BOUNDARY BEHAVIOR OF GENERALIZED POISSON INTEGRALS FOR THE HALF-SPACE AND THE DIRICHLET PROBLEM FOR THE SCHRÖDINGER OPERATOR

ALEXANDER I. KHEIFITS

(Communicated by J. Marshall Ash)

ABSTRACT. The boundary properties are investigated for the generalized Poisson integral

$$u(X) = \int_{\mathbb{R}^n} k(X, y) f(y) \, dy,$$

where X is a point of the upper half-space \mathbb{R}^{n+1}_+ , $f \in L^p(\mathbb{R}^n)$, $1 \leq p \leq \infty$, and the kernel k has some special properties. Our results imply the known boundary properties of the harmonic Poisson integrals on the half-space. As an application we derive a solution of the Dirichlet problem for the operator $-\Delta + c(X)$, $X \in \mathbb{R}^{n+1}_+$, with boundary data $f \in L^p(\mathbb{R}^n)$.

1. Introduction and statement of results

In their well-known paper [1] Fefferman and Stein extended the classical theory of Hardy spaces H^p on harmonic functions in the half-space

$$\mathbb{R}^{n+1}_+ = \{ X = (x, x_{n+1}) \colon x \in \mathbb{R}^n, x_{n+1} > 0 \}, \qquad n \ge 1.$$

In this question the Poisson integral plays an essential role. The Laplace operator Δ has constant coefficients; hence the Poisson integral, i.e., a normal derivative of the Green function for the half-space, depends on the difference of arguments and consequently in the harmonic case the Poisson integral is a convolution. In the same article [1] the authors considered the boundary behavior of more general convolution integrals.

In the next step the problem appears to investigate the boundary behavior of nonconvolution integrals of the kind

(1)
$$u(X) = \int_{\mathbb{R}^n} k(X, y) f(y) \, dy, \qquad X \in \mathbb{R}^{n+1}_+,$$

which in this context it is natural to call the generalized Poisson integrals.

If k in (1) is the Poisson kernel for the Laplacian, then the following result is known for the function (1) (see [2, Chapters 3 and 7]).

Received by the editors July 29, 1991 and, in revised form, January 10, 1992. 1991 Mathematics Subject Classification. Primary 31C99, 35J10, 35J25.

1200 A. I. KHEIFITS

Theorem A. Let $f \in L^p(\mathbb{R}^n)$, $1 \le p \le \infty$, and let B(x, r) be a ball in \mathbb{R}^n with center x and radius r, ω_n the volume of B(0, 1), and $(Mf)(x) = \sup_{r>0} (\omega_n r^n)^{-1} \int_{B(x,r)} |f(y)| dy$ the maximal function. Then

- 1°. $\sup_{0 < x_{n+1} < \infty} |u(X)| \le (Mf)(x) \ \forall x \in \mathbb{R}^n$, as before, here $X = (x, x_{n+1})$;
- 2°. $\lim_{x_{n+1}\to 0} u(X) = f(x)$ for Lebesgue almost every $x \in \mathbb{R}^n$;
- 3°. for $\mathbf{p} < \infty$, $\lim_{x_{n+1} \to 0} ||u(X) f(x)|| = 0$.

Here and in the sequel $\|\cdot\|$ denotes the norm in $L^{\mathbf{p}}(\mathbb{R}^n)$.

Actually in [2] the generalization of Theorem A, particularly when the Poisson kernel is replaced by any approximate identity, was proved. In addition the statement was proved in [2] that in 1° and 2° the condition $x_{n+1} \to 0$ (i.e., $X \to x$ along the normal to the boundary \mathbb{R}^n of \mathbb{R}^{n+1}_+) may be interchanged to the tending $X \to x$ as X belongs to the cone

$$\Gamma_{\alpha}(x_0) = \{ X \in \mathbb{R}^{n+1}_+ : |x - x_0| < \alpha x_{n+1} \}, \qquad \alpha > 0, \ x_0 \in \mathbb{R}^n.$$

Our aim is to extend Theorem A on the integrals (1) where the kernel k(X, y) is defined and measurable on the Cartesian product $\mathbb{R}^{n+1}_+ \times \mathbb{R}^n$. We investigate the boundary behavior of (1) and apply our results to the Dirichlet problem for the Schrödinger operator $-\Delta + c(X)I$ in the half-space, I being the identity operator. Now we state our results. All proofs will be given in §2.

Proposition 1. Fix a point $x \in \mathbb{R}^n$. Suppose the kernel k(X, y) has the summable majorant $\psi(x_{n+1}, \cdot) \in L(\mathbb{R}^n)$, depending only on |x-y|: $|k(X, y)| \le \psi(x_{n+1}, |x-y|)$ for all $X = (x, x_{n+1})$, $0 < x_{n+1} < h$, with some h > 0. Let $\psi(x_{n+1}, r)$ decrease monotonically for $0 < r < \infty$ and

$$A(x_{n+1}) \equiv \int_{\mathbb{R}^n} \psi(x_{n+1}, |y|) \, dy = O(1) \quad \text{as } x_{n+1} \to 0.$$

If $f \in L^{\mathbf{p}}(\mathbb{R}^n)$, $1 \leq \mathbf{p} \leq \infty$, then the following is valid for the function (1):

$$\limsup_{x_{n+1}\to 0}|u(X)|\leq A(Mf)(x)\,,$$

where $A = \limsup_{x_{n+1} \to 0} A(x_{n+1})$.

Corollary. If the conditions of the proposition are satisfied with the same ψ at almost every point $x \in \mathbb{R}^n$ and $1 < \mathbf{p} \le \infty$, then

$$\lim_{x_{n+1}\to 0} \|u(\cdot, x_{n+1})\| \le A\|f\|, \qquad A = \text{const.}$$

If $\sup_{x_{n+1}>0} A(x_{n+1}) < \infty$ and $\mathbf{p} > 1$, then

$$\sup_{x_{n+1}>0} \|u(\cdot, x_{n+1})\| \le A_{\mathbf{p}} \|f\|.$$

Proposition 2. Let the conditions of the previous proposition be satisfied for Lebesgue almost every $x \in \mathbb{R}^n$. Besides let there exist the limit

$$\lim_{X_{n+1}\to 0} \int_{\mathbb{R}^n} k(X, y) \, dy = 1$$

for Lebesgue a.e. $x \in \mathbb{R}^n$ and the limit

(2)
$$\lim_{x_{n+1}\to 0} \int_{|x-y|\geq \delta} |k(X,y)| \, dy = 0$$

for every $\delta > 0$. Then there exists the limit

$$\lim_{x_{n+1}\to 0} u(X) = f(x) \quad a.e. \ on \ \mathbb{R}^n.$$

Remark. If in Propositions 1 and 2 the condition $x_{n+1} \to 0$ is replaced by $\Gamma_{\alpha}(x_0) \ni X \to x_0$, then all the assertions will remain valid as $\Gamma_{\alpha}(x_0) \ni X \to x_0$.

Proposition 3. Suppose all conditions of Proposition 2 are satisfied and, in addition, the condition (2) is strengthened to

$$\lim_{x_{n+1}\to 0} \int_{|y|>\delta} \psi(x_{n+1}, |y|) \, dy = 0 \quad \forall \delta > 0.$$

If $1 \le \mathbf{p} < \infty$ and $|\int_{\mathbb{R}^n} k(X, y) dy - 1| \le \text{const} < \infty$ uniformly in $X \in \mathbb{R}^n \times (0, h)$, then there exists the limit

$$\lim_{x \to 0} ||u(X) - f(x)|| = 0.$$

Evidently all our conjectures are fulfilled for the classical Poisson kernel

$$\gamma_{n+1}x_{n+1}\{|x-y|^2+x_{n+1}^2\}^{-(n+1)/2}, \qquad \gamma_{n+1}=\text{const};$$

hence Propositions 1-3 imply Theorem A. Our assumptions are valid too for the kernels

$$(x_{n+1}^2/(|x-y|^2+x_{n+1}^2))^{\lambda n/2} \cdot x_{n+1}^{-n}$$

and

$$(x_{n+1}/(|x-y|+x_{n+1}))^{\lambda n} \cdot x_{n+1}^{-n}$$

with $\lambda > 1$, and Proposition 1 implies the case z = 0 and real $\lambda > 1$ of Lemma 3.3 by Johnson [3].

Now let us consider the operator $L_c = -\Delta + c(X)I$, where the function (potential) $c(X) \ge 0$ in \mathbb{R}^{n+1}_+ and such that $c \in L^s$ in some neighbourhood of each finite point $X \in \mathbb{R}^{n+1}_+ \cup \mathbb{R}^n$ with certain s > (n+1)/2 for $n \ge 3$ and s = 2 for n = 1, 2. Besides we suppose that c(X) has summable majorant depending only on |X - y| in some vicinity of any boundary point $y \in \mathbb{R}^n$. Under these assumptions it is known that the operator L_c on $L_2(\mathbb{R}^{n+1}_+)$ has a Green function G(X, Y) in \mathbb{R}^{n+1}_+ with analytic properties necessary in the sequel. Consequently Propositions 1-3 and the results of [4, 5] imply the following.

Theorem. Suppose $f \in L^p(\mathbb{R}^n)$, $1 \leq p \leq \infty$. Then the Dirichlet problem

(3)
$$\begin{cases} -\Delta u + c(X)u, & X \in \mathbb{R}^{n+1}_+, \\ u(X) = f(X) & a.e. \ on \ \mathbb{R}^n \end{cases}$$

has the solution

$$u(X) = \int_{\mathbb{R}^n} \frac{\partial G(X, y)}{\partial n(y)} f(y) \, dy, \qquad X \in \mathbb{R}^{n+1}_+,$$

which satisfies all the conclusions of Propositions 1-3. Here $\partial/\partial n$ is a derivative along an inner normal to \mathbb{R}^n . Moreover, this solution u is Hölder continuous with exponent 2-n/s if $n/2 < s \le n$ and its gradient ∇u is Hölder continuous with exponent 1-n/s if s > n in all points $X \in \mathbb{R}^{n+1}_+$. For potentials under consideration this assertion makes more precise Simon's results about Hölder

1202 A. I. KHEIFITS

continuity of the solutions to the Schrödinger equation $L_c u = 0$ [6, Theorems C.2.4 and C.2.5, p. 497].

Of course this solution of problem (3) is not unique. The uniqueness is valid only with a priori growth estimates of the solution at infinity; this question will be considered elsewhere.

2. Demonstrations

We essentially use some ideas of Stein's book [2].

Proof of Proposition 1. By assumption

$$I \equiv \int_{\mathbb{R}^n} \psi(x_{n+1}, |y-x|) \, dy < \infty.$$

If we introduce spherical coordinates in \mathbb{R}^n with pole x, then $I = n\omega_n \int_0^\infty r^{n-1} \psi(x_{n+1}, r) dr$. The monotonicity of ψ implies $r^n \psi(x_{n+1}, r) \to 0$ as $r \to 0$ and $r \to \infty$. Now integration by parts leads to the equality $I = \omega_n \int_0^\omega r^n d\{-\psi(x_{n+1}, r)\}$. Denote (see [2])

$$\lambda(r) = \int_{|t-x|=r} f(t) \, d\sigma(t)$$

and

$$\Lambda(r) = \int_{|x-y| < r} |f(y)| \, dy = \int_0^r t^{n-1} \lambda(t) \, dt \, .$$

Then $\Lambda(r) \leq \omega_n r^n(Mf)(x)$. Hence if $(Mf)(x) < \infty$, then for $0 < x_{n+1} < h$, (4) $\lim \Lambda(r) \psi(x_{n+1}, r) = 0$, $r \to 0$, $r \to \infty$.

Now we can estimate the function u:

$$|u(X)| \le \int_{\mathbb{R}^n} |k(X, y)| |f(y)| \, dy \le \int_0^\infty \Lambda(r) \, d_r \{ -\psi(x_{n+1}, r) \}$$

with regard to (4). From this we have

$$|u(X)| \le \omega_n(Mf)(x) \int_0^\infty r^n d_r \{-\psi(x_{n+1}, r)\},$$

and after back integration by parts the inequality $|u(X)| \le A(x_{n+1})(Mf)(x)$ follows. To finish the proof it remains to let $x_{n+1} \to 0$. Q.E.D.

Proof of Proposition 2. Transform the difference

$$u(X) - f(x) = \int_{|y-x| < \delta} k(X, y) \{ f(y) - f(x) \} dy$$

$$+ \int_{|y-x| \ge \delta} k(X, y) \{ f(y) - f(x) \} dy + f(x) \left\{ \int_{\mathbb{R}^n} k(X, y) dy - 1 \right\}$$

$$\equiv I_1 + I_2 + I_3$$

and estimate every term separately.

Let x be a point of the Lebesgue set of the function f; then $|f(x)| < \infty$. If x does not belong to other exceptional sets of zero measure (see the statement of the proposition), i.e., x belongs to the set of full measure in \mathbb{R}^n , then $\lim_{x_{n+1}\to 0} I_3 = 0$ by virtue of (2). Similarly, $\lim_{x_{n+1}\to 0} f(x) \int_{|y-x|>\delta} k(X, y) \, dy$

= 0. We estimate the integral $I_{21} = \int_{|y-x| \ge \delta} k(X, y) f(y) \, dy$ by the Hölder inequality:

$$|I_{21}| \le ||f|| \left\{ \int_{|y-x| \ge \delta} |k(X,y)|^{\mathbf{q}} dy \right\}^{1/\mathbf{q}}, \qquad \mathbf{q} = \mathbf{p}/(\mathbf{p}-1) \ge 1.$$

The inequality |k(X, y)| < 1 is valid asymptotically by virtue of the monotonicity and integrability of the majorant ψ . Hence $|k(X, y)|^{\mathbf{q}} \leq |k(X, y)|$ asymptotically and

$$|I_{21}| \le \operatorname{const} ||f|| \left\{ \int_{|y-x| \ge \delta} |k(X, y)| \, dy \right\}^{1/q} \to 0 \quad \text{as } x_{n+1} \to 0.$$

To estimate I_1 we introduce the function as in [2]

$$g(y) = \begin{cases} f(y) - f(x) & \text{if } |y - x| < \delta, \\ 0 & \text{if } |y - x| \ge \delta. \end{cases}$$

For every $\varepsilon > 0$ we can choose $\delta = \delta(\varepsilon)$ such that $(Mg)(x) < \varepsilon$ because x is the point of the Lebesgue set of f. Therefore Proposition 1 implies $|I_1| \le A(Mg)(x) < A\varepsilon$, where ε may be arbitrarily small. Q.E.D.

Proof of Proposition 3. We have $||u(X) - f(x)|| \le ||I_1|| + ||I_2|| + ||I_3||$. First

$$|I_1| = \left| \int_{|y| < \delta} k(X, y) \{ f(y+x) - f(x) \} dy \right|$$

$$\leq \int_{|y| \leq \delta} \psi(x_{n+1}, |y|) |f(y+x) - f(x)| dy,$$

but $\psi(x_{n+1}, r)$ does not depend on x; hence

$$||I_1|| \le \int_{|y| < \delta} \psi(x_{n+1}, r) ||f(y + \cdot) - f(\cdot)|| dy.$$

It is known that the relation $\Delta(y) \equiv \|f(y+\cdot) - f(\cdot)\| = o(1)$ as $|y| < \delta$, $\delta \to 0$. Hence for arbitrary fixed $\varepsilon > 0$ one can choose $\delta > 0$ such that $\Delta(y) < \varepsilon$ and consequently

$$||I_1|| \le \varepsilon \int_{|y| < \delta} \psi(x_{n+1}, |y|) dy \le A(x_{n+1})\varepsilon \le A\varepsilon.$$

Now we fix $\delta > 0$ and estimate

$$||I_{2}|| \leq \left\| \int_{|y-x| \geq \delta} \psi(x_{n+1}, |y-x|) |f(y) - f(x)| \, dy \right\|$$

$$\leq \int_{|y| \geq \delta} \psi(x_{n+1}, |y|) ||f(y+\cdot) - f(\cdot)|| \, dy$$

$$\leq 2||f|| \int_{|y| \geq \delta} \psi(x_{n+1}, |y|) \, dy = o(1), \qquad x_{n+1} \to 0.$$

To estimate $||I_3||$ (now $\mathbf{p} < \infty$) we use the representation (see [2]) $f = f_1 + f_2$, where f_1 is a continuous function with compact support and $||f_2|| < \varepsilon$. Hence $\sup |f_1| < \infty$ and the function with compact support

$$\left\{ |f_1(x)| \left| \int_{\mathbb{R}^n} k(X, y) \, dy - 1 \right| \right\}^{\mathbf{p}}$$

1204 A. I. KHEIFITS

has a summable majorant. Now from the Lebesgue theorem about dominated convergence we have

$$\lim_{x_{n+1}\to 0} \int_{\mathbb{R}^n} |f_1(x)|^{\mathbf{p}} \left| \int_{\mathbb{R}^n} k(X, y) \, dy - 1 \right|^{\mathbf{p}} dx = 0.$$

Finally,

$$\left\| f_2(x) \left(\int_{\mathbb{R}^n} k(X, y) \, dy - 1 \right) \right\| \le \operatorname{const} \| f_2 \| \le \operatorname{const} \varepsilon. \quad \text{Q.E.D.}$$

ACKNOWLEDGMENT

The author is grateful to the referee for his essential remarks concerning this manuscript.

REFERENCES

- C. Fefferman and E. M. Stein, H^p spaces of several variables, Acta Math. 129 (1972), 137-193.
- E. M. Stein, Singular integrals and differential properties of functions, Princeton Univ. Press, Princeton, NJ, 1970.
- 3. R. Johnson, Application of Carleson measures to partial differential equations and Fourier multiplier problems, Harmonic Analysis, Lecture Notes in Math., vol. 992, Springer-Verlag, Berlin, Heidelberg, New York, and Tokyo, 1983, pp. 16-72.
- A. I. Kheifits, Subfunctions of the Schrödinger operator.
 Rostov State Univ., Rostov-on-Don, 1989; RZhMat 1989: 4E541Dep.
- 5. _____, Subfunctions of the Schrödinger operator. 3, Capacity and its Applications, Rostov State Univ., Rostov-on-Don, 1990; RZhMat 1990: 11E383Dep.
- 6. B. Simon, Schrödinger semigroups, Bull. Amer. Math. Soc. (N.S.) 7 (1982), 447-526.

Rostov State University, ul. Sodruzhestva 37, kv. 198, Rostov-on-Don, Republic of Russia