BANACH ALGEBRAS WHICH ARE NOT WEDDERBURNIAN

BERTRAM YOOD

(Communicated by Palle E. T. Jorgensen)

ABSTRACT. Let A be a Banach algebra with radical R. In 1951 Feldman exhibited an example in which it is impossible to find a closed subalgebra K of A such that $A = K \oplus R$. We provide other examples. Feldman's algebra is commutative, but these examples are, in general, not commutative.

1. Introduction

In [5, p. 85] Glaeser called a Banach algebra A Wedderburnian if A is the direct sum of its radical R and a closed subalgebra K of A. In [2] Bade and Curtis called such a Banach algebra strongly decomposable. If A is finite dimensional then a classical result of Wedderburn shows that A is Wedderburnian. In [4] Feldman provided an example where A is not Wedderburnian. This algebra was studied in detail in [1]. For another example see [5]. These examples are commutative. Our aim is to provide noncommutative examples which occur rather naturally. Some instances arise as follows. Let G be an infinite compact topological group with identity G. Let G be the set of all complex-valued continuous functions on G taken as an algebra with convolution as its multiplication. Let $\|f\|_2$ be the L^2 -norm of $f \in C(G)$. The norm

$$|||f||| = \max(||f||_2, |f(e)|)$$

is a normed algebra norm on C(G). The completion A of C(G) in this norm is not Wedderburnian. The Feldman example can be identified with the completion of the socle of C(G), for G the reals modulo one, in the norm |||f|||.

Other examples arising from algebras of operators on Hilbert space are given. In particular, the completion of the trace class [9, p. 37] of Schatten in an appropriate norm is not Wedderburnian.

2. Preliminary theory

We adopt the following notation. Let B be a Banach algebra in the norm ||x|| and E be a Banach space in the norm $||\xi||_E$. Let T be a linear mapping of B into E satisfying

$$||T(xy)||_E \le ||x|| \, ||y||$$

Received by the editors December 2, 1991. 1991 Mathematics Subject Classification. Primary 46H10. for all x, y in B. We let A be the set of all elements of the form $x + \xi$, where $x \in B$ and $\xi \in E$, made into an algebra under the rules $(x + \xi) + (y + \eta) = (x+y)+(\xi+\eta)$, $a(x+\xi)=(ax+a\xi)$, and $(x+\xi)(y+\eta)=xy$ for all x, $y \in B$, ξ , $\eta \in E$, and scalars a.

We define a norm on A by

$$|||x + \xi||| = \max(||x||, ||\xi - T(x)||_E).$$

In view of (1) we see that $|||x + \xi|||$ is a normed algebra norm on A.

2.1. **Lemma.** A is a Banach algebra in the norm $|||x + \xi|||$.

Proof. Let $\{x_n + \xi_n\}$ be a Cauchy sequence in A. Then $\{x_n\}$ is a Cauchy sequence in B and $\{T(x_n) - \xi_n\}$ is a Cauchy sequence in E. Hence there exists $y \in B$ and $\eta \in E$ where $||x_n - y|| \to 0$ and $||T(x_n) - \xi_n - \eta||_E \to 0$. One readily checks that, in A, the sequence $x_n + \xi_n$ has $y + [T(y) - \eta]$ as its limit.

We denote the radical of A by R.

2.2. **Lemma.** If B is semisimple then R = E.

Proof. Clearly $E \subset R$. Note that B is a two-sided ideal in A. Therefore, $R \cap B$ is the radical of B so that $R \cap B = (0)$. Let $x + \xi \in R$ where $x \in B$ and $\xi \in E$. Then $x \in R \cap B$ so that x = 0.

2.3. **Lemma.** Suppose that T is discontinuous on a linear subspace W of B. If E is finite dimensional then the closure of W in A must contain a nonzero element of E.

Proof. There exists a sequence $\{x_n\}$ in W where $||x_n|| \to 0$ and $||T(x_n)||_E = 1$ for each $n = 1, 2, \ldots$. As E is finite dimensional, there is a subsequence $\{y_n\}$ of $\{x_n\}$ and some $\xi \neq 0$ in E such that $||\xi - T(y_n)||_E \to 0$. Then, since

$$|||y_n + \xi||| = \max(||y_n||, ||\xi - T(y_n)||_E),$$

we see that $-\xi$ is in the closure of W in A.

2.4. **Theorem.** Suppose that B is semisimple and that E is finite dimensional. Suppose that W is a two-sided ideal in B and that T is discontinuous on W^2 . Then the completion V of W in the norm

$$|||x||| = \max(||x||, ||T(x)||_E)$$

is a Banach algebra which is not Wedderburnian.

Proof. By Lemma 2.1, V is just the closure of W in the Banach algebra A. Also V is a two-sided ideal in A so that, by Lemma 2.2, the radical S of V is $V \cap E$.

Suppose that $V=K\oplus S$ where K is a subalgebra of V. Since sv=vs=0 for all $s\in S$ and $v\in V$, we have $K\supset V^2\supset W^2$. Hence, by Lemma 2.3, the closure of K in V must contain a nonzero element of S. Consequently V is not Wedderburnian.

3. Examples from Harmonic analysis

Let G be an infinite compact topological group with identity e and normalized Haar measure m(E). We consider C(G) in the sup norm and $L^2(G)$ in

the L^2 -norm $||f||_2$ as Banach algebras with convolution f * g as the multiplication. If f and g are in $L^2(G)$ then f * g lies in C(G) by [6, p. 295]. Therefore, the socle $\mathfrak S$ of $L^2(G)$ lies in C(G), and $\mathfrak S$ is also the socle of C(G). As C(G) is a dual algebra [7, Theorem 15], $\mathfrak S$ is dense in C(G) as well as $L^2(G)$.

We use the standard description of $\mathfrak S$ provided by the Peter-Weyl theorem. Let Λ be the set of equivalence classes of finite-dimensional irreducible representations of G. For each $\alpha \in \Lambda$ we select an irreducible unitary representation R^{α} in the class α . Suppose $R^{\alpha}(t)$ is the n_{α} by n_{α} matrix $(D_{ij}^{\alpha}(t))$. Then $\mathfrak S$ consists of all linear combinations of the functions D_{ij}^{α} , $\alpha \in \Lambda$, $i, j = 1, \ldots, n_{\alpha}$. The functions $n_{\alpha}^{1/2}D_{ij}^{\alpha}$ form an orthonormal basis for $L^{2}(G)$. Also $D_{ij}^{\alpha} * D_{rs}^{\beta} = 0$ if $\alpha \neq \beta$ and

$$(2) n_{\alpha}D_{ij}^{\alpha} * n_{\alpha}D_{rs}^{\alpha} = n_{\alpha}\delta_{jr}D_{is}^{\alpha},$$

where δ_{ir} is the Kronecker delta.

Let \mathfrak{D} be the set of all linear combinations of the "diagonal" entries D_{ii}^{α} , $\alpha \in \Lambda$, $i=1,\ldots,n_{\alpha}$. The convolution of two different diagonal entries is zero and each D_{ii}^{α} is a scalar multiple of an idempotent. Therefore, \mathfrak{D} is a commutative subalgebra of C(G).

3.1. **Lemma.** Consider $\mathfrak D$ as a normed algebra in the L^2 -norm $||f||_2$. Then the linear functional $f \to f(e)$ is discontinuous on $\mathfrak D$. Proof. Let

$$f = \sum_{k=1}^{r} k^{-1} D_{i_k i_k}^{\alpha_k}$$

be in $\mathfrak D$ where the $D_{i_k i_k}^{\alpha_k}$ are different diagonal entries. Then $f(e) = \sum_{k=1}^r k^{-1}$ and $\|f\|_2 = \sum_{k=1}^r k^{-2} n_{\alpha_k}^{-1/2}$.

3.2. **Lemma.** The closure of \mathfrak{D} in either C(G) or $L^2(G)$ is semisimple.

Proof. Note that $v=n_{\alpha}^{1/2}D_{ii}^{\alpha}$ is an idempotent generator of a minimal one-sided ideal of C(G) or $L^2(G)$. Let W be the closure of $\mathfrak D$ and z be in the radical of W. We have, as W is commutative, that vz=zv=vzv is a scalar multiple of the idempotent v and is in the radical of W. Hence $D_{ii}^{\alpha}*z=0$. It follows from (2) that $D_{rs}^{\alpha}*z=0$ for all $\alpha\in\Lambda$ and $r,s=1,\ldots,n_{\alpha}$. Hence $\mathfrak S*z=z*\mathfrak S=(0)$. Since $\mathfrak S$ is dense in C(G) and $L^2(G)$ and these are semisimple, we see that z=0.

- 3.3. Notation. The functional $f \to f(e)$ which is defined naturally on C(G) can be extended to a linear functional $\phi(f)$ defined on $L^2(G)$ by [10, Theorem 1.71-A, p. 40].
- 3.4. Lemma. For any f, $g \in L^2(G)$ we have

$$|\phi(f * g)| \le ||f||_2 ||g||_2.$$

Proof. As noted earlier, $f * g \in C(G)$. Therefore,

$$|\phi(f * g)| = |f * g(e)| \le ||f||_2 ||g||_2$$

by Schwarz's inequality.

3.5. Theorem. Let K be either the closure of \mathfrak{D} in $L^2(G)$ or any two-sided ideal of $L^2(G)$ containing \mathfrak{D} . Then the completion of K in the norm

$$|||f||| = \max[||f||_2, |\phi(f)|]$$

is a Banach algebra which is not Wedderburnian.

Proof. Clearly $\mathfrak{D}^2 = \mathfrak{D}$. Theorem 3.5 follows from Lemmas 3.1, 3.2, and 3.4 together with Theorem 2.4. The special case K = C(G) was mentioned in §1.

For the case $K = \mathfrak{S}$ we have a specific result.

3.6. Corollary. Let f be a typical element of \mathfrak{S} where

$$f = \sum_{k=1}^r a_k D_{i_k j_k}^{\alpha_k}.$$

Here each a_k is a scalar and no two D_{ij}^{α} agree in all of α , i, and j. Then the completion of $\mathfrak S$ in the norm

$$|||f||| = \max \left\{ \left(\sum_{k=1}^{r} |a_k|^2 / n_{\alpha_k} \right)^{1/2}, \left| \sum_{k=1}^{r} a_k \delta_{i_k j_k} \right| \right\}$$

is not Wedderburnian.

Proof. We use Theorem 3.5 together with $D_{ij}^{\alpha}(e) = \delta_{ij}$.

If G is abelian each $m_{\alpha} = 1$ and each $\delta_{ij} = 1$. Here \mathfrak{S} is the set of linear combinations of the continuous characters of G.

3.7. **Corollary.** Let G be an abelian compact group whose character group \widehat{G} is denumerably infinite: $\widehat{G} = \{\gamma_1, \gamma_2, \ldots\}$. Then the completion of \mathfrak{S} in the norm

$$\left\| \left\| \sum_{k=1}^{r} a_k \gamma_k \right\| \right\| = \max \left\{ \left(\sum_{k=1}^{r} |a_k|^2 \right)^{1/2}, \left| \sum_{k=1}^{r} a_k \right| \right\}$$

is not Wedderburnian.

For G the reals modulo one we have, except for a difference in notation, the Feldman example [4].

4. Examples from operator theory

Let B(H) be the algebra of all bounded linear operators on a separable infinite-dimensional Hilbert space H. Let $\{\phi_n\}$ be an orthonormal basis for H. As in Schatten's book [9] (see also [3, Chapter 1]) we consider the Schmidt class B_2 and the trace-class B_1 of operators on H. B_2 is the set of all $T \in B(H)$ for which $\sum_j \|T(\phi_j)\|^2 < \infty$. This sum is finite and the same if $\{\phi_n\}$ is replaced by another orthononormal basis $\{\psi_n\}$. As shown in [9], B_2 is a Banach *-algebra in the norm

$$||T||_2 = \left[\sum_j ||T(\phi_j)||^2\right]^{1/2}.$$

Also $||T||_2 = ||T^*||_2$ for all $T \in B_2$.

Let |T| be the unique positive square root of T^*T . The trace-class B_1 is the set of all $T \in B(H)$ for which $\sum_j (|T|(\phi_j), \phi_j) < \infty$. Again this sum is finite and the same if $\{\phi_n\}$ is replaced by another orthonormal basis $\{\psi_n\}$. As shown in [9], B_1 is a Banach *-algebra under the norm

$$||T||_1 = \sum_j (|T|(\phi_j), \phi_j).$$

Furthermore, B_1 is the set of all products TU for T, $U \in B_2$, and the elements of B_1 all have a finite trace

$$\operatorname{tr}(U) = \sum_{j} (U(\phi_{j}), \phi_{j}), \qquad U \in B_{1},$$

again independent of the choice of the orthonormal basis. By [10, 1.71-A, p. 40], tr(U) can be extended to be a linear functional TR(U) on all of B_2 .

We note that (see [9]) the common socle of B_1 and B_2 is the set F(H) of all $U \in B(H)$ with finite-dimensional range.

4.1. **Lemma.** For $U, V \in B_2$ we have

$$|TR(UV)| \le ||U||_2 ||V||_2$$
.

Proof. As noted above, $UV \in B_1$. Therefore,

$$|TR(UV)| = \left| \sum_{j} (UV(\phi_j), \phi_j) \right| \le \sum_{j} |(V(\phi_j), U^*(\phi_j))|$$

$$\le \sum_{j} ||V(\phi_j)|| ||U^*(\phi_j)|| \le ||V||_2 ||U^*||_2 = ||V||_2 ||U||_2.$$

4.2. Lemma. tr(U) is discontinuous on F(H) if F(H) is taken in the norm $||U||_2$.

Proof. For each positive integer n we define $W_n \in F(H)$ as follows. Let $W_n(\phi_j) = \phi_j/j$ for $j = 1, \ldots, n$ and $W_n(\phi_j) = 0$ for j > n. Then

$$\operatorname{tr}(W_n) = \sum_{j=1}^n j^{-1}$$
 and $||W_n||_2 = \sum_{j=1}^n j^{-2}$.

4.3. Theorem. Let K be any two-sided ideal of B_2 which contains F(H). The completion of K in the norm

$$|||V||| = \max(||V||_2, |TR(V)|)$$

is not Wedderburnian.

Proof. Note that $F(H) = [F(H)]^2$. We can then use Lemmas 4.1 and 4.2 to apply Theorem 2.4. The particular case $K = B_1$ was noted in §1.

Consider the specific case $H = l_2$. Any $V \in B(l_2)$ can be described in matrix terms. There corresponds to V an infinite matrix $[v_{rs}]$ so that, for $x = \{x_n\}$ and $y = \{y_n\}$ in l_2 , V(x) = y if and only if

$$y_r = \sum_{s=1}^{\infty} v_{rs} x_s, \qquad r = 1, 2, \ldots.$$

For V we have

$$||V||_2 = \left[\sum_j \sum_j |v_{ij}|^2\right]^{1/2}, \quad \operatorname{tr}(V) = \sum_j v_{jj}.$$

In these terms B_2 is the set of all $V \in B(l_2)$ for which $\sum_j \sum_i |v_{ij}|^2 < \infty$, and although there seems to be no simple description of B_1 in matrix terms (see [8, p. 107]), $F(l_2)$ is easily described as all $V \in B_2$ for which the column vectors of the matrix $[v_{rs}]$ lie in a finite-dimensional subspace of l_2 .

4.4. Corollary. The completion of $F(l_2)$ in the normed algebra norm

$$|||V||| = \max \left\{ \left[\sum_{j} \sum_{i} |v_{ij}|^2 \right]^{1/2}, \left| \sum_{j} v_{jj} \right| \right\}$$

is not Wedderburnian.

ADDED IN PROOF

Interesting examples of commutative Banach algebras not Wedderburnian were given by G. F. Bachelis and S. Saeki, *Banach algebras with uncomplemented radical*, Proc. Amer. Math. Soc. **100** (1987), 271–273.

REFERENCES

- W. G. Bade and P. C. Curtis, Homomorphisms of commutative Banach algebras, Amer. J. Math. 82 (1960), 589-608.
- 2. ____, The Wedderburn decomposition of commutative Banach algebras, Amer. J. Math. 82 (1960), 851-861.
- 3. J. B. Conway, *The theory of subnormal operators*, Math. Surveys Monographs, vol. 36, Amer. Math. Soc., Providence, RI, 1991.
- 4. C. Feldman, The Wedderburn principal theorem in Banach algebras, Proc. Amer. Math. Soc. 2 (1951), 771-777.
- 5. G. Glaeser, Étude de certaines algèbres Taylorienne, J. Analyse Math. 6 (1958), 1-124.
- 6. E. Hewitt and K. A. Ross, Abstract harmonic analysis, vol. I, Springer-Verlag, New York, 1963
- 7. I. Kaplansky, *Dual rings*, Ann. of Math. (2) **49** (1948), 689–701.
- 8. J. R. Ringrose, Compact non-self-adjoint operators, Van Nostrand Reinhold, New York, 1971.
- 9. R. Schatten, Norm ideals of complete by continuous operators, Springer-Verlag, Berlin, 1960.
- 10. A. E. Taylor, Introduction to functional analysis, Wiley, New York, 1958.

DEPARTMENT OF MATHEMATICS, PENNSYLVANIA STATE UNIVERSITY, UNIVERSITY PARK, PENNSYLVANIA 16802