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Abstract. In this paper, we generalize some results of Stein and Zygmund and

of Evans and Larson concerning symmetric functions. In particular, we show

that if f is Lebesgue measurable or has the Baire property in the wide sense,

then the set of symmetric points of / is Lebesgue measurable or has the Baire

property in the wide sense, respectively. We also give some examples that show

that these results cannot be improved in a certain sense. Finally, we show that

there are plenty of examples of functions that are both Lebesgue measurable

and have the Baire property in the wide sense, yet the set of points where each

of the functions is symmetric and discontinuous has the same cardinality as

that of the continuum.

I. Introduction

A function f:R-+R is said to be symmetric at x £ R if

\imf(x + h) + f(x-h)-2f(x) = 0,
h—>0

and / is symmetric if f is symmetric at every x £ R.

In 1964 Stein and Zygmund in [8] showed that if /: R —> R is Lebesgue
measurable and / is symmetric on a Lebesgue measurable set Af, then /
is continuous a.e. on Af. In 1984 Evans and Larson in [3] showed that if

/ : R —► 7? has the Baire property in the wide sense and / is symmetric on a

set Af which has the Baire property in the wide sense, then the set of all points

of Af where / is discontinuous is of first category.

In this paper, we show that in the aforementioned theorems the additional

hypothesis of Af being measurable or having the Baire property in the wide

sense is not necessary. Denote by S(f) the set of points where / is symmet-

ric and by C(f) the set of points where / is continuous. We show that if

/ is Lebesgue measurable or has the Baire property in the wide sense, then

S(f)\C(f) is of measure zero or first category, respectively. As corollaries, we
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get that if / is Lebesgue measurable or has the Baire property in the wide sense,

then S(f) is Lebesgue measurable or has the Baire property in the wide sense,

respectively.

In 1964 Neugebauer in [5] showed that if /: 7? —> R is symmetric and

Lebesgue measurable, then f has to be of Baire class 1. In 1984 Evans and

Larson in [3] showed that if /: 7? —> 7? is symmetric and has the Baire property

in the wide sense, then / is of Baire class 1. It follows from the Evans-Larson

theorem and the Neugebauer theorem that a symmetric function /: R —» R is

Lebesgue measurable iff it has the Baire property in the wide sense; however,

this is not true if the function is not symmetric on the entire line as will be

evident by Examples 8 and 9.
Lastly, we show that there are plenty of examples of functions which are

simultaneously Lebesgue measurable and have the Baire property in the wide

sense, yet the set of points where each of the functions is symmetric and dis-

continuous is uncountable.

Let us now state some definitions and background theorems.

Recall that a set Af C R has the Baire property in the wide sense, or for short

M £ Bw , if it is the difference of an open set and a first category set. This is

equivalent to saying that Af is the union of two sets, one of which is Gs and

the other of the first category. A set Af is categorically dense in some interval 7

means that Af n J is second category for every interval J C 7. Also recall that

every second category set is categorically dense in some interval. A set M c R

has the Baire property in the restricted sense, or for short Af £ Br, means that

Af has the Baire property in the wide sense relative to every perfect set P (i.e.,

Af n P is Bw relative to P). A set Af C 7? is always first category, or for

short Af £ AFC, if every subset of Af has the Baire property in the restricted

sense. A function /: 7? —► 7? has the Baire property in the wide sense (the

Baire property in the restricted sense) means that the preimage of every open

set under / has the Baire property in the wide sense (the Baire property in the

restricted sense).
We will let p(M), p*(M), and p*(M) denote the Lebesgue measure of M ,

the outer Lebesgue measure of Af, and the inner Lebesgue measure of Af,

respectively. Also recall that saying Af is Lebesgue measurable is equivalent to

saying that for every perfect set P with positive measure, there exists a perfect

set Q c P with positive measure such that Q C Af or Q C Afc. From this

definition, it easily follows that if Af is a set with positive outer measure then

there exists a perfect set P with positive measure such that Af has full outer

measure in P. A set Af C R is universally measurable, or for short Af £ U, iff

Af is measurable according to the completion of every nonatomic Borel measure

on 7?. A set Af C Tv is Co iff every subset of Af is universally measurable.

A function f: R —► R is universally measurable means that the preimage of

every open set under / is universally measurable.

An uncountable set M C R is a Lusin set (Sierpinski set) iff the intersection

of Af with every first category set (measure zero set) is countable. Under

the assumption of the continuum hypothesis, there are uncountable Lusin and

Sierpinski sets. Also recall that the Lusin sets do not have the Baire property in

the wide sense, yet they are Co ; the Sierpinski sets are nonmeasurable, yet they

are AFC. Refer to [4] for more information about the Baire property, universal

measurability, AFC sets, Co sets, Lusin sets, and Sierpinski sets.
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If r £ R and each of A and B is a subset of the real line, then rA = {rx :

x £ A} , r + A = {r + x:x£A}, and A + B = {x + y:x£A and y £ B}.

II. Main results

Theorem X. If f : R —> R has the Baire property in the wide sense, then

S(f)\C(f) is of first category.

Proof. Suppose that S(f)\C(f) is second category. Then S(f)\C(f) is cate-
gorically dense in some closed interval I. We shall show that this situation is

impossible by showing that C(f) is actually dense in this T.

Suppose that C(f) is not dense in 7 and Ix is a closed subinterval of 7

containing no point of C(f). Using the fact that 7! n C(f) = 0 and the Baire

category theorem, we may obtain a closed subinterval I2 c 7) and a rational

e > 0 such that osc(/, x) > e for each x £ I2. Here osc(/, x) denotes the
oscillation of / at x .

Now let {Jk} be an enumeration of all open intervals of length e/3 having

rational end points. There must be k such that f~x(Jk)^h is second category.

Since / has the Baire property in the wide sense, f~x(Jk) n I2 contains a

second category G§ set, which, consequently, is residual in some closed interval

h £ h ■
Let J = Jk = (a, b) and K = R\(a - 2e/3, b + 2e/3). Since osc(/, x) > e

for each x £ T3, f~x(K) is dense in T3. We now make the following claim:

For each closed interval 77 = [u, v] C 73, there is a closed subinterval 77* c 77

such that {(s + t)/2 : s £ f~x(J) n 77 and / £ f~x(K) n 77} contains a dense

Gs subset of 77*. To see this, let p £ f~x(K)n77. Since f~x(J)r\H contains

a dense Gs subset of 77, it follows that the set {(s + p)/2 : s £ f~x(J) n 77}

contains a Gs subset which is dense in 77* = ((u + p)/2, (p + v)/2).

For each natural number j, let Gj = {x £ T3: there is a 0 < h < l/j such

that one of x + h, x-h belongs to f~l(K) while the other belongs to f~x(J)}.

Each Gj is residual in 73. To see this, suppose that 73\Gy is second category

and let 77 C 73 be a closed interval of length less than l/j in which 73\C,
is categorically dense. Applying the above claim to this interval 77 yields a

contradiction.

Now, since each Gj is residual in 73, so is G = f)JL{ Gj. Let x £ S(f) n

f~x(J) DG, which is nonempty since G and f~x(J) are residual in 73 and

S(f) is second category in 73. We have that for each j, there is a 0 < h}■ < 1 /j

such that one of x + hj, x - hj belongs to f~x(K) while the other belongs to

f~x(J). Without loss of generality, suppose that x + hj £ f~x(K). Then

\f(x + hj) + f(x - hj) - 2f(x)\ > \f(x + hj) - f(x)\ - \f(x - hj) - f(x)\

>2e/3-e/3 = e/3,

which contradicts the assumption that x £ S(f) and completes the proof.

Corollary 2. If f: R —* R has the Baire property in the wide sense, then S(f)

has the Baire property in the wide sense.

Theorem 3. If f : R —> T? is Lebesgue measurable, then S(f)\C(f) has mea-

sure zero.

Proof. Suppose that S(f)\C(f) has positive outer measure. Then there exists

a perfect set P with positive measure such that S(f)\C(f) has full measure in
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P. We shall show that this situation is impossible by showing that C(f) has

full measure in this P.
Suppose that C(f) does not have full measure in P and Px is a perfect

subset of P such that p(P\) > 0 and Px n C(f) = 0. Since Px n C(f) = 0,
there exists a perfect set P2 c Px and a rational number e > 0 such that

p(P2) > 0 and osc(f, x) > e for each x £ P2.
Now let {Jk} be an enumeration of all open intervals of length e/3 having

rational end points. Since / is Lebesgue measurable, there exists k such that

f~x{Jk) n P2 has positive measure. Let P3 C P2 be a bounded perfect set such

that T>3 C f~x(Jk), and let p(P3) > 3(d - c)/4, where c and d are the left
end point and the right end point of 7"3, respectively.

Let J = Jk = (a, b) and Tv = R\(a - 2e/3, b + 2e/3). For each natural

number j, let Gj = {x £ P3}: there is a 0 < h < l/j such that one of

x + h , x - h belongs to /_1(Tv) while the other belongs to f~x(J)}. Each

Gj has inner measure at least 3(af - c)/8 . To see this, consider the following

argument: Let {7,}"=1 be a partition of [c, d] such that mesh of {7,}"=1 < l/j .

Let A = {1 < m < n: the interior of Im contains a point of Pf}. For each

m £ A, let qm £ f~x(K) n 7m. We know that there are such qm because

osc(/, x) > e for each x £ T>3. Then (qm + (P3 n Im))/2 C C; n 7m and

f(rf-c)<MW2=5>(*»n/m)/2

= 5]^(9« + (/,3n/w))/2
meA

< y p*(Gj n lm) < p.(Gj).

meA

Now let G = f| G,. Since for each j , p*(Gj) > 3(d - c)/8, we have that
p*(G) > 3(d - c)/8. G n P3 n 5(/) ^ 0 follows from the fact that G n P3 has
positive inner measure and S(/) has full outer measure in P and hence in 7>3.

Let x £ G n P3 n 5(/). We have that for each j , there is a 0 < h} < 1 / j

such that one of x + hj, x - hj belongs to f~x(K) while the other belongs to

f~x(J). Without loss of generality, suppose that x + hj £ f~x(K). Then

\f(x + hj) + f(x - hj) - 2f(x)\ > \f(x + hj) - f(x)\ - \f(x - hj) - f(x)\

>2e/3-e/3 = e/3,

which contradicts the assumption that x £ S(f) and completes the proof.

Corollary 4. If f is Lebesgue measurable, then S(f) is Lebesgue measurable.

In [2], under the assumption of the continuum hypothesis, Erdos constructed

two groups, one of which was simultaneously measure zero and second category,

while the other was simultaneously first category and nonmeasurable. Although

Erdos did not use this terminology, one of his groups is a Lusin set and the other
a Sierpinski set. Some small modifications of his theorems yield our Lemmas 5

and 6.

Lemma 5. Under the assumption of the continuum hypothesis, there exists a

Lusin set G c R which has the following properties:

(1) G is a topological group, and
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(2) G contains sets Nx and N2 such that Nx n N2 = 0, Nx and N2 are

categorically dense in R, and Nx u N2 is linearly independent over Q, the set

of rationals.

Lemma 6. Under the assumption of the continuum hypothesis, there exists a

Sierpinski set G C R which has the following properties:

(1) G is a topological group, and

(2) G contains sets Nx and N2 such that Nx n N2 = 0, Nx and N2 have

full outer measure in every measurable set, and Nx u N2 is linearly independent
over Q.

The following is a well-known theorem of Sierpinski and Zygmund, the proof

of which may be found in [7].

Lemma 7. There exists a function g : R —> R such that g\M is not continuous

for every set M which has cardinality c.

Brown and Prikry, in [1], constructed two functions, one of which is uni-

versally measurable and has the property that its restriction to every second

category set is not continuous, while the other is Br measurable and has the

property that its restriction to every set with positive outer measure is not con-

tinuous. In some sense our examples are not as strong as theirs; however, ours

have the additional property of being symmetric on large sets.

Example 8. Under the assumption of the continuum hypothesis, there exists a

universally measurable function f : R -> R which is symmetric on a second

category set, yet /|Af is not continuous for every second category set Af which

has the Baire property in the wide sense. Note that for such /, S(f)\C(f) is

second category.

Proof. Let G, Nx , and N2 be as in Lemma 5, and let g : R —> T? be as in
Lemma 7.

Now we want to construct / which is symmetric on N2. Let Aq = Nx .

For each positive integer n, let A„ = (2N2 - An_x)\((J"f0l At). Let x £ An

for some n. Then x has a unique representation in terms of N\ U N2 since

TVi U N2 is linearly independent over Q. Let p(x) be the only element of Nx

that appears in this representation of x. Now we define / in the following

manner: f(x) = (-1)"g(p(x)) if x £ An for some n , otherwise let f(x) = 0.

In particular, note that / is zero on N2 .

Now we want to show that / is symmetric on N2. Let h > 0 and x £ N2.

If both x + h and x - h belong to the complement of (U^o^<) > tnen we

are done. Therefore, let us assume that one of x + h or x - h belongs to

some An . Without loss of generality, let us assume that x + h £ A„ . Then

h £ -x + An =>■ -h £ x - An => x - h £ 2x - An . Note that x - h £ 2x - A„
implies that x - h £ An-x or x - h £ An+{ and that p(x - h) = p(x + h). So

we have that

/(* -h) = (-l)"g(p(x - h)) = (-l)ng(p(x + h)) = (-l)f(x + h).

Therefore, \f(x + h) + f(x - h) - 2f(x)\ = 0 for every x £ N2 and h £ R .
That / is universally measurable follows from the fact that / is zero on the

complement of the Co set G. (G is Co because G is a Lusin set.)
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Let Af be a second category set which has the Baire property in the wide

sense. Let I be a closed interval such that Af contains a Gs set which is dense

in I. We want to show that /|Af is not continuous. To obtain a contradiction,

assume that /|Af is continuous. Since Ni is categorically dense in R and

Af contains a dense Gs set subset of 7, Af n Nx is second category. The

cardinality of Af n Nx is c because we are assuming the continuum hypothesis.

This implies that /|(Af n Nx) = g\(M C\ Nx) is continuous, contradicting that
g is a Sierpinski-Zygmund function, and completes the proof.

Example 9. Under the assumption of the continuum hypothesis, there exists

a Br function /: T? —> R which is symmetric on a set with positive outer

measure, yet /|Af is not continuous for every positive measure set Af. Note

that for such /, S(f)\C(f) has positive outer measure.

Proof. Let G, Nx, and N2 be as in Lemma 6, and let g: R —> R be as in

Lemma 7.

We now define / exactly as in the previous example. It follows in the same

manner that for every x £ N2 and h £ R we have

\f(x + h) + f(x-h)-2f(x)\ = 0.

That / has the Baire property in the restricted sense follows from the fact

that / is zero on the complement of the AFC set G. (G is AFC because G

is a Sierpinski set.)

Let Af be a set which has positive measure. We want to show that /|Af

is not continuous. To obtain a contradiction, assume that f\M is continuous.

Since Nx has the property that it has full outer measure in every set with

positive outer measure, Af n Nx has positive outer measure. The cardinality

of Af n TVi is c because we are assuming the continuum hypothesis. This

implies that f\(M(~)Nx) = g\(Mf)Nx) is continuous, contradicting that g is a

Sierpinski-Zygmund function, and completes the proof.

Lemma 10. If C is a Cantor set which is linearly independent over Q, then the

group G generated by C over Q, i.e., the set of all finite linear combinations

of C with rational coefficients, is of the first category and measure zero.

Proof. Let C be a Cantor set which is linearly independent over Q, and let G

be the group generated by C over Q.

First we will give a proof assuming that C is not a maximal linearly inde-

pendent set over Q. Consider M = rxC + r2C-\-(-rnC where rx, r2, ... , r„

are rational numbers. Af is a compact set, and since C is not maximal, M

has to be of the first category, for otherwise Af - Af would contain an interval

and the rational multiples of Af - Af would cover the line, contradicting that

C is not maximal. Af also has measure zero, for otherwise Af - Af would

contain an interval and the rational multiples of Af - M would cover the line,

contradicting that C is not maximal. G is the countable union of such Af's.

Therefore G is first category and measure zero.

Now let us consider the general case. C can be written as the union of

a singleton set {/?} and a countable collection of Cantor sets {Fk}, where

f^+i 2 Fk for each k and none of the Fk 's contain p . Let Gk be the group

generated by Fk over Q and let H = [j Gk . Each of the Gk is of the first
category and measure zero because Fk is not maximal. Since TV is the countable
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union of first category measure zero sets, T7 is of the first category and measure

zero. Note that G = \Jr€Q H + rp . Therefore, G is of the first category and

measure zero.

Theorem 11. There are 2C many functions /: 7? —> 7? such that

(1) / is Lebesgue measurable,

(2) / has the Baire property in the wide sense,

(3) S(f)\C(f) has cardinality c.

Proof. Let C be a Cantor set such that C is linearly independent over Q.

The existence of such a set follows from a result of von Neumann [6].

Let D be a countable dense subset of C. For each K c C\D, we define

fK : R —* R in the following fashion: Let A0 = D. For each positive integer n ,

let A„ = (2K - An-i)\(\JlZo Ai) ■ Let x £ A„ for some n . Each x £ A„ has a
unique representation in terms of KuD because TvUD is linearly independent

over Q. Now let ffc(x) = 1 if x £ A„ for some even n, fn(x) = -1 if x £ An

for some odd n, and fx(x) = 0 otherwise. Note that / is zero on TC and

Gc, where G is the group generated by finite linear combinations of C with

rational coefficients.

Now we want to show that / is symmetric on Tv . Let h > 0 and x £ K.

If both x + h and x - h belong to the complement of (\J°^0 Aj), then we

are done. Therefore, let us assume that one of x + h or x - h belongs to

some An . Without loss of generality, let us assume that x + h £ A„ . Then

h £ -x + An => —h £ x - An =>■ x - h £ 2x - A„ . Since each x £ A„ has a
unique representation in terms of K U D and x - h £ 2x - A„ , we have that

x-h£A„-X or x-h £ A„+x . Therefore, \fK(x + h) +fK(x-h)-2fK(x)\ = 0
for every x £ K and h £ R.

G is of the first category and measure zero by Lemma 10. Each fK is

Lebesgue measurable and has the Baire property in the wide sense because ffc

is zero on the complement of G.

The last thing that we need to show is that if K, L C C\D and K ^ L,

then fie ^ h- To see this, consider x e K\L or x e L\Tv and d £ D. Then
one of fic(2x - d) and /l(2x - d) is zero while the other is  1 or -1 .

Since there are 2C many sets K C C\D which have cardinality c, the collec-

tion of all functions that satisfy properties (l)-(3) of our theorem has cardinality

2C.

Acknowledgment

The author would like to thank Professor Mike Evans for raising questions

that led to some of the results in this paper.

References

1. J. B. Brown and K. Prikry, Variations on Lusin's theorem, Trans. Amer. Math. Soc. 302

(1987), 77-86.

2. P. Erdos, Some remarks on subgroups of real numbers, Colloq. Math. 42 (1979), 119-120.

3. M. J. Evans and L. Larson, The continuity of symmetric and smooth functions, Acta Math.

Hungar. 43(1984), 251-257.

4. A. Miller, Special subsets of the line, Handbook of Set Theoretic Topology (K. Kunen and

J. Vaughn, eds.), North-Holland, Amsterdam, 1984.



1158 U. B. DARJI

5. C J. Neugebauer, Symmetric continuous and smooth functions, Duke Math. J. 31 (1964),

23-32.

6. J. von Neumann, Ein System algebraisch unabhangiger Zahlen, Math. Ann. 99 (1928),

134-141.

7. W. Sierpinski and A. Zygmund, Sur une fonction qui est discontinue sur tout ensemble de

puissance du continu, Fund. Math. 4 (1923), 316-318.

8. E. M. Stein and A. Zygmund, On the differentiability of functions, Studia Math. 23 (1964),
247-283.

Department of Mathematics, North Carolina State University, Raleigh, North Car-

olina 27695-8205
E-mail address: UDARJI@GUEST 1 .MATH.NCSU.EDU


