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BOUNDARY BEHAVIOR OF GENERALIZED POISSON INTEGRALS
FOR THE HALF-SPACE AND THE DIRICHLET PROBLEM

FOR THE SCHRODINGER OPERATOR

ALEXANDER I. KHEIFITS

(Communicated by J. Marshall Ash)

Abstract. The boundary properties are investigated for the generalized Pois-

son integral

u(X)= [  k(X,y)f(y)dy,

where X is a point of the upper half-space R"+1 , / e LP(R"), 1 < p < oo ,

and the kernel k has some special properties. Our results imply the known

boundary properties of the harmonic Poisson integrals on the half-space. As

an application we derive a solution of the Dirichlet problem for the operator

-A + c(X), X € R"++l , with boundary data / G L'(Rn).

1. Introduction and statement of results

In their well-known paper [1] Fefferman and Stein extended the classical

theory of Hardy spaces Hp on harmonic functions in the half-space

Rl+X = {X = (x,x„+x): x £Rn, xn+i>0},        n>\.

In this question the Poisson integral plays an essential role. The Laplace op-

erator A has constant coefficients; hence the Poisson integral, i.e., a normal
derivative of the Green function for the half-space, depends on the difference

of arguments and consequently in the harmonic case the Poisson integral is a

convolution. In the same article [1] the authors considered the boundary be-

havior of more general convolution integrals.

In the next step the problem appears to investigate the boundary behavior of

nonconvolution integrals of the kind

(1) u(X)= f k(X,y)f(y)dy,        X £ Rn++[,
Jr"

which in this context it is natural to call the generalized Poisson integrals.

If k in (1) is the Poisson kernel for the Laplacian, then the following result

is known for the function (1) (see [2, Chapters 3 and 7]).
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Theorem A. Let f £ V(W), 1 < p < oo, and let B(x, r) be a ball in R"
with center x and radius r, ton the volume of B(0, 1), and (Mf)(x) =

supr>0(co„r")'x JB.   rAf(y)\dy the maximal function. Then

1°. sup0<^+]<00 |w(*)| < (Mf)(x) Vx € W , as before, here X = (x, xn+i);

2°. lim* +l_o u(X) = f(x) for Lebesgue almost every x £ Rn ;

3°. for p<oo, limXn+1^0||"W-/W|| = 0.

Here and in the sequel || • || denotes the norm in Lp(Rn).

Actually in [2] the generalization of Theorem A, particularly when the Poisson

kernel is replaced by any approximate identity, was proved. In addition the

statement was proved in [2] that in 1° and 2° the condition xn+x -> 0 (i.e.,

X —> x along the normal to the boundary R" of 1"+1) may be interchanged

to the tending X -* x as X belongs to the cone

ra(x0) = {X £R"++X: |x - x0| < aXn+x} , a > 0,  x0 £ R" .

Our aim is to extend Theorem A on the integrals (1) where the kernel k(X, y)

is defined and measurable on the Cartesian product E"+1 x R" . We investigate

the boundary behavior of (1) and apply our results to the Dirichlet problem for

the Schrodinger operator -A + c(X)I in the half-space, 7 being the identity

operator. Now we state our results. All proofs will be given in §2.

Proposition 1. Fix a point x £ Rn. Suppose the kernel k(X, y) has the

summable majorant y/(x„+x, •) £ L(Rn), depending only on \x—y\: \k(X, y)\ <

y/(x„+x, \x - y\) for all X = (x, x„+x), 0 < xn+x < h, with some h > 0. Let

tp(xn+x, r) decrease monotonlcally for 0 < r < oo and

A(x„+l)=       y/(x„+x, \y\)dy = 0(l)   asxn+x^0.
Jr"

If f £ LP(R"),  1 < p < oo, then the following is valid for the function (1):

limsup|w(X)| <A(Mf)(x),
*n+i—o

where A = limsupA.n+i_0^(x„+i).

Corollary. If the conditions of the proposition are satisfied with the same tp at

almost every point x £ R" and 1 < p < oo, then

limsup||w(-, x„+i)|| < A\\f\\,        A = const.
*/i+i-*0

If supXii+l>0 A(x„+x) < oo and p > 1, then

sup  ||w(-,x„+l)|| </lp||/||.
jf„+l>0

Proposition 2. Let the conditions of the previous proposition be satisfied for

Lebesgue almost every x £ R" . Besides let there exist the limit

lim    f k(X,y)dy= 1
-t/i+l-^O./Ri

for Lebesgue a.e. x £ R" and the limit

(2) lim   / \k(X,y)\dy = 0
^+i—0j|x-v|><5
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for every 8 > 0. Then there exists the limit

lim  u(X) = f(x)   a.e. on Rn .
■*n+i->o

Remark. If in Propositions 1 and 2 the condition x„+i —> 0 is replaced by
ra(*o) 3 X —> xq, then all the assertions will remain valid as Ta(xo) 3 X —► Xn .

Proposition 3. Suppose all conditions of Proposition 2 are satisfied and, in addi-
tion, the condition (2) is strengthened to

lim   /      tp(xn+x, \y\)dy = 0   M8>0.

If 1 < P < °° and | JR„ k(X, y)dy - 1| < const < oo uniformly in X £
Rn x (0, h), then there exists the limit

lim  \\u(X)-f(x)\\ = 0.

Evidently all our conjectures are fulfilled for the classical Poisson kernel

yn+ix„+i{|x-y|2 + x2+1}_("+1)/2,        yn+x = const;

hence Propositions 1-3 imply Theorem A. Our assumptions are valid too for

the kernels

(x2+1/(|x-y|2 + x2+1))^2.x„-+",

and

(xn+x/(\x-y\+xn+x)fn>x;Zx

with X > 1, and Proposition 1 implies the case z = 0 and real X > 1 of

Lemma 3.3 by Johnson [3].
Now let us consider the operator Lc = -A + c(X)I, where the function

(potential) c(X) > 0 in K"+1 and such that c £ Ls in some neighbourhood of

each finite point X £ Rn++X UR" with certain s > (n+l)/2 for n > 3 and 5 = 2

for n = 1, 2 . Besides we suppose that c(X) has summable majorant depending
only on \X — y\ in some vicinity of any boundary point y £ R" . Under

these assumptions it is known that the operator Lc on L2(M"+I) has a Green

function G(X, Y) in R"+1 with analytic properties necessary in the sequel.

Consequently Propositions 1-3 and the results of [4, 5] imply the following.

Theorem. Suppose f £ LV(R"),  1 < p < oo. Then the Dirichlet problem

(-Au + c(X)u,    X£Rn++x,

I u(x) = f(x)       a.e. on R"

has the solution

«W=/ d~§^V1f(y)dy,     X£R"+-X,
Jr"    on{y)

which satisfies all the conclusions of Propositions 1-3. Here d/dn is a derivative

along an inner normal to R". Moreover, this solution u is Holder continuous

with exponent 2-n/s if n/2 < s < n and its gradient V« is Holder continuous

with exponent 1 - n/s if s > n in all points X £ R"+l . For potentials under

consideration this assertion makes more precise Simon's results about Holder
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continuity of the solutions to the Schrodinger equation Lcu = 0 [6, Theorems

C.2.4 and C.2.5, p. 497].

Of course this solution of problem (3) is not unique. The uniqueness is valid

only with a priori growth estimates of the solution at infinity; this question will

be considered elsewhere.

2. Demonstrations

We essentially use some ideas of Stein's book [2].

Proof of Proposition 1. By assumption

1=1   tp(xn+x, \y-x\)dy <oo.
Jr"

If we  introduce  spherical  coordinates  in   R"   with  pole   x,   then   7   =

nco„ J0°° rn~xy/(x„+x, r)dr.  The monotonicity of tp implies rntp(xn+x, r) —*

0 as r —► 0 and r —> oo.   Now integration by parts leads to the equality

1 = co„ J™ rnd{-ip(x„+x, r)} . Denote (see [2])

X(r)= f        f(t)do(t)
J\t-x\=r

and

A(r)= / \f(y)\dy = f tn~xX(t)dt.
J\x-y\<r Jo

Then A(r) < tonrn(Mf)(x). Hence if (Mf)(x) < oc , then for 0 < x„+x < h ,

(4) limA(r)tp(x„+x, r) = 0,        r—>0,  r—>oo.

Now we can estimate the function u:

\u(X)\< [  \k(X,y)\\f(y)\dy< f°° A(r)dr{-tp(xn+x, r)}
Jr" Jo

with regard to (4). From this we have

/•OO

\u(X)\ < ton(Mf)(x) /    r" dr{-tp(x„+x, r)},
^0

and after back integration by parts the inequality  \u(X)\ < A(xn+x)(Mf)(x)

follows. To finish the proof it remains to let xn+x —> 0.   Q.E.D.

Proof of Proposition 2. Transform the difference

u(X) - f(x) = [ k(X, y){f(y) - f(x)} dy
J\y-x\<d

+ f k(X, y){f(y) - f(x)} dy + f(x)\ j k(X, y) dy - l]
J\y-x\>S KJR" )

= Ix+I2 + h

and estimate every term separately.

Let x be a point of the Lebesgue set of the function /; then |/(x)| < oo . If

x does not belong to other exceptional sets of zero measure (see the statement

of the proposition), i.e., x belongs to the set of full measure in R", then

limXn+l^0^3 = 0 by virtue of (2). Similarly, limXn+l^0f(x)Jly_xl>sk(X,y)dy
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= 0. We estimate the integral 72i = f\y_xi>sk(X ,y)f(y)dy by the Holder

inequality:

|/2.| <IL/ll(/ \k(X,y)\*dy)      ,        q = p/(p-l)>l.
[J\y-x\>S J

The inequality \k(X, y)\ < 1 is valid asymptotically by virtue of the mono-

tonicity and integrability of the majorant tp . Hence \k(X, y)|q < \k(X, y)\

asymptotically and

|721|<const||/||j / \k(X,y)\dy\     -0   as%1-0.
[J\y-x\>s J

To estimate Ix we introduce the function as in [2]

\f(y)-f(x)   if \y-x\<8,

8[y)     \0 if\y-x\>8.

For every e > 0 we can choose 8 = 8(e) such that (Mg)(x) < e because

x is the point of the Lebesgue set of /. Therefore Proposition 1 implies

|7)| < A(Mg)(x) < Ae , where e may be arbitrarily small.   Q.E.D.

Proof of Proposition 3. We have \\u(X) - f(x)\\ < ||/,|| + ||72|| + ||73||. First

|7,|=   /     k(X,y){f(y + x)-f(x)}dy

< I     V(xn+i, \y\)\f(y + x)- f(x)\ dy,
J\y\<d

but tp(xn+x, r) does not depend on x; hence

||/.||< /     V(xn+i, r)\\f(y + 0-/(011 dy.
J\y\<5

It is known that the relation A(y) = 11/(^ + 0-/(011 = o(l) as \y\<8, 8^0.
Hence for arbitrary fixed e > 0 one can choose 8 > 0 such that A(y) < e and
consequently

Pill <£ /      f(xn+x, \y\)dy < A(xn+x)e < Ae.
J\y\<6

Now we fix 8 > 0 and estimate

||72||<   / ¥(xn+x,\y-x\)\f(y)-f(x)\dy
J\y-x\>S

< f     tp(xn+x,\y\)\\f(y + -)-f(-)\\dy
J\y\>6

< 2||/|| /      tp(xn+x,\y\)dy = o(l),       x„+1-0.
J\y\>S

To estimate P3II (now p < 00) we use the representation (see [2]) / =

fx+fi, where f is a continuous function with compact support and ||/2|| < £ .

Hence sup|/i| < 00 and the function with compact support

jl/iWI   / k(X,y)dy-l\\
(. Jr" \)
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has a summable majorant. Now from the Lebesgue theorem about dominated

convergence we have

lim    /  |/,(x)|"   [ k(X,y)dy-l    dx = 0.

Finally,

fi(x) ( j   k(X,y)dy - 1J   < const||/2|| < conste.   Q.E.D.
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