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BANACH ALGEBRAS WHICH ARE NOT WEDDERBURNIAN

BERTRAM YOOD

(Communicated by Palle E. T. Jorgensen)

Abstract. Let A be a Banach algebra with radical R. In 1951 Feldman
exhibited an example in which it is impossible to find a closed subalgebra K

of A such that A = K © R . We provide other examples. Feldman's algebra is

commutative, but these examples are, in general, not commutative.

1. Introduction

In [5, p. 85] Glaeser called a Banach algebra A Wedderburnian if A is the

direct sum of its radical 7? and a closed subalgebra K of A . In [2] Bade and

Curtis called such a Banach algebra strongly decomposable. If A is finite di-

mensional then a classical result of Wedderburn shows that A is Wedderburn-

ian. In [4] Feldman provided an example where A is not Wedderburnian. This

algebra was studied in detail in [1]. For another example see [5]. These exam-

ples are commutative. Our aim is to provide noncommutative examples which

occur rather naturally. Some instances arise as follows. Let G be an infinite

compact topological group with identity e. Let C(G) be the set of all complex-
valued continuous functions on G taken as an algebra with convolution as its

multiplication. Let ||/||2 be the L2-norm of f £ C(G). The norm

HI/HI =max(ll/ll2,|/(e)|)
is a normed algebra norm on C(G). The completion A of C(G) in this

norm is not Wedderburnian. The Feldman example can be identified with the

completion of the socle of C(G), for G the reals modulo one, in the norm

Ill/Ill-
Other examples arising from algebras of operators on Hilbert space are given.

In particular, the completion of the trace class [9, p. 37] of Schatten in an

appropriate norm is not Wedderburnian.

2. Preliminary theory

We adopt the following notation. Let B be a Banach algebra in the norm

||x|| and E be a Banach space in the norm \\£\\E . Let T be a linear mapping
of B into E satisfying

(1)_ \\T(xy)\\E<\\x\\\\y\\
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for all x, y in B . We let A be the set of all elements of the form jc + £ , where

x £ B and £ £ E, made into an algebra under the rules (x + £) + (y + n) =

(x+y) + (£ + n), a(x+£) = (ax+aQ , and (x+£)(y + n) = xy for all x, y £ B,

£, n £ E, and scalars a.

We define a norm on A by

|||x + £||| = max(||x||,||£-:r(x)||£).

In view of (1) we see that |||x + £111 is a normed algebra norm on A .

2.1. Lemma.  A is a Banach algebra in the norm \\\x + £|||.

Proof. Let {x„ +£„} be a Cauchy sequence in A. Then {x„} is a Cauchy

sequence in B and {T(xn) - £,„} is a Cauchy sequence in E. Hence there

exists y £ B and n £ E where ||x„ —y\\ -» 0 and ||T(x„) -£„ - j?||£ -> 0. One
readily checks that, in A , the sequence x„ + £„ has y + [T(y) - n] as its limit.

We denote the radical of A by R .

2.2. Lemma. If B is semisimple then R = E.

Proof. Clearly E c R. Note that B is a two-sided ideal in A. Therefore,

7? n B is the radical of B so that 7? n B = (0). Let x + £ £ R where jc £ B
and £ 6 E. Then jc € 7? n B so that x = 0.

2.3. Lemma. Suppose that T is discontinuous on a linear subspace W of B.

If E is finite dimensional then the closure of W in A must contain a nonzero

element of E.

Proof. There exists a sequence {xn} in W where ||x„|| —> 0 and ||r(x„)||£ = 1

for each n = 1, 2, ... . As E is finite dimensional, there is a subsequence {yn}

of {xn} and some £ # 0 in E such that ||£ - T(yn)\\E -» 0. Then, since

\\\yn+m = max(\\yn\\,U-T(y„)\\E),

we see that -£ is in the closure of W in A .

2.4. Theorem. Suppose that B is semisimple and that E ts finite dimensional.

Suppose that W is a two-sided ideal in B and that T is discontinuous on W2 .

Then the completion V of W in the norm

\\\x\\\ = max(lx\\,\\T(x)\\E)

is a Banach algebra which is not Wedderburnian.

Proof. By Lemma 2.1, V is just the closure of W in the Banach algebra A .

Also V is a two-sided ideal in A so that, by Lemma 2.2, the radical 5 of V

is VKE.
Suppose that V = K ® S where K is a subalgebra of V . Since sv = vs = 0

for all 5 6 S and v e V, we have Tv d V2 d W2. Hence, by Lemma 2.3, the

closure of Tv" in V must contain a nonzero element of S. Consequently V is

not Wedderburnian.

3. Examples from harmonic analysis

Let G be an infinite compact topological group with identity e and normal-

ized Haar measure m(E). We consider C(G) in the sup norm and L2(G) in
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the L2-norm ||/||2 as Banach algebras with convolution /*g as the multi-

plication. If / andg are in L2(G) then /* g lies in C(G) by [6, p. 295].
Therefore, the socle 6 of L2(G) lies in C(G), and 6 is also the socle of

C(G). As C(G) is a dual algebra [7, Theorem 15], 6 is dense in C(G) as
well as L2(G).

We use the standard description of 6 provided by the Peter-Weyl theo-

rem. Let A be the set of equivalence classes of finite-dimensional irreducible

representations of G. For each a £ A we select an irreducible unitary repre-

sentation Ra in the class a. Suppose Ra(t) is the na by na matrix (Dfj(t)).

Then 6  consists of all linear combinations of the functions Df:,  a £ A,
1 II

i, j = 1, ... , na. The functions na Dfj form an orthonormal basis for

L2(G). Also Dfj * 7)£ = 0 if a ? B and

(2) naDfj * naD?s = naSjrD%,

where 8jr is the Kronecker delta.

Let £> be the set of all linear combinations of the "diagonal" entries Dft,

a £ A, i = 1, ... , na. The convolution of two different diagonal entries is

zero and each Dft is a scalar multiple of an idempotent. Therefore, J) is a
commutative subalgebra of C(G).

3.1. Lemma. Consider T) as a normed algebra in the L2-norm \\f\\2. Then

the linear functional f—> f(e) is discontinuous on D.

Proof. Let

f = tk'lDlkk
k=\

be in 35 where the Z>°* are different diagonal entries. Then f(e) = Yfk=i ̂ "'

and II/H2 = EL. k-2n^/2.

3.2. Lemma. The closure of I) in either C(G) or L2(G) is semisimple.

Proof. Note that v = nU Dft is an idempotent generator of a minimal one-

sided ideal of C(G) or L2(G). Let W be the closure of D and z be in the
radical of W. We have, as W is commutative, that vz = zv = vzv is a scalar

multiple of the idempotent v and is in the radical of W . Hence Dft * z = 0.

It follows from (2) that D°s * z = 0 for all a £ A and r, s = 1, ... , na . Hence

6*z = z*6 = (0). Since 6 is dense in C(G) and L2(G) and these are

semisimple, we see that z = 0.

3.3. Notation. The functional / —> f(e) which is defined naturally on C(G)

can be extended to a linear functional 4>(f) defined on L2(G) by [ 10, Theorem

1.71-A, p. 40].

3.4. Lemma. For any f, g £ L2(G) we have

W/**)l<ll/ll2||*||2.
Proof. As noted earlier, f*g£ C(G). Therefore,

|^(/*^)| = |/**0)I<II/Il2||*||2

by Schwarz's inequality.
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3.5. Theorem. Let K be either the closure of £ in L2(G) or any two-sided

ideal of L2(G) containing D . Then the completion of K in the norm

HI/HI = max[||/||2,|0(/)|]

is a Banach algebra which is not Wedderburnian.

Proof. Clearly S2 = D. Theorem 3.5 follows from Lemmas 3.1, 3.2, and 3.4
together with Theorem 2.4. The special case K = C(G) was mentioned in §1.

For the case K = 6 we have a specific result.

3.6. Corollary. Let f be a typical element of 6 where

/ = !>*&■
k=X

Here each ak is a scalar and no two Df: agree in all of a, i, and j. Then the

completion of 6 in the norm

|||/||| = max i \Y\ak\2/na\      , J>*fcA  1

is not Wedderburnian.

Proof. We use Theorem 3.5 together with Dfj(e) = Sjj .

If G is abelian each ma = 1 and each r5,; = 1. Here 6 is the set of linear

combinations of the continuous characters of G.

3.7. Corollary. Let G be an abelian compact group whose character group G

is denumerably infinite: G = {yx, y2, ...}. Then the completion of & in the

norm

^akyk    =maxM^|^|2J      ,  ^ak  \
k=\ [ \k=\ I k=\        J

is not Wedderburnian.

For G the reals modulo one we have, except for a difference in notation, the

Feldman example [4].

4. Examples from operator theory

Let 5(77) be the algebra of all bounded linear operators on a separable

infinite-dimensional Hilbert space 77. Let {</>„} be an orthonormal basis for

77. As in Schatten's book [9] (see also [3, Chapter 1]) we consider the Schmidt

class B2 and the trace-class Bx of operators on 77. 7?2 is the set of all T £

B(H) for which E, IITX^OII2 < °° • This sum is finite and the same if {</>„}
is replaced by another orthononormal basis {tp„}. As shown in [9], 7?2 is a

Banach *-algebra in the norm

j

Also ||r||2 = ||r*||2 for all T £ B2 .
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Let \T\ be the unique positive square root of T*T. The trace-class B\ is

the set of all T £ 75(77) for which Jlj(\T\(<f>j) > <A/) < °° • Again this sum is
finite and the same if {(/>„} is replaced by another orthonormal basis {y/„}. As

shown in [9], Bx is a Banach *-algebra under the norm

imii = £(m(</>,), </>,)•
j

Furthermore, Bx is the set of all products TU for T, U £ B2, and the ele-

ments of Bx all have a finite trace

tr(U) = YJ{U(<t>j), cjij),        U£BX,

i

again independent of the choice of the orthonormal basis. By [10, 1.71-A, p.

40], tr(C) can be extended to be a linear functional TR(U) on all of B2.

We note that (see [9]) the common socle of Bx and B2 is the set F(H) of

all U £ B(H) with finite-dimensional range.

4.1. Lemma. For U, V £ B2 we have

\TR(UV)\<\\U\\2\\V\\2.

Proof. As noted above, UV £ Bx . Therefore,

\TR(UV)\=   Y^iUV^j),^) <£|TO7-),C*(</>,))|
i j

<£lTOy)ll \\U*(<Pj)\\ <l|K||2||t/*||2 = ||F||2||C/||2.
j

4.2. Lemma. tr(C) is discontinuous on F(H) if F(H) is taken in the norm

\\U\\i.
Proof. For each positive integer n  we define  Wn £ F(H)  as follows.   Let

W„((j)j) = (j>j/j for j = 1, ... , n and W„(<f>j) = 0 for j > n . Then

tr(^) = ^r1   and   \\Wn \\2 = j^J'2-

;=1 ;=1

4.3. Theorem. Let K be any two-sided ideal of B2 which contains F(H). The
completion of K in the norm

\\\V\\\ = max(\\V\\2,\TR(V)\)

is not Wedderburnian.

Proof. Note that 7^(77) = [F(H)]2. We can then use Lemmas 4.1 and 4.2 to
apply Theorem 2.4. The particular case K = Bx was noted in §1.

Consider the specific case H = l2 . Any V £ B(l2) can be described in matrix

terms. There corresponds to V an infinite matrix [vrs] so that, for x = {x„}

and y = {yn} in l2, V(x) = y if and only if

oc

yr = Y vrsXs,        r =1,2,... .
s=\
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For V we have

-l 1/2

imb=   EEKI2        ,        tr(V) = Yvjj.
j    j J j

In these terms B2 is the set of all V £ B(l2) for which £ ■ E, \vij\2 < °° , and

although there seems to be no simple description of Bx in matrix terms (see [8,

p. 107]), F(l2) is easily described as all V £ B2 for which the column vectors

of the matrix [vrs] lie in a finite-dimensional subspace of l2.

4.4.   Corollary. The completion of F(l2) in the normed algebra norm

r i1/2

\\\y\\\ = max I   £EM2        ,   Y,VJJ   '
;'     i j

v J

is not Wedderburnian.

Added in proof

Interesting examples of commutative Banach algebras not Wedderburnian

were given by G. F. Bachelis and S. Saeki, Banach algebras with uncomplemented

radical, Proc. Amer. Math. Soc. 100 (1987), 271-273.
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