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STRONGLY EXTREME POINTS
AND THE RADON-NIKODYM PROPERTY

ZHIBAO HU

(Communicated by William J. Davis)

Abstract. We prove that if K is a bounded and convex subset of a Banach

space X and x is a point in K , then x is a strongly extreme point of K if

and only if x is a strongly extreme point of K which is the weak* closure of

K in X** . We also prove that a Banach space X has the Radon-Nikodym

property if and only if for any equivalent norm on X, the unit ball has a

strongly extreme point.

Suppose 7C is a subset of a Banach space X and x £ K. The element

x is called an extreme point of Tv if x £ co(Ti"\{x}), where co(Tv\{x}) is

the convex hull of the set Tv \{x} . Various kinds of extreme points have been

introduced and studied, among them are denting points and strongly extreme

points. Denting points can be defined in terms of slices of K which are of the
form

S(x* ,K,8) = {x£K: x*(x) > sxiox*(K) - 8},

where 8 is a positive number and x* is an element in X*, the dual of X.

The element x is called a denting point of K if the family of all slices of Tv

containing x is a neighborhood base of x with respect to the relative norm

topology on Ti . It is called a strongly extreme point of K if for any e > 0

there is a 8 > 0 such that for any y in X the conditions d(x + y, K) < 8

and d(x - y, K) < 8 imply that \\y\\ < e, where d(x, K) is the distance

between x and K. We use extTv (resp. str-ext TC, dentTv) to denote the set

of the extreme (resp. strongly extreme, denting) points of K. It is obvious that

if x £ dent K, then x £ str-ext Tv . In addition, it is easy to see that if K is

convex and x £ str-ext K, then x £ ext K. Let K be the weak* closure of Tv

in X**. An extreme point of K may not be an extreme point of K , even if Tv

is the unit ball of X [5]. On the other hand, we will show that if K is bounded

and convex and x £ K, then x £ str-ext K if and only if x £ str-ext K (see

Theorem 3).

Two important properties of Banach spaces, namely, the Radon-Nikodym

property (RNP) and the Krein-Milman property (KMP), can be defined in terms

of denting points and extreme points respectively. The Banach space X is said
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to have the RNP (resp. KMP) if every nonempty bounded closed convex set K

in X has a denting (resp. extreme) point [1]. It is unknown whether the RNP

and the KMP are equivalent. However, using a result of Huff and Morris [3],

it can be proved that X has the RNP if and only if every nonempty bounded

closed convex set K in X has an extreme point of K [1, Corollary 3.76; 4,

Remarks, p. 174]. Morris [5] proved that every separable Banach space that

contains an isomorphic copy of Co admits an equivalent strictly convex norm

| | such that the unit ball B^x,\ |> of X has no extreme points of the unit ball
B(X" ,| |) of X** • On the other hand, it is known that X has the RNP if and
only if for any equivalent norm on X the respective unit ball Bx has a denting

point (see, e.g., [1, p. 30]). Thus, as observed by Morris [5], if X has the RNP,

then for any equivalent norm on X the respective unit ball Bx has an extreme

point of BX" . Morris conjectured [5] that the converse is also true. Though

we are not able to prove the conjecture in this paper, we will show that X has

the RNP, if and only if for any equivalent norm on X the respective unit ball

Bx has a strongly extreme point (see Corollary 6).

For our discussion, we will need several equivalent formulations of strongly

extreme points listed in Lemma 1. We omit the proof of Lemma 1 because it

is straightforward.

Lemma 1. Suppose K is a subset of a Banach space X and x £ K. The

following are equivalent:

(1) x £ str-ext K.
(2) For any sequence {xn} in X, if\im„d(x±x„, K) = 0, then lim„x„ =

0.
(3) For any sequences {x„} and {yn} in K, if lim„(x„ +y„)/2 = x, then

lim„ xn = Hm„ yn = x.

(4) For any e > 0 there is a 8 > 0, such that for any two vectors xx and

x2 in K, if \\(x\ + x2)/2 - x|| < 8 then \xx - x2\ < e .

Lemma 2 may be used to reduce some problems about general convex sets to

problems about symmetric convex sets (see the proof of Theorem 3).

Lemma 2. Suppose K is a subset of a Banach space X. Let Sy(X, K) be the

convex hull of {(x, 1), (—x, -1) : x £ K} and let Sy (X, K) be the weak*
closure of Sy(X, K) tn the bidual of the direct sum X © R, where M is the set

of real numbers.

(1) The set Sy(X, K) is symmetric.

(2) If K   is bounded,  then  Sy(X, K)   is bounded and Sy*(X,K)   =
Sy(X**, co*K), where co*K is the weak* closure of coK in X**.

(3) If K   is bounded and convex,   then   str-ext Sy (X, C)   =   {(x, 1),

(-x, -1) : x £ str-extTi}.

Proof. (1) and (2) are obvious. Without loss of generality, we assume the norm

on X®R is defined by ||(jc, r)|| = max{||x||, |r|} for every (x, r) in X®R. Let

A = {(x, l):x £ K}, and let B = -A . Since Sy(X, K) = co(A\JB), we have

str-ext Sy(X, K) c A U B . Thus str-ext Sy(X, K) c str-ext A U str-ext B . It is

obvious that str-ext A = {(x, 1) : x £ str-ext Tv} and str-ext B = {(-x, -1) :

x £ str-ext7Q . Let M = sup{||z|| : z £ Sy(X, K)}, and let x £ K . Note that
M > 1 . If (x, 1) <£ str-extSy(X, K), then there is e > 0 such that for any
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e/2 > 8 > 0 there are ux and u2 in Sy(X, K) satisfying

\\(ux+u2)/2-(x,l)\\<8/(6M)   and   \\ul-u2\\>e.

For i'=l  or 2, there are x, and y, in 7C and £, in [0,1] such that u, =

ti(xt, l) + (i-ti)(-yi, -1). It follows that 2-tx-t2< ||(m.+h2)/2-(x, 1)|| <

8/(6M). Thus

\\Ui-(Xi, 1)11 = (l-/,)||(x, + y,, 2)|| <8/3.

Hence

\\xx -x2\\ = ||(xi, l)-(x2, 1)11 > ||mi -m2|| - ||Ki -(Xx, 1)|| - ||«2-(x2, 1)||

> e - 8/3 - 8/3 > e/2

and

||(x, + x2)/2 - x|| = ||[(x,, 1) + (x2, l)]/2 - (x, 1)||

< |Km, + u2)/2 - (x, 1)|| + ||[Ul - (x,, 1)]/2|| + ||[M2 - (x2, 1)]/2||

< 8/(6M) + 8/6 + 8/6 < 8.

Therefore, x £ str-ext Tv. Similarly if (—x, -1) £ str-ext Sy (X, K), then

x £ str-extTC. Hence str-ext Sy(X, K) = {(x, 1), (-x, -1) : x e str-extTC}.

Q.E.D.

Theorem 3. If K c X is bounded and convex and x £ K, then x £ str-ext Tv if

and only if x £ str-ext K .

Proof. Since Tv is a subset of K *, if x £ str-ext K* then x e str-ext Tv .

Now suppose x e str-ext K . By Lemma 2, we have (x, 1) £ str-ext Sy(X, K)

and Sy*(X,K) = Sy(X** ,T), and (x, 1) £ str-extSy(X**, T) if and

only if x e str-ext Tv*. Passing to (x, 1) and Sy(X, K) if necessary, we

may assume that K is also symmetric. Assume that x £ str-ext Tv . Then

there are e > 0 and a sequence {x**} in X** such that ||x**|| > e and

d(x ± x**, K ) < 1/n . For each n > 1 , choose x* e Sx- such that x**(x*) >

e , and let || |„ be the Minkowski functional determined by K + 1 /nBx ■ It is

obvious that B(X" ,\\ \\„) = K + 1/nBx- ■ Thus ||x ±x**||„ < 1 . By the local
reflexivity of Banach spaces [2], for each n > 1 there is a linear operator T„

from span{x,x**} to X such that

||r„(x±xr)IU< 1,     Tn(x) = x,    and   x*„(T„(x*„*)) = x*n*(x*n).

Let xn = 7;(x^*). Then ||x„|| > x*(x„) = x**(x„*) > eand ||x±x„||„ < 1 .

So x ± xn £ Tv + 1/nBx , that is, we have d(x + xn , K) < 1/n . Therefore,

x ^ str-ext Tv, which is a contradiction. Hence x 6 str-ext A"*.    Q.E.D.

Without assuming Tv  to be bounded, one can prove that if x e str-ext Tv

then x is an extreme point of extTv* (see [4, Remarks, p. 174] or Lemma 4).

Lemma 4. Suppose K c X is convex and x £ K. Consider the following

statements:

(1) For any sequences {x„} and {yn} in K, if lim„(x„ +yn)/2 = x, then

weak-lim„ x„ = weak-lim„ y„ = x.

(2) For any nets {x^} and {y^} in K, if weak-lim^x^ + yx)/2 = x, then

weak-lim^ x^ = weak-lim^y^ = x.



1170 ZHIBAOHU

(3) The element x is an extreme point of K*.

(4) For any bounded sequences {xn} and {yn} in K, if lim„(x„ +yn)/2 =

x, then weak-lim„ x„ = weak-lim„ y„ = x.

(5) For any bounded nets {xx} and {yx} in K, (/'weak-limii(x/l+y/i)/2 = x,

then weak-lim^ xi = weak-lim^ yx = x.

Then (1) and (2) are equivalent and each of them implies (3). Statements (4)

and (5) are equivalent and both are Implied by (3). Thus if, in addition, the set

K is bounded, then all the above statements are equivalent.

Proof. It is obvious that (2) implies (1). To prove the converse is true,

we assume that there exist some nets {xx} and {yx} in Tv such that

weak-lim/l(x/i + yx)/2 = x, but {xx} does not converge weakly to x . Passing

to subnets if necessary, we may assume that there is x* in X* such that

x*(xx - x) > 1. Since weak-lim/l(x/l + yx)/2 = x, we may assume that

x*(x - yf) > 0. Let A = co{x/i} and B = co{^}. Then infx*(^) >
maxx*(Ti) + l and there is a sequence z„ in co{(xx+yx)/2} such that lim„ zn =

x. Hence there are sequences {x„} in co{x/i} and {yn} in co{y^} such that

(xn + yn)/2 = z„. Thus lim„(x„ + yn)/2 = x and x*(x„ - y„) > 1, which

imply that either {x„} or {yn} does not converge weakly to x . Therefore, (1)

implies (2).
The proof of the equivalence of (4) and (5) is similar.

Assume that x is not an extreme point of K . Then there are x** and y**

in K* such that x** ± x ± y** and x = (x** +y**)/2. Choose x* in X*

such that (x** - x)(x*) > 1. Then (x - y**)(x*) > 1 . There exist nets {x^}

and {yx} in K such that weakMhrux,i = x** and weak*-limxyx = y** ■ Thus

weak-lim/l(x/i + yx)/2 = x , but {x^} does not converge weakly to x . Hence (2)

implies (3).
Finally, to show (3) implies (5), we assume that x is an extreme point of

K*. Suppose {x^}, {yx} are two bounded nets in K with weak-lim,i(x^+>,/i)/2

= x . Then {x^} has a weak* cluster point. Let x** be a weak* cluster point

of {x^}. Then x** £ K* and there is a subnet {x^)} of {x^} such that

weak*-lima x^a) = x**. Since weak-lim^x^ +yf)/2 = x, the weak* limit of

{yx{a)} exists, say, weak*-limQ^(cr) = y**. Then y** £ K and x = (x**+y**)/2.

Since x is an extreme point of Tv , we can conclude that x** = x. Hence

weak-lini} Xx = weak-lim^ yx = x.   Q.E.D.

Theorem 5. Suppose Kx, K2 c X are closed and convex, and one of them is

bounded and x £ X. Let K be the weak* closure of Kx + K2 in X**. If x is

an extreme point of the weak* closure of K in Xw , the fourth dual of X, then

x is in Kx + K2. In particular, if x is a strongly extreme point of the norm

closure of Kx + K2, then x is in Kx + K2.

Proof. It is obvious that the weak* closure of Kx + K2 is K*x + K*2. Thus

there are ux in K*x and u2 in K*2 such that x = ux + u2. We can choose

sequences {xi(«)} in Kx and {x2(«)} in K2 such that limnxx(n) + x2(n) =

x. Let yx(n) = xx(n) + u2 and y2(n) = x2(n) + ux . Then {yx(n)} and

{y2(n)} are bounded sequences in K*x + K*2. Since lim„[yx(n) + y2(n)]/2 =

x, we have weak-lim„>'i(/i) = weak-lim„ y2(n) = x. Thus by Lemma 4 the

sequence {x,(«)} is weakly convergent for i= 1 and 2. It follows that u, £ Kj.

Therefore, x is in Kx + K2. Now suppose x is a strongly extreme point of
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the norm closure of Kx+ K2. By Theorem 3, the element x is also a strongly

extreme point of K . Thus x is an extreme point of the weak* closure of K

in XW . Therefore, x is in Kx+K2.    Q.E.D.

Corollary 6. Let X be a Banach space. The following are equivalent:

(1) The space X has the RNP.
(2) For any equivalent norm \\ on X, the unit ball B^x,\ p has a strongly

extreme point.

(3) For any equivalent norm \\ on X, the unit ball B(X>\ p has an extreme

point of B{Xw,\ p.

Proof. It is obvious that (1) implies (2). By Theorem 3, every strongly extreme

point of Bx is an extreme point of Bxw ■ Thus (2) implies (3). So it remains

to show that (3) implies (1). Let A c X be nonempty, bounded, and weakly

closed. Let K = ca(A\J-A), and let | | be the Minkowski functional determined

by Tv + Bx where Bx is the unit ball of X with respect to the original norm.

Then | | is an equivalent norm on X such that the unit ball B^x,\ p is the

norm closure of K + Bx ■ Let x be an element in X such that x is an extreme

point of the unit ball B^xm ,\ p of X(4). By Theorem 5, there are y £ K and

z £ Bx such that x = y + z. It is obvious that x is an extreme point of

B(x~,\ p and B(X>> ,\ p = K + Bx-- . Thus y is an extreme point of K*. By

the Krein-Milman Theorem, the set extTv* is contained in the weak* closure

of A U -A. Since A is weakly closed, we have y £ A or y £ -A. In any

case the set A has an extreme point. Therefore, X has the RNP [ 1, Corollary

3.76].   Q.E.D.
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