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STRONGLY EXTREME POINTS
AND THE RADON-NIKODYM PROPERTY

ZHIBAO HU

(Communicated by William J. Davis)

ABSTRACT. We prove that if K is a bounded and convex subset of a Banach
space X and x isa pointin K, then x is a strongly extreme point of K if
and only if x is a strongly extreme point of K~ which is the weak* closure of
K in X**. We also prove that a Banach space X has the Radon-Nikodym
property if and only if for any equivalent norm on X , the unit ball has a
strongly extreme point.

Suppose K 1is a subset of a Banach space X and x € K. The element
x is called an extreme point of K if x ¢ co(K\{x}), where co(K\{x}) is
the convex hull of the set K\{x}. Various kinds of extreme points have been
introduced and studied, among them are denting points and strongly extreme
points. Denting points can be defined in terms of slices of K which are of the
form
S(x*,K,d)={xeK:x*(x)>supx*(K)-9},

where ¢ is a positive number and x* is an element in X*, the dual of X .
The element x is called a denting point of K if the family of all slices of K
containing x is a neighborhood base of x with respect to the relative norm
topology on K. It is called a strongly extreme point of K if for any ¢ > 0
there is a d > 0 such that for any y in X the conditions d(x +y, K) < §
and d(x —y, K) < 6 imply that ||y| < &, where d(x, K) is the distance
between x and K. We use extK (resp. str-ext K, dentK) to denote the set
of the extreme (resp. strongly extreme, denting) points of K . It is obvious that
if x € dentK, then x € str-ext K. In addition, it is easy to see that if K is
convex and x € str-extK , then x € extK . Let K" be the weak* closure of K
in X**. An extreme point of X may not be an extreme point of X, even if K
is the unit ball of X [5]. On the other hand, we will show that if K is bounded
and convex and x € K, then x € str-extK if and only if x € str-extK (see
Theorem 3).

Two important properties of Banach spaces, namely, the Radon-Nikodym
property (RNP) and the Krein-Milman property (KMP), can be defined in terms
of denting points and extreme points respectively. The Banach space X is said
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to have the RNP (resp. KMP) if every nonempty bounded closed convex set K
in X has a denting (resp. extreme) point [1]. It is unknown whether the RNP
and the KMP are equivalent. However, using a result of Huff and Morris [3],
it can be proved that X has the RNP if and only if every nonempty bounded
closed convex set K in X has an extreme point of K [1, Corollary 3.76; 4,
Remarks, p. 174]. Morris [5] proved that every separable Banach space that
contains an isomorphic copy of ¢y admits an equivalent strictly convex norm
| | such that the unit ball By |, of X has no extreme points of the unit ball
B(x+- | ) of X**. On the other hand, it is known that X has the RNP if and
only if for any equivalent norm on X the respective unit ball By has a denting
point (see, e.g., [1, p. 30]). Thus, as observed by Morris [5], if X has the RNP,
then for any equivalent norm on X the respective unit ball By has an extreme
point of By... Morris conjectured [5] that the converse is also true. Though
we are not able to prove the conjecture in this paper, we will show that X has
the RNP, if and only if for any equivalent norm on X the respective unit ball
By has a strongly extreme point (see Corollary 6).

For our discussion, we will need several equivalent formulations of strongly
extreme points listed in Lemma 1. We omit the proof of Lemma 1 because it
is straightforward.

Lemma 1. Suppose K is a subset of a Banach space X and x € K. The
Jfollowing are equivalent:

(1) x estrextK.

(2) For any sequence {x,} in X, if im,d(xtx,, K)=0, then lim, x, =
0.

(3) For any sequences {x,} and {y,} in K, if lim,(x, + yn)/2 = x, then
lim, x, =lim, y, = x.

(4) For any &€ > 0 thereisa 6 > 0, such that for any two vectors x| and
x; in K, if ||[(x1 +x2)/2 —Xx|| <3 then ||x; — x| <E€.

Lemma 2 may be used to reduce some problems about general convex sets to
problems about symmetric convex sets (see the proof of Theorem 3).

Lemma 2. Suppose K is a subset of a Banach space X . Let Sy(X, K) be the
convex hull of {(x, 1), (—=x,—-1):x € K} and let Sy (X, K) be the weak*
closure of Sy(X, K) in the bidual of the direct sum X & R, where R is the set
of real numbers.
(1) Theset Sy(X, K) is symmetric.
(2) If K is bounded, then Sy(X,K) is bounded and Sy (X,K) =
Sy(X**,c0"K), where 0" K is the weak* closure of coK in X**.
(3) If K is bounded and convex, then str-extSy(X,C) = {(x,1),
(=x, —1):x estrextK}.

Proof. (1) and (2) are obvious. Without loss of generality, we assume the norm
on Xo®R isdefined by ||(x, r)|| = max{||x||, |r|} forevery (x,r) in X®R. Let
A={(x,1):x€K},andlet B=—A. Since Sy(X, K) =co(AUB), we have
str-ext Sy(X, K) C AU B. Thus str-extSy(X, K) C str-ext A Ustr-extB. It is
obvious that str-ext4 = {(x, 1) : x € str-extK} and str-extB = {(—x, —1) :
x € str-extK}. Let M =sup{||z||: z € Sy(X, K)}, and let x € K. Note that
M>1.1If (x,1) ¢ str-extSy(X, K), then there is ¢ > 0 such that for any
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€/2 >0 >0 there are u; and u, in Sy(X, K) satisfying
Iy +u2)/2 = (x, ]| <6/(6M) and |lu; —uyl| > ¢.

For i =1 or 2, there are x; and y; in K and ¢ in [0, 1] such that u;, =
ti(xi, N+ —t)(—y;i, —1). Itfollows that 2—1t; -1, < |[(u;+u2)/2—(x, 1)|| <
0/(6M). Thus

lui = (xi, DI = (1 =t)ll(xi +yi, 2)[| < /3.

Hence
Iy = 220l = ||y, 1) = (2, DI > [Juy — ual| = |Juy — (xp, Dl = fluz — (x2, 1]
>e—-0/3-0/3>¢/2
and

(1 +x2)/2 = x| = [I[(x1, 1) + (x2, D]/2 = (x, D
<Ny +u2)/2 = (x, DI+ [I[n = (x5 DI/2)] + 1wz = (x2, 1)]/2]]
<3/(6M)+3/6+3/6<3.

Therefore, x ¢ str-extK . Similarly if (—x, —1) ¢ str-extSy(X, K), then
x ¢ str-extK. Hence str-extSy(X, K) = {(x, 1), (=x, —1) : x € str-extK}.
Q.E.D.

Theorem 3. If K C X is bounded and convex and x € K, then x € str-extK if
and only if x € str-extK .

Proof. Since K is a subset of K , if x € str-extK then x € str-extk.
Now suppose x € str-ext K. By Lemma 2, we have (x, 1) € str-extSy(X , K)
and Sy (X,K) = Sy(X*,K"), and (x, 1) € strextSy(X**,K") if and
only if x € str-extK . Passing to (x, 1) and Sy(X, K) if necessary, we
may assume that K is also symmetric. Assume that x ¢ str-ext K . Then
there are ¢ > 0 and a sequence {x;*} in X** such that |x;*|| > ¢ and
d(x+x:*,K’)<1/n. Foreach n> 1, choose x; € Sx- such that x}*(x}) >
e, and let || ||, be the Minkowski functional determined by K + 1/nBy . It is
obvious that By.. | ) = K + 1/nBx--. Thus |x £ x;*||, < 1. By the local
reflexivity of Banach spaces [2], for each »n > 1| there is a linear operator T,
from span{x, x;*} to X such that

ITn(x £ 227l <1, To(x)=x, and x;(Ta(x;")) = x;"(x5).

Let x, = Ty(x;*). Then ||x,|| > xi(xn) = x;*(x;) > €and ||x £ x|, < 1.
So x £ x, € K+ 1/nBy, that is, we have d(x + x,, K) < 1/n. Therefore,
x ¢ str-ext K , which is a contradiction. Hence x € str-extK . Q.E.D.

Without assuming K to be bounded, one can prove that if x € str-extK
then x is an extreme point of ext K (see [4, Remarks, p. 174] or Lemma 4).

Lemma 4. Suppose K C X is convex and x € K. Consider the following
statements:

(1) For any sequences {x,} and {y,} in K, if lim,(x, +y,)/2 = x, then
weak-lim, x, = weak-lim, y, = x.

(2) For any nets {x;} and {y;} in K, if weak-lim;(x; + y;)/2 = x, then
weak-lim; x; = weak-lim; y; = x.
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(3) The element x is an extreme point of K.
(4) For any bounded sequences {x,} and {y,} in K, if lim,(x, +y,)/2 =
X, then weak-lim, x, = weak-lim, y, = x.
(5) Forany bounded nets {x;} and {y,;} in K, if weak-lim;(x;+y;)/2 = x,
then weak-lim, x; = weak-lim; y; = x .
Then (1) and (2) are equivalent and each of them implies (3). Statements (4)
and (5) are equivalent and both are implied by (3). Thus if, in addition, the set
K is bounded, then all the above statements are equivalent.

Proof. It is obvious that (2) implies (1). To prove the converse is true,
we assume that there exist some nets {x;} and {y;} in K such that
weak-lim; (x; + y;)/2 = x, but {x;} does not converge weakly to x. Passing
to subnets if necessary, we may assume that there is x* in X* such that
x*(x; —x) > 1. Since weak-lim;(x; + y;)/2 = x, we may assume that
x*(x —y;) > 0. Let 4 = co{x;} and B = co{y;}. Then infx*(4) >
max x*(B)+1 and there is a sequence z, in co{(x;+y;)/2} such that lim, z, =
x . Hence there are sequences {x,} in co{x;} and {y,} in co{y;} such that
(Xn +Yn)/2 = z,. Thus lim,(x, +y,)/2 = x and x*(x, — y,) > 1, which
imply that either {x,} or {y,} does not converge weakly to x . Therefore, (1)
implies (2).

The proof of the equivalence of (4) and (5) is similar.

Assume that x is not an extreme point of X~ . Then there are x** and y**
in X~ such that x** # x # y** and x = (x** + y**)/2. Choose x* in X*
such that (x** —x)(x*) > 1. Then (x —py**)(x*) > 1. There exist nets {x;}
and {y;} in K such that weak*-lim; x; = x** and weak*-lim; y; = y**. Thus
weak-lim; (x; +y;)/2 = x, but {x;} does not converge weakly to x. Hence (2)
implies (3).

Finally, to show (3) implies (5), we assume that x is an extreme point of
K’ . Suppose {x;}, {y:} are two bounded nets in K with weak-lim;(x;+y;)/2
= x. Then {x;} has a weak* cluster point. Let x** be a weak* cluster point
of {x;}. Then x** € K and there is a subnet {xi)} of {x2} such that
weak*-lim, x;,) = x**. Since weak-lim;(x; + y;)/2 = x, the weak* limit of
{Vi(a)} exists, say, weak*-lim, y;,) = y**. Then y** € K" and x = (x**+y**)/2.
Since x is an extreme point of K , we can conclude that x** = x. Hence
weak-lim; x; = weak-lim; y; = x. Q.E.D.

Theorem 5. Suppose K,, K, C X are closed and convex, and one of them is
bounded and x € X. Let K be the weak* closure of K| + K, in X**. If x is
an extreme point of the weak* closure of K in X*), the fourth dual of X , then
x isin K, + K,. In particular, if x is a strongly extreme point of the norm
closure of K| + K,, then x isin K, + K.

Proof. It is obvious that the weak* closure of K| + K, is K, + K,. Thus
there are u; in K, and u, in K, such that x = u; + u;. We can choose
sequences {x;(n)} in K; and {x;(n)} in K, such that lim, x;(n) + x,(n) =
x. Let yi(n) = xi(n) + u and y;(n) = x3(n) + u;. Then {y(n)} and
{y2(n)} are bounded sequences in f’{ + f; Since lim,[y,(n) + y2(n)}/2 =
x, we have weak-lim, y;(n) = weak-lim, y>(n) = x. Thus by Lemma 4 the
sequence {x;(n)} is weakly convergent for i = 1 and 2. It follows that u; € K .
Therefore, x is in K; + K, . Now suppose x is a strongly extreme point of
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the norm closure of K; + K, . By Theorem 3, the element x is also a strongly
extreme point of K. Thus x is an extreme point of the weak* closure of K
in X Therefore, x isin K, + K,. Q.E.D.

Corollary 6. Let X be a Banach space. The following are equivalent:

(1) The space X has the RNP.

(2) For any eqtfivalent norm || on X, the unit ball By | has a strongly
extreme point.

(3) For any equivalent norm || on X, the unit ball Bix | hasan extreme

pOint Of B(X(4),| D -

Proof. It is obvious that (1) implies (2). By Theorem 3, every strongly extreme
point of By is an extreme point of By« . Thus (2) implies (3). So it remains
to show that (3) implies (1). Let 4 C X be nonempty, bounded, and weakly
closed. Let K =co(AU—A), and let || be the Minkowski functional determined
by K + By where By is the unit ball of X with respect to the original norm.
Then | | is an equivalent norm on X such that the unit ball By |, is the
norm closure of K+ By . Let x be an element in X such that x is an extreme
point of the unit ball By« ||, of X . By Theorem 5, there are y € K and
z € By such that x = y + z. It is obvious that x is an extreme point of
Bix--.|p) and Bix-- |y =K + Bx--. Thus y is an extreme point of K . By
the Krein-Milman Theorem, the set extK is contained in the weak* closure
of AU—-A. Since A is weakly closed, we have y € 4 or y € —4. In any
case the set 4 has an extreme point. Therefore, X has the RNP [1, Corollary
3.76]. Q.E.D.
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