   □

Before we prove Theorem 3, we would like to remark that a closer look at the

proof of Theorem 1 given in [BMS] would suggest a possible proof of Theorem

3, but their proof uses Lagrange interpolation formula and involves a tricky

transformation and hypergeometric series identities, which is entirely different

from Bernstein's approach of using Newton's interpolation formula. As another

goal of this note we present a short and elementary proof of Theorem 3 by using

Bernstein's approach.
Recall that the Lagrange interpolation polynomial L„(f;x) can be expressed

by Newton's formula (cf. [D, N])

L„(/;x) = W^l)   fcl(x-x,,„)-(x-xt,„),
k=o ^ '

where

*lnf(-l)=Y,(-l)'-r(lr)f(Xr+l,n), / = 0, 1 ,...,«- 1.
r=0 ^ '

2. Proof of Theorem 3

We prove the theorem for x such that x < 0; the result when 0 < x can

then be obtained by symmetry. Denote n' := [(n - l)/2], where [t] denotes

the largest integer < t. If

(0   for t < 0,

^ = {1   foro"<r,
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then
Ln(x) - |X|        C„(X) + X-2-=-2-=     '       '

since x = L„(<; x). Now from Newton's formula we can get

(17)
n' / i\ n'+m

1,(0; x) = £(-!)«-'(^_L)

[l + (n- 1 - 2n')(n' - m)](x -Xi)(x -x2)---(x -xn>+m)

(m - 1)!«'!(«' + m)(n' + m - 1)

In fact, when n is odd, (13) is established as formula (70) of [N, p. 31]. The
proof of (17) when n is even is entirely analogous. Next, write (17) as

r   /j,. vl       /    ^ix -Xt)---(X ~ Xn')
Ln(<t>,x) = (-1)-—-

"'     / *,       i \ n'+m

m=\   x '

x [l+(n-l- 2n')(n' - m)](x„,+x - x) ■ ■ ■ (x„-+m - x) _

(m - l)l(n' + m)(n' + m - 1)

then every term in the sum is positive. So

(X&\   IT   (A-  vM ->   K*-*l)"-(* -*»')!     (n~ {\2"' (X„- + l -X)---(X2„--X)
(18) lL»^'x)l^ nTt V—2—^        (n'-\)\2n'(2n'-l)

and

(19)

\Ln«p;x)\<^-X^nf-X^

«   /n-l\"'+m

m=\   v '

n'(xn' + \ - X) ■ ■ ■ (Xn'+m - x)(x„>+m+\ - x) ■ ■ ■ (x2n- - x)

(m- l)\(n' + m)(n' + m - l)-x„,+m+l ■■■x2„>

< |(x-Xi)---(x-x„Q|

n'\

"'     / *.       I \ n'+m

m=l   v '

x _«'(*«' + ! ~X)---(X2„- -X)_

(m- l)\(n'+ l)(n')-(-^r{)n'-m(m-{)(m)(m+ l)---(n' - 1)

< |(x-xi)---(x-x„-)| _ n, _ /«- 1\2"   /i'(xw- + i -x)--'(x2n> -x)

«'! V   2    /      («'+l)«'-(«'-1)!(1 - i)

2|(x-x,)---(x-x„Q| /"-lV"'fx x]     (x        x]
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Hence, from (18) and (19),

(20) lim^""=lim(    '     ("-^l)2"')"".
V    ' «-oo     Wn(x) «-oo|(«'!)2V    2    /     J

Finally, by using Stirling's formula

n\ = V2nnnne~n(l + wn),        limu;„ = 0,

we can easily verify that the limit in (20) is e .   D
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