STRONGLY EXTREME POINTS AND THE RADON-NIKODÝM PROPERTY

ZHIBAO HU

(Communicated by William J. Davis)

ABSTRACT. We prove that if K is a bounded and convex subset of a Banach space X and X is a point in K, then X is a strongly extreme point of K if and only if X is a strongly extreme point of \overline{K}^* which is the weak* closure of K in X^{**} . We also prove that a Banach space X has the Radon-Nikodým property if and only if for any equivalent norm on X, the unit ball has a strongly extreme point.

Suppose K is a subset of a Banach space X and $x \in K$. The element x is called an extreme point of K if $x \notin \operatorname{co}(K \setminus \{x\})$, where $\operatorname{co}(K \setminus \{x\})$ is the convex hull of the set $K \setminus \{x\}$. Various kinds of extreme points have been introduced and studied, among them are denting points and strongly extreme points. Denting points can be defined in terms of slices of K which are of the form

$$S(x^*, K, \delta) = \{x \in K : x^*(x) > \sup x^*(K) - \delta\},\$$

where δ is a positive number and x^* is an element in X^* , the dual of X. The element x is called a denting point of K if the family of all slices of K containing x is a neighborhood base of x with respect to the relative norm topology on K. It is called a strongly extreme point of K if for any $\varepsilon > 0$ there is a $\delta > 0$ such that for any y in X the conditions $d(x+y,K) < \delta$ and $d(x-y,K) < \delta$ imply that $\|y\| < \varepsilon$, where d(x,K) is the distance between x and K. We use $\operatorname{ext} K$ (resp. $\operatorname{str-ext} K$, $\operatorname{dent} K$) to denote the set of the extreme (resp. $\operatorname{strongly}$ extreme, denting) points of K. It is obvious that if $x \in \operatorname{dent} K$, then $x \in \operatorname{str-ext} K$. In addition, it is easy to see that if K is convex and $x \in \operatorname{str-ext} K$, then $x \in \operatorname{ext} K$. Let \overline{K}^* be the weak* closure of K in X^{**} . An extreme point of K may not be an extreme point of \overline{K}^* , even if K is the unit ball of K [5]. On the other hand, we will show that if K is bounded and convex and $K \in K$, then $K \in \operatorname{str-ext} K$ if and only if $K \in \operatorname{str-ext} K$ (see Theorem 3).

Two important properties of Banach spaces, namely, the Radon-Nikodým property (RNP) and the Krein-Milman property (KMP), can be defined in terms of denting points and extreme points respectively. The Banach space X is said

Received by the editors December 21, 1991.

¹⁹⁹¹ Mathematics Subject Classification. Primary 46B22; Secondary 46B20.

Key words and phrases. Radon-Nikodým property, extreme point, strongly extreme point.

1168 ZHIBAO HU

to have the RNP (resp. KMP) if every nonempty bounded closed convex set K in X has a denting (resp. extreme) point [1]. It is unknown whether the RNP and the KMP are equivalent. However, using a result of Huff and Morris [3], it can be proved that X has the RNP if and only if every nonempty bounded closed convex set K in X has an extreme point of \overline{K}^* [1, Corollary 3.76; 4, Remarks, p. 174]. Morris [5] proved that every separable Banach space that contains an isomorphic copy of c_0 admits an equivalent strictly convex norm $| \ |$ such that the unit ball $B_{(X,|\ |)}$ of X has no extreme points of the unit ball $B_{(X^{**}, | \cdot| \cdot|)}$ of X^{**} . On the other hand, it is known that X has the RNP if and only if for any equivalent norm on X the respective unit ball B_X has a denting point (see, e.g., [1, p. 30]). Thus, as observed by Morris [5], if X has the RNP, then for any equivalent norm on X the respective unit ball B_X has an extreme point of $B_{X^{**}}$. Morris conjectured [5] that the converse is also true. Though we are not able to prove the conjecture in this paper, we will show that X has the RNP, if and only if for any equivalent norm on X the respective unit ball B_X has a strongly extreme point (see Corollary 6).

For our discussion, we will need several equivalent formulations of strongly extreme points listed in Lemma 1. We omit the proof of Lemma 1 because it is straightforward.

Lemma 1. Suppose K is a subset of a Banach space X and $x \in K$. The following are equivalent:

- (1) $x \in \text{str-ext } K$.
- (2) For any sequence $\{x_n\}$ in X, if $\lim_n d(x \pm x_n, K) = 0$, then $\lim_n x_n = 0$
- (3) For any sequences $\{x_n\}$ and $\{y_n\}$ in K, if $\lim_n (x_n + y_n)/2 = x$, then $\lim_n x_n = \lim_n y_n = x$.
- (4) For any $\varepsilon > 0$ there is a $\delta > 0$, such that for any two vectors x_1 and x_2 in K, if $||(x_1 + x_2)/2 x|| < \delta$ then $||x_1 x_2|| < \varepsilon$.

Lemma 2 may be used to reduce some problems about general convex sets to problems about symmetric convex sets (see the proof of Theorem 3).

Lemma 2. Suppose K is a subset of a Banach space X. Let Sy(X, K) be the convex hull of $\{(x, 1), (-x, -1) : x \in K\}$ and let $\overline{Sy}^*(X, K)$ be the weak* closure of Sy(X, K) in the bidual of the direct sum $X \oplus \mathbb{R}$, where \mathbb{R} is the set of real numbers.

- (1) The set Sy(X, K) is symmetric.
- (2) If K is bounded, then Sy(X, K) is bounded and $\overline{Sy}^*(X, K) = Sy(X^{**}, \overline{co}^*K)$, where \overline{co}^*K is the weak* closure of co K in X^{**} .
- (3) If K is bounded and convex, then $str-ext Sy(X, C) = \{(x, 1), (-x, -1) : x \in str-ext K\}$.

Proof. (1) and (2) are obvious. Without loss of generality, we assume the norm on $X \oplus \mathbb{R}$ is defined by $\|(x, r)\| = \max\{\|x\|, |r|\}$ for every (x, r) in $X \oplus \mathbb{R}$. Let $A = \{(x, 1) : x \in K\}$, and let B = -A. Since $Sy(X, K) = co(A \cup B)$, we have str-ext $Sy(X, K) \subset A \cup B$. Thus str-ext $Sy(X, K) \subset Sy(X, K) \subset Sy(X, K)$ and str-ext $Sy(X, K) \subset Sy(X, K)$ and str-ext $Sy(X, K) \subset Sy(X, K)$ and let $Sy(X, K) \subset Sy(X, K)$

 $\varepsilon/2 > \delta > 0$ there are u_1 and u_2 in Sy(X, K) satisfying

$$||(u_1+u_2)/2-(x,1)||<\delta/(6M)$$
 and $||u_1-u_2||>\varepsilon$.

For i=1 or 2, there are x_i and y_i in K and t_i in [0,1] such that $u_i=t_i(x_i,1)+(1-t_i)(-y_i,-1)$. It follows that $2-t_1-t_2 \le \|(u_1+u_2)/2-(x,1)\| < \delta/(6M)$. Thus

$$||u_i - (x_i, 1)|| = (1 - t_i)||(x_i + y_i, 2)|| < \delta/3.$$

Hence

$$||x_1 - x_2|| = ||(x_1, 1) - (x_2, 1)|| \ge ||u_1 - u_2|| - ||u_1 - (x_1, 1)|| - ||u_2 - (x_2, 1)||$$

 $> \varepsilon - \delta/3 - \delta/3 > \varepsilon/2$

and

$$||(x_1 + x_2)/2 - x|| = ||[(x_1, 1) + (x_2, 1)]/2 - (x, 1)||$$

$$\leq ||(u_1 + u_2)/2 - (x, 1)|| + ||[u_1 - (x_1, 1)]/2|| + ||[u_2 - (x_2, 1)]/2||$$

$$< \delta/(6M) + \delta/6 + \delta/6 < \delta.$$

Therefore, $x \notin \text{str-ext } K$. Similarly if $(-x, -1) \notin \text{str-ext } Sy(X, K)$, then $x \notin \text{str-ext } K$. Hence $\text{str-ext } Sy(X, K) = \{(x, 1), (-x, -1) : x \in \text{str-ext } K\}$. Q.E.D.

Theorem 3. If $K \subset X$ is bounded and convex and $x \in K$, then $x \in \text{str-ext } K$ if and only if $x \in \text{str-ext } \overline{K}^*$.

Proof. Since K is a subset of \overline{K}^* , if $x \in \text{str-ext}\overline{K}^*$ then $x \in \text{str-ext}K$. Now suppose $x \in \text{str-ext}K$. By Lemma 2, we have $(x, 1) \in \text{str-ext}Sy(X, K)$ and $\overline{Sy}^*(X, K) = Sy(X^{**}, \overline{K}^*)$, and $(x, 1) \in \text{str-ext}Sy(X^{**}, \overline{K}^*)$ if and only if $x \in \text{str-ext}\overline{K}^*$. Passing to (x, 1) and Sy(X, K) if necessary, we may assume that K is also symmetric. Assume that $x \notin \text{str-ext}\overline{K}^*$. Then there are $\varepsilon > 0$ and a sequence $\{x_n^{**}\}$ in X^{**} such that $\|x_n^{**}\| > \varepsilon$ and $d(x \pm x_n^{**}, \overline{K}^*) < 1/n$. For each $n \ge 1$, choose $x_n^* \in S_{X^*}$ such that $x_n^{**}(x_n^*) > \varepsilon$, and let $\| \cdot \|_n$ be the Minkowski functional determined by $(x + 1/nB_X)$. It is obvious that $(x_n^{**}, \|\cdot\|_n) = \overline{K}^* + 1/nB_{X^{***}}$. Thus $(x \pm x_n^{**}) = 1$. By the local reflexivity of Banach spaces [2], for each (x + 1) = 1 there is a linear operator (x + 1) = 1 from span(x + 1) = 1 that

$$||T_n(x \pm x_n^{**})||_n < 1$$
, $T_n(x) = x$, and $x_n^*(T_n(x_n^{**})) = x_n^{**}(x_n^*)$.

Let $x_n = T_n(x_n^{**})$. Then $||x_n|| \ge x_n^*(x_n) = x_n^{**}(x_n^*) > \varepsilon$ and $||x \pm x_n||_n < 1$. So $x \pm x_n \in K + 1/nB_X$, that is, we have $d(x \pm x_n, K) \le 1/n$. Therefore, $x \notin \text{str-ext } K$, which is a contradiction. Hence $x \in \text{str-ext } \overline{K}^*$. Q.E.D.

Without assuming K to be bounded, one can prove that if $x \in \text{str-ext } K$ then x is an extreme point of ext \overline{K}^* (see [4, Remarks, p. 174] or Lemma 4).

Lemma 4. Suppose $K \subset X$ is convex and $x \in K$. Consider the following statements:

- (1) For any sequences $\{x_n\}$ and $\{y_n\}$ in K, if $\lim_n (x_n + y_n)/2 = x$, then weak- $\lim_n x_n = \text{weak-}\lim_n y_n = x$.
- (2) For any nets $\{x_{\lambda}\}$ and $\{y_{\lambda}\}$ in K, if weak- $\lim_{\lambda} (x_{\lambda} + y_{\lambda})/2 = x$, then weak- $\lim_{\lambda} x_{\lambda} = \text{weak-}\lim_{\lambda} y_{\lambda} = x$.

1170 ZHIBAO HU

- (3) The element x is an extreme point of \overline{K}^* .
- (4) For any bounded sequences $\{x_n\}$ and $\{y_n\}$ in K, if $\lim_n (x_n + y_n)/2 = x$, then weak- $\lim_n x_n = \text{weak-}\lim_n y_n = x$.
- (5) For any bounded nets $\{x_{\lambda}\}$ and $\{y_{\lambda}\}$ in K, if weak- $\lim_{\lambda} (x_{\lambda} + y_{\lambda})/2 = x$, then weak- $\lim_{\lambda} x_{\lambda} = \text{weak-}\lim_{\lambda} y_{\lambda} = x$.

Then (1) and (2) are equivalent and each of them implies (3). Statements (4) and (5) are equivalent and both are implied by (3). Thus if, in addition, the set K is bounded, then all the above statements are equivalent.

Proof. It is obvious that (2) implies (1). To prove the converse is true, we assume that there exist some nets $\{x_{\lambda}\}$ and $\{y_{\lambda}\}$ in K such that weak- $\lim_{\lambda}(x_{\lambda}+y_{\lambda})/2=x$, but $\{x_{\lambda}\}$ does not converge weakly to x. Passing to subnets if necessary, we may assume that there is x^* in X^* such that $x^*(x_{\lambda}-x)>1$. Since weak- $\lim_{\lambda}(x_{\lambda}+y_{\lambda})/2=x$, we may assume that $x^*(x-y_{\lambda})>0$. Let $A=\operatorname{co}\{x_{\lambda}\}$ and $B=\operatorname{co}\{y_{\lambda}\}$. Then $\inf x^*(A)\geq \max x^*(B)+1$ and there is a sequence z_n in $\operatorname{co}\{(x_{\lambda}+y_{\lambda})/2\}$ such that $\lim_n z_n=x$. Hence there are sequences $\{x_n\}$ in $\operatorname{co}\{x_{\lambda}\}$ and $\{y_n\}$ in $\operatorname{co}\{y_{\lambda}\}$ such that $(x_n+y_n)/2=z_n$. Thus $\lim_n (x_n+y_n)/2=x$ and $x^*(x_n-y_n)>1$, which imply that either $\{x_n\}$ or $\{y_n\}$ does not converge weakly to x. Therefore, (1) implies (2).

The proof of the equivalence of (4) and (5) is similar.

Assume that x is not an extreme point of \overline{K}^* . Then there are x^{**} and y^{**} in \overline{K}^* such that $x^{**} \neq x \neq y^{**}$ and $x = (x^{**} + y^{**})/2$. Choose x^* in X^* such that $(x^{**} - x)(x^*) > 1$. Then $(x - y^{**})(x^*) > 1$. There exist nets $\{x_{\lambda}\}$ and $\{y_{\lambda}\}$ in K such that weak*- $\lim_{\lambda} x_{\lambda} = x^{**}$ and weak*- $\lim_{\lambda} y_{\lambda} = y^{**}$. Thus weak- $\lim_{\lambda} (x_{\lambda} + y_{\lambda})/2 = x$, but $\{x_{\lambda}\}$ does not converge weakly to x. Hence (2) implies (3).

Finally, to show (3) implies (5), we assume that x is an extreme point of \overline{K}^* . Suppose $\{x_{\lambda}\}$, $\{y_{\lambda}\}$ are two bounded nets in K with weak- $\lim_{\lambda}(x_{\lambda}+y_{\lambda})/2=x$. Then $\{x_{\lambda}\}$ has a weak* cluster point. Let x^{**} be a weak* cluster point of $\{x_{\lambda}\}$. Then $x^{**} \in \overline{K}^*$ and there is a subnet $\{x_{\lambda(\alpha)}\}$ of $\{x_{\lambda}\}$ such that weak*- $\lim_{\alpha} x_{\lambda(\alpha)} = x^{**}$. Since weak- $\lim_{\lambda} (x_{\lambda}+y_{\lambda})/2 = x$, the weak* limit of $\{y_{\lambda(\alpha)}\}$ exists, say, weak*- $\lim_{\alpha} y_{\lambda(\alpha)} = y^{**}$. Then $y^{**} \in \overline{K}^*$ and $x = (x^{**}+y^{**})/2$. Since x is an extreme point of \overline{K}^* , we can conclude that $x^{**} = x$. Hence weak- $\lim_{\lambda} y_{\lambda} = x$. Q.E.D.

Theorem 5. Suppose K_1 , $K_2 \subset X$ are closed and convex, and one of them is bounded and $x \in X$. Let K be the weak* closure of $K_1 + K_2$ in X^{**} . If x is an extreme point of the weak* closure of K in $X^{(4)}$, the fourth dual of X, then x is in $K_1 + K_2$. In particular, if x is a strongly extreme point of the norm closure of $K_1 + K_2$, then x is in $K_1 + K_2$.

Proof. It is obvious that the weak* closure of $K_1 + K_2$ is $\overline{K}_1^* + \overline{K}_2^*$. Thus there are u_1 in \overline{K}_1^* and u_2 in \overline{K}_2^* such that $x = u_1 + u_2$. We can choose sequences $\{x_1(n)\}$ in K_1 and $\{x_2(n)\}$ in K_2 such that $\lim_n x_1(n) + x_2(n) = x$. Let $y_1(n) = x_1(n) + u_2$ and $y_2(n) = x_2(n) + u_1$. Then $\{y_1(n)\}$ and $\{y_2(n)\}$ are bounded sequences in $\overline{K}_1^* + \overline{K}_2^*$. Since $\lim_n [y_1(n) + y_2(n)]/2 = x$, we have weak- $\lim_n y_1(n) = \text{weak-}\lim_n y_2(n) = x$. Thus by Lemma 4 the sequence $\{x_i(n)\}$ is weakly convergent for i = 1 and 2. It follows that $u_i \in K_i$. Therefore, x is in $K_1 + K_2$. Now suppose x is a strongly extreme point of

the norm closure of $K_1 + K_2$. By Theorem 3, the element x is also a strongly extreme point of K. Thus x is an extreme point of the weak* closure of K in $X^{(4)}$. Therefore, x is in $K_1 + K_2$. Q.E.D.

Corollary 6. Let X be a Banach space. The following are equivalent:

- (1) The space X has the RNP.
- (2) For any equivalent norm | | on X, the unit ball $B_{(X,||)}$ has a strongly extreme point.
- (3) For any equivalent norm | | on X, the unit ball $B_{(X,||)}$ has an extreme point of $B_{(X^{(4)},|||)}$.

Proof. It is obvious that (1) implies (2). By Theorem 3, every strongly extreme point of B_X is an extreme point of $B_{X^{(4)}}$. Thus (2) implies (3). So it remains to show that (3) implies (1). Let $A \subset X$ be nonempty, bounded, and weakly closed. Let $K = \overline{\operatorname{co}}(A \cup -A)$, and let $| \cdot |$ be the Minkowski functional determined by $K + B_X$ where B_X is the unit ball of X with respect to the original norm. Then $| \cdot |$ is an equivalent norm on X such that the unit ball $B_{(X, | \cdot |)}$ is the norm closure of $K + B_X$. Let X be an element in X such that X is an extreme point of the unit ball $B_{(X^{(4)}, | \cdot |)}$ of $X^{(4)}$. By Theorem 5, there are $Y \in K$ and $Y \in B_X$ such that $Y \in Y$ is an extreme point of $Y \in Y$ and $Y \in Y$ and $Y \in Y$ and $Y \in Y$ is an extreme point of $Y \in Y$. Thus $Y \in Y$ is an extreme point of $Y \in Y$ is an extreme point of $Y \in Y$. By the Krein-Milman Theorem, the set $Y \in Y$ is contained in the weak* closure of $Y \in Y$. Since $Y \in Y$ is weakly closed, we have $Y \in Y$ or $Y \in Y$. In any case the set $Y \in Y$ has an extreme point. Therefore, $Y \in Y$ has the RNP [1, Corollary 3.76]. Q.E.D.

ACKNOWLEDGMENT

The author thanks Professors Bor-Luh Lin and Mark Smith for many helpful discussions and the referee for several corrections.

REFERENCES

- 1. R. Bourgin, Geometric aspects of convex sets with the Radon-Nikodým property, Lecture Notes in Math., vol. 993, Springer-Verlag, New York, 1983.
- 2. D. Dean, The equation $L(E, X^{**}) = L(E, X)^{**}$ and the principle of local reflexivity, Proc. Amer. Math. Soc. **40** (1973), 146–148.
- 3. R. Huff and P. Morris, Geometric characterizations of the Radon-Nikodým property in Banach spaces, Studia Math. 56 (1976), 157-164.
- 4. K. Kunen and H. Rosenthal, Martingale proofs of some geometrical results in Banach space theory, Pacific J. Math. 100 (1982), 153-175.
- 5. P. Morris, Disappearance of extreme points, Proc. Amer. Math. Soc. 88 (1983), 244-246.

DEPARTMENT OF MATHEMATICS AND STATISTICS, MIAMI UNIVERSITY, OXFORD, OHIO 45056 E-mail address: zhu@miavx1.acs.muohio.edu