NONREGULAR EXTREME POINTS IN THE SET OF MINKOWSKI ADDITIVE SELECTIONS

KRZYSZTOF PRZESŁAWSKI

(Communicated by William J. Davis)

ABSTRACT. A function $s: \mathcal{H}^n \to \mathbb{R}^n$, defined on the family \mathcal{H}^n of all compact convex and nonempty sets in \mathbb{R}^n , is called a Minkowski additive selection, provided s(A+B)=s(A)+s(B) and $s(A)\in A$, whenever $A,B\in \mathcal{H}^n$. We confirm the conjecture [6] that there exist extremal selections which are not regular (s is regular if $s(A)\in \text{ext }A$, $A\in \mathcal{H}^n$).

Let \mathscr{H}^n denote the family of all convex compact nonempty subsets of \mathbb{R}^n . A mapping $T\colon \mathscr{H}^n\to\mathbb{R}^n$ is called Minkowski additive, or simply additive, if T(A+B)=T(A)+T(B) for all $A,B\in\mathscr{H}^n$. Let \mathscr{L}^n be the vector space of all additive mappings equipped with the weakest topology under which all evaluations $\mathscr{L}^n\ni T\to T(A)$, $A\in\mathscr{H}^n$, are continuous. It can be easily seen that the set $\mathscr{S}^n\subset\mathscr{L}^n$ of all selections, i.e., the mappings having the property $T(A)\in A$, is convex and compact. Let \mathscr{E}^n be the set of all extreme points of \mathscr{S}^n . An element $s\in\mathscr{S}^n$ is called regular if $s(A)\in \operatorname{ext} A$, where $\operatorname{ext} A$ denotes the set of all extremal points of A. The set of all regular selections will be denoted by \mathscr{R}^n . Obviously, if $s\in\mathscr{R}^n$, then $s\in\mathscr{E}^n$.

Živaljević [6] conjectured that there exist nonregular extremal points in \mathcal{S}^n . The following result confirms this supposition.

Theorem. For every $n \ge 2$, there exists a closed face of \mathcal{S}^n disjoint with \mathcal{R}^n .

To prove the theorem, we shall need some additional notions and definitions. Let us define the support function h(A, x) of $A \in \mathcal{H}^n$ at x as follows:

$$h(A, x) = \sup\{\langle a, x \rangle \colon a \in A\},\,$$

where $\langle \cdot, \cdot \rangle$ denotes the scalar product. By Ω_k we denote the *Stiefel manifold* of k-frames; that is, the ordered k-tuples $\omega = (x_1, \ldots, x_k)$ of orthonormal vectors in \mathbb{R}^n . For $\omega \in \Omega_k$, we define the ω -face $V_\omega(A)$ of A inductively: Let $V_{x_1}(A) = \{a \in A : \langle a, x_1 \rangle = h(A, x_1)\}$ and suppose that we have already defined $V_{\omega'}$ for $\omega' = (x_1, \ldots, x_{k-1})$. Then $V_\omega(A) = V_{x_k}(V_{\omega'}(A))$. Subsequently, for $V_\omega(A)$, we define its position vector $H_\omega(A)$ as follows:

$$H_{x_1}(A) = h(A, x_1)x_1, \qquad H_{\omega}(A) = H_{\omega'}(A) + h(V_{\omega'}(A), x_k)x_k.$$

Received by the editors December 1, 1991.

1991 Mathematics Subject Classification. Primary 52A20; Secondary 52A07.

Key words and phrases. Selections, convex sets, extremal points.

It was the main result of [6] that $\mathcal{R}^n = \{H_\omega : \omega \in \Omega_n\}$. Basic properties of the face mappings can be found in [2, 5].

Suppose now that $A \in \mathcal{K}^2$. Let us denote by $s_0(A)$ the center of the smallest rectangle containing A, which has its sides parallel to the coordinate axes. It is easy to observe that $s_0(A) \in A$. Moreover, $s_0(A)$ can be expressed by the formula

$$s_0(A) = \frac{1}{2}(h(A, e_1) - h(A, -e_1))e_1 + \frac{1}{2}(h(A, e_2) - h(A, -e_2))e_2$$

where e_1 , e_2 denote vectors of the standard basis in \mathbb{R}^2 . Obviously, s_0 is an additive selection on \mathcal{K}^2 . This selection has already been mentioned in [1, 4].

Proposition. The minimal closed face of \mathcal{S}^2 containing s_0 is disjoint with \mathcal{R}^2 . Proof. For every pair ε_1 , $\varepsilon_2 \in \{-1, 1\}$, we define the triangle $T(\varepsilon_1, \varepsilon_2) = \text{conv}\{0, \varepsilon_1 e_1, \varepsilon_2 e_2\}$. It is clear that $s_0(T(\varepsilon_1, \varepsilon_2)) = (\varepsilon_1 e_1 + \varepsilon_2 e_2)/2$. Hence for every selection s belonging to the minimal closed face containing s_0 we have

(*)
$$s(T(\varepsilon_1, \varepsilon_2)) \in [\varepsilon_1 e_1, \varepsilon_2 e_2].$$

On the other hand, it can be easily seen that no regular point H_{ω} , $\omega \in \Omega_2$, can satisfy all the relations (*) resulting when ε_1 and ε_2 run over $\{-1, 1\}$. \square

Proof of the theorem. Let us regard \mathbb{R}^2 as embedded into \mathbb{R}^n in an obvious manner. Let $\omega \in \Omega_{n-2}$ consist of elements orthogonal to \mathbb{R}^2 . It is clear that $V_{\omega}(A) - H_{\omega}(A) \in \mathbb{R}^2$ for every $A \in \mathcal{K}^n$. Consequently, the following mapping is well defined:

$$s_{\omega}(A) = s_0(V_{\omega}(A) - H_{\omega}(A)) + H_{\omega}(A).$$

It is an easy exercise to prove that s_{ω} is an additive selection on \mathcal{K}^n . Furthermore, it follows from the proposition that the minimal face containing s_{ω} is disjoint with \mathcal{R}^n . \square

Question. Is it true that $s_{\omega} \in \mathcal{E}^n$?

For further information on the topic of extremal selections the reader is referred to the more extensive study [3].

REFERENCES

- 1. Z. Artstein, Stabilizing selections of differential inclusions, Weizmann Institute of Science, preprint.
- 2. Cz. Olech, A note concerning extremal points of a convex set, Bull. Acad. Sci. Ser. Sci. Math. Fis. Nat. 13 (1965), 347-352.
- 3. K. Przesławski, Faces of convex sets and Minkowski additive selections, unpublished.
- 4. K. Przesławski and D. Yost, Continuity properties of selectors and Michael's Theorem, Michigan Math. J. 36 (1989), 113-134.
- 5. G. Stefani and P. Zecca, Multivalued differential equations on manifolds with application to control theory, Illinois Math. J. 24 (1980), 560-575.
- R. Živaljević, Extremal Minkowski additive selections of compact convex sets, Proc. Amer. Math. Soc. 105 (1989), 697-700.

Instytut Matematyki, Wyższa Szkoła Inżynierska, ul. Podgórna 50, 65-246 Zielona Góra, Poland