EMBEDDINGS AND IMMERSIONS OF A 2-SPHERE IN 4-MANIFOLDS

GAN DAN-YAN AND GUO JIAN-HAN

(Communicated by Frederick R. Cohen)

ABSTRACT. Let M be $CP^{2}\#(-CP^{2})\#P_{1}\#\cdots \#P_{m+k}$, where P_{1}, \ldots, P_{m+k} are copies of $-CP^{2}$. Let $h, g, g_{1}, \ldots, g_{m+k}$ be the images of the standard generators of $H_{2}(CP^{2}; Z)$, $H_{2}(-CP^{2}; Z)$, $H_{2}(P_{1}; Z), \ldots, H_{2}(P_{m+k}; Z)$ in $H_{2}(M; Z)$ respectively. Let $\xi = ph + qg + \sum_{i=1}^{m} r_{i}g_{i}$ be an element of $H_{2}(M; Z)$. Suppose $\xi^{2} = l > 0$, $p^{2} - q^{2} \ge 8$, $|p| - |q| \ge 2$, and $r_{i} \ne 0$, $i = 1, \ldots, m$. If $2(m+l-2) \ge p^{2} - q^{2}$, then ξ cannot be represented by a smoothly embedded 2-sphere. If $2(m+r+[(l-r-1)/4]-1) \ge p^{2}-q^{2}$ for some r with $0 \le r \le l-1$, then for a normal immersion f of a 2-sphere representing ξ the number of points of positive self-intersection $d_{f} \ge [(l-r-1)/4]+1$.

1. INTRODUCTION

The problem that prevents automatic extension of higher-dimensional surgery techniques to dimension 4 is the failure of the Whitney trick for codimension 2 submanifolds of 4-manifolds. In the early 1950s, Rohlin $[R_1]$ pointed out that not every 2-dimensional homotopy/homology class of a 4-manifold can be represented by a smoothly embedded 2-sphere. Although not relevant to the problem of doing surgery in dimension 4, the question of representing such a class is still of great interest.

In 1961 Kervaire and Milnor started the investigation [KM], followed by Wall [W], Boardman [B], Tristram [T], Hsiang and Szczarba [HS], and Rohlin [R₂]; but until Donaldson's paper [D] was published, the results about $S^2 \times S^2$ had not been complete. In 1984 Kuga [K] obtained the necessary and sufficient condition of representing a 2-dimensional homology class of $S^2 \times S^2$ by applying Donaldson's theorem and "blowing down" of Kervaire and Milnor. Since then, Gompf [G], Lawson [La], Luo [Lu], Suciu [S], and D.-Y. Gan and J.-H. Guo [GG] used the same method of Kuga to obtain further information about representing a 2-dimensional homology class by a smoothly embedded or immersed 2-sphere for some other 4-manifolds.

Received by the editors December 12, 1991.

¹⁹⁹¹ Mathematics Subject Classification. Primary 57R95; Secondary 57N13, 57R42.

Key words and phrases. Representing, normal immersion, positive self-intersection.

This project was supported by the National Natural Science Foundation of China. The results of this paper were announced at a session on 28 May 1991 of the "Symposium in Topology and Related Topics in Honor of Professor Chiang's 90th Birthday, Beijing, May 1991".

The first author was partially supported by a Zhejiang Natural Science Foundation Grant.

Let M be $CP^2\#(-CP^2)\#P_1\#\cdots \#P_{m+k}$, where P_1,\ldots,P_{m+k} are m+kcopies of $-CP^2$. Let h, g, g_1,\ldots,g_{m+k} be the images of the standard generators of $H_2(CP^2; Z)$, $H_2(-CP^2; Z)$, $H_2(P_1; Z),\ldots,H_2(P_{m+k}; Z)$ in $H_2(M; Z)$ respectively. Let $\xi = ph + qg + \sum_{i=1}^m r_i g_i$ be an element of $H_2(M; Z)$. We have

Theorem 1. Suppose $\xi^2 = l > 0$, $p^2 - q^2 \ge 8$, $|p| - |q| \ge 2$, $r_i \ne 0$, $i = 1, \ldots, m$, and $2(m + l - 2) \ge p^2 - q^2$. Then ξ cannot be represented by a smoothly embedded 2-sphere.

Remark 1. If l = 1 and k = 0, we get a stronger version of Theorem 1 of [GG].

Let $f: S^2 \to M$ be a normal immersion representing ξ and d_f the number of points of positive self-intersection of $f(S^2)$. We have

Theorem 2. Suppose $\xi^2 = l > 0$, $p^2 - q^2 \ge 8$, $|p| - |q| \ge 2$, $r_i \ne 0$, i = 1, ..., m, and $2(m + r + [(l - r - 1)/4] - 1) \ge p^2 - q^2$ for some r with $0 \le r \le l - 1$. Then $d_f \ge [(l - r - 1)/4] + 1$.

Remark 2. The estimate in Theorem 2 is the best one. For example, let $\xi = 5h + 3g$; then $l = p^2 - q^2 = 16$ and m = 0. Letting r = 7 Theorem 2 implies $d_f \ge 3$ for normal immersion $f: S^2 \to M$ representing 5h + 3g. Choose five copies of CP^1 in CP^2 such that one of the intersections is tripled and the others are doubled. We can cap off a $-CP^2$ with three copies of CP^1 in it with just a triple intersection to eliminate the original triple intersection. Then tubing the four intersections along another copy of CP^1 , we obtain a normal immersion of a 2-sphere with three positive intersections.

Remark 3. In Theorems 1 and 2, q and each r_i are equal in position, so one can choose any one of them as q if the hypotheses are satisfied.

2. Proof of Theorem 1

For convenience we assume $q \ge 0$, $p, r_i > 0$, i = 1, ..., m. The other cases are similar.

Suppose that Theorem 1 is false, i.e., ξ can be represented by a smoothly embedded 2-sphere. Adding l-1 copies of $-CP^2$, P_{m+k+1} , ..., $P_{m+k+l-1}$, we obtain $M' = M \# P_{m+k+1} \# \cdots \# P_{m+k+l-1}$. Set

$$\eta = ph + qg + \sum_{i=1}^{m} r_i g_i + \sum_{i=m+k+1}^{m+k+l-1} g_i \in H_2(M'; Z).$$

We have $\eta^2 = 1$, and η can also be represented by a smoothly embedded 2-sphere S. Then surger the tubular neighbourhood of S from M' to obtain a simply connected smooth 4-manifold N. We get

$$M' = N \# C P^2$$

Let Q_X denote the intersection form of manifold X. Thus we have

$$Q_{M'} \sim Q_N \oplus Q_{CP^2}$$
,

but $Q_{M'} = \langle 1 \rangle \oplus (m + k + l) \langle -1 \rangle$ and $Q_{CP^2} = \langle 1 \rangle$; so Q_N is negative definite. By Donaldson's theorem [D], we obtain

$$Q_N \sim (m+k+l)\langle -1 \rangle$$
.

Therefore there exist 2(m + k + l) homology classes in $H_2(N; Z)$ with self-intersection number -1. The images of them in $H_2(M'; Z)$ have self-intersection number -1 and intersection number 0 with η .

Let $a = xh + yg + \sum_{i=1}^{m+k+l-1} z_i g_i \in H_2(M'; Z)$ such that $a \cdot \eta = 0$ and $a \cdot a = -1$. Then $x, y, z_1, \ldots, z_{m+k+l-1}$ satisfy the following Diophantine equations:

(1)
$$\begin{cases} px - qy - \sum_{i=1}^{m} r_i z_i - \sum_{i=m+k+1}^{m+k+l-1} z_i = 0, \\ x^2 - y^2 - \sum_{i=1}^{m} z_i^2 - \sum_{m+1}^{m+k} z_i^2 - \sum_{i=m+k+1}^{m+k+l-1} z_i^2 + 1 = 0. \end{cases}$$

It is sufficient to prove (1) has at most 2(m + k + l) - 1 integral solutions.

Discarding the z_i 's, $1 \le i \le m$ and $m+k+1 \le i \le m+k+l-1$, which are zero, and renumbering the nonzero ones and corresponding r_i 's (note that $r_i = 1$ for $m+k+1 \le i \le m+k+l-1$) as z_1, \ldots, z_s and r_1, \ldots, r_s , $0 \le s \le m+l-1$, and renumbering the original z_{m+1}, \ldots, z_{m+k} as $z_{m+l}, \ldots, z_{m+k+l-1}$, one obtains

(1')
$$\begin{cases} px - qy - \sum_{i=1}^{s} r_i z_i = 0, \\ x^2 - y^2 - \sum_{i=1}^{s} z_i - \sum_{i=m+l}^{m+k+l-1} z_i^2 + 1 = 0 \end{cases}$$

One may eliminate x to obtain

(2)

$$(p^{2} - q^{2})y^{2} - 2q\left(\sum_{i=1}^{s} r_{i}z_{i}\right)y - \left(\sum_{i=1}^{s} r_{i}z_{i}\right)^{2} + p^{2}\left(\sum_{i=1}^{s} z_{i}^{2} + \sum_{m+l=1}^{m+k+l-1} z_{i}^{2} - 1\right) = 0.$$

As a quadratic equation of y, its discriminant times $(p^2 - q^2)^2/4$ is

$$\Delta = p^2 \left(\sum_{i=1}^{s} r_i z_i\right)^2 - p^2 (p^2 - q^2) \left(\sum_{i=1}^{s} z_i^2 - 1\right) - p^2 (p^2 - q^2) \left(\sum_{m=1}^{m+k+l-1} z_i^2\right).$$

Set

$$\delta_1 = \Delta/p^2 = \left(\sum_{i=1}^{s} r_i z_i\right)^2 - (p^2 - q^2) \left(\sum_{i=1}^{s} z_i^2 - 1\right) - (p^2 - q^2) \left(\sum_{m=1}^{m+k+l-1} z_i^2\right).$$

We have

(3)
$$\delta_1 = \delta - (p^2 - q^2) \left(\sum_{m+l}^{m+k+l-1} z_l^2 \right)$$

where $\delta = (\sum_{i=1}^{s} r_i z_i)^2 - (p^2 - q^2)(\sum_{i=1}^{s} z_i^2 - 1)$.

Case 1. s = 0. If $\sum_{m+l}^{m+k+l-1} z_i^2 > 1$, (2) has no solution; if $\sum_{m+l}^{m+k+l-1} z_i^2 = 1$, (2) has 2k solutions; if $\sum_{m+l}^{m+k+l-1} z_i^2 = 0$, (2) has two solutions. All together, we have at most 2(k+1) solutions.

Case 2. s = 1. For $z_1 = \pm 1$, (2) becomes

$$(p^{2}-q^{2})y^{2} \mp 2qr_{1}y - r_{1}^{2} + p^{2}\left(\sum_{m+l}^{m+k+l-1} z_{i}^{2}\right) = 0.$$

If $\sum_{m+l}^{m+k+l-1} z_i^2 = 0$, the solutions of (2) are $\pm (-r_1/(p+q), r_1/(p-q))$. Since $p+q \ge p$ and $r_i^2 < p^2 - q^2$, $r_1/(p+q)$ is not an integer and $r_1/(p-q)$ is an integer if and only if $(p-q)|r_1$. Since $p-q \ge 2$ and there are at least two r_i 's which equal 1 (otherwise, $\sum_{i=1}^{m+l-1} r_i^2 \ge \sum_{i=1}^{m+l-2} r_i^2 + 1 \ge 4(m+l-2) + 1 > p^2 - q^2$, contradicting $\sum_{i=1}^{m+l-1} r_i^2 = p^2 - q^2$), (2) has at most 2(m+l-3) integral solutions. If $\sum_{m+l}^{m+k+l-1} z_i^2 > 0$, then

$$v = \frac{(\pm qr_1 \pm p\sqrt{r_1^2 - (p^2 - q^2)(\sum_{m+l}^{m+k+l-1} z_i^2))}}{(p^2 - q^2)}$$

Since $r_1^2 < p^2 - q^2$, (2) has no solution.

For $z_1^2 \ge 4$, since $2(m+l-2) > p^2 - q^2$, we have $r_1 \le r_1^2 < \frac{1}{2}(p^2 - q^2) < (z_1^2 - 1)(p^2 - q^2)/z_1^2$ and $\delta = r_1^2 z_1^2 - (p^2 - q^2)(z_1^2 - 1) < 0$, hence $\delta_1 < 0$. Thus (2) has no solution.

Case 3. $2 \le s \le m + l - 2$. We have $p^2 - q^2 - \sum_{i=1}^{s} r_i^2 = p^2 - q^2 - \sum_{i=1}^{m+l-1} r_i^2 + \sum_{s+1}^{m+l-1} r_i^2 = 1 + \sum_{s+1}^{m+l-1} r_i^2 \ge 1 + m + l - s - 1 = m + l - s$ and $\sum_{i=1}^{s} z_i^2 \ge s$. Thus

(4)
$$\left(p^2 - q^2 - \sum_{l=1}^{s} r_i^2\right) \left(\sum_{l=1}^{s} z_i^2\right) \ge (m + l - s)s.$$

By hypothesis we have

(5)
$$2(m+l-2) \ge p^2 - q^2$$
.

If we have

(6)
$$\left(p^2 - q^2 - \sum_{i=1}^{s} r_i^2\right) \left(\sum_{i=1}^{s} z_i^2\right) > p^2 - q^2$$

we get

(7)

$$\frac{\sum_{i}^{s} r_{i}^{2}}{p^{2} - q^{2}} = \frac{p^{2} - q^{2} - (p^{2} - q^{2} - \sum_{i}^{s} r_{i}^{2})}{p^{2} - q^{2}} \\
< \frac{(p^{2} - q^{2} - \sum_{i}^{s} r_{i}^{2})(\sum_{i}^{s} z_{i}^{2} - 1)}{(p^{2} - q^{2} - \sum_{i}^{s} r_{i}^{2})(\sum_{i}^{s} z_{i}^{2})} = \frac{\sum_{i}^{s} z_{i}^{2} - 1}{\sum_{i}^{s} z_{i}^{2}}$$

and hence

$$\begin{split} \delta_{1} &= \left(\sum_{1}^{s} r_{i} z_{i}\right)^{2} - (p^{2} - q^{2}) \left(\sum_{1}^{s} z_{i}^{2} - 1\right) - (p^{2} - q^{2}) \left(\sum_{m+l}^{m+k+l-1} z_{i}^{2}\right) \\ &\leq \left(\sum_{1}^{s} r_{i}^{2}\right) \left(\sum_{1}^{s} z_{i}^{2}\right) - (p^{2} - q^{2}) \left(\sum_{1}^{s} z_{i}^{2} - 1\right) - (p^{2} - q^{2}) \left(\sum_{m+l}^{m+k+l-1} z_{i}^{2}\right) \\ &< - (p^{2} - q^{2}) \left(\sum_{m+l}^{m+k+l-1} z_{i}^{2}\right) \leq 0 \,. \end{split}$$

Thus (2) has no solution.

Note that (m+l-s)s > 2(m+l-2) unless s = 2 or s = m+l-2; so we obtain (6) for 2 < s < m+l-2. For s = 2 or s = m+l-1, if the Cauchy-Schwarz inequality $(\sum_{i=1}^{s} r_i z_i)^2 \le (\sum_{i=1}^{s} r_i^2)(\sum_{i=1}^{s} z_i^2)$ is a strict inequality, we have $\delta_1 < 0$ also. When the Cauchy-Schwarz inequality becomes equality, we obtain $z_i = r_i$, i = 1, ..., s, or $z_i = -r_i$, i = 1, ..., s.

If s = 2 and (4) becomes equality, we have $z_1^2 + z_2^2 = 2$ and $p^2 - q^2 - r_1^2 - r_2^2 = m + l - 2$. It follows that $z_1^2 = z_2^2 = r_1^2 = r_2^2 = 1$ and $2(m+l-2) = 2(p^2 - q^2 - 2) > p^2 - q^2$. So we get the strict inequality in (5).

If s = m + l - 2 and (4) becomes equality, we have $\sum_{i=1}^{s} z_{i}^{2} = m + l - 2$ and $p^{2} - q^{2} - \sum_{i=1}^{s} r_{i}^{2} = 2$. It implies $z_{1}^{2} = \cdots = z_{s}^{2} = r_{1}^{2} = \cdots = r_{s}^{2} = 1$ and $m + l - 2 = p^{2} - q^{2} - 2$; thus $2(m + l - 2) = 2(p^{2} - q^{2} - 2) > p^{2} - q^{2}$, and we also get the strict inequality in (5).

Thus (2) has no solution for $2 \le s \le m + l - 2$.

Case 4. s = m + l - 1. Suppose $r_i = 1$ for i = n + 1, ..., m + l - 1. Since $\sum_{i=1}^{m+l-1} r_i^2 < p^2 - q^2$, there are at least two r_i 's which equal 1 (otherwise, $\sum_{1}^{m+l-1} r_i^2 \ge \sum_{1}^{m+l-2} r_i^2 + 1 \ge 4(m+l-2) + 1 > p^2 - q^2$, a contradiction!), i.e., we have $n \le m + l - 3$.

If $z_i = r_i$, i = 1, ..., m + l - 1, or $z_i = -r_i$, i = 1, ..., m + l - 1, then

$$\begin{split} \delta_{1} &= \left(\sum_{1}^{m+l-1} r_{i}^{2}\right)^{2} - (p^{2} - q^{2}) \left(\sum_{1}^{m+l-1} r_{i}^{2} - 1\right) - (p^{2} - q^{2}) \left(\sum_{m+l}^{m+k+l-1} z_{i}^{2}\right) \\ &= \left(\sum_{1}^{m+l-1} r_{i}^{2}\right)^{2} - \left(\sum_{1}^{m+l-1} r_{i}^{2} + 1\right) \left(\sum_{1}^{m+l-1} r_{i}^{2} - 1\right) - (p^{2} - q^{2}) \left(\sum_{m+l}^{m+k+l-1} z_{i}^{2}\right) \\ &= 1 - (p^{2} - q^{2}) \left(\sum_{m+l}^{m+k+l-1} z_{i}^{2}\right) \leq 1 \,. \end{split}$$

We will show that if $\{z_i\}_{i=1}^{m+l-1} \neq \pm \{r_i\}_{i=1}^{m+l-1}$ then $\delta_1 < 0$, hence (2) has at most two solutions.

It is easy to see that if $sign(z_i) \neq sign(z_j)$ for some $i, j, i \leq i, j \leq m+l-1$, then the Cauchy-Schwarz inequality is strict inequality and $\delta_1 < 0$. So we assume $sign(z_i) = sign(z_j)$, $1 \le i$, $j \le m + l - 1$. Without loss of generality, we assume $z_i > 0$, i = 1, ..., m + l - 1.

(a) $z_i \ge 2$ for some i, $n+1 \le i \le m+l-1$, say, $z_{m+l-1} \ge 2$. As proved in Case 3 for s = m+l-2, we have $(\sum_{1}^{m+l-2} r_i z_i)^2 - (p^2 - q^2)(\sum_{1}^{m+l-2} z_i^2 - 1) < 0$ from (7). If

$$\sum_{i=1}^{m+l-2} r_i z_i - (p^2 - q^2)$$

 $q^2) \geq -2,$ 1

then

$$\left(\sum_{1}^{m+l-2} r_i^2\right) \left(\sum_{1}^{m+l-2} z_i^2\right) \ge \left(\sum_{1}^{m+l-2} r_i z_i\right)^2 \ge (p^2 - q^2 - 2)^2.$$

Since

$$\sum_{1}^{m+l-2} r_i^2 = p^2 - q^2 - 2,$$

we have

$$\sum_{1}^{m+l-2} z_i^2 \ge p^2 - q^2 - 2,$$

thus

$$\sum_{1}^{m+l-1} z_i^2 = \sum_{1}^{m+l-2} z_i^2 + z_{m+l-1}^2 \ge p^2 - q^2 - 2 + z_{m+l-1}^2 \ge p^2 - q^2 + 2 > p^2 - q^2.$$

It follows that (7) is valid for s = m + l - 1. Thus $\delta < 0$ and $\delta_1 < 0$. If

$$\sum_{1}^{m+l-2} r_i z_i - (p^2 - q^2) \le -3,$$

then

$$\begin{split} \delta &= \left(\sum_{i=1}^{m+l-2} r_i z_i + z_{m+l-1}\right)^2 - (p^2 - q^2) \left(\sum_{i=1}^{m+l-2} z_i^2 + z_{m+l-1}^2 - 1\right) \\ &= \left(\sum_{i=1}^{m+l-2} r_i z_i\right)^2 + 2 z_{m+l-1} \left(\sum_{i=1}^{m+l-2} r_i z_i\right) + z_{m+l-1}^2 \\ &- (p^2 - q^2) \left(\sum_{i=1}^{m+l-2} z_i^2 - 1\right) - z_{m+l-1}^2 (p^2 - q^2) \\ &< 2 z_{m+l-1} (p^2 - q^2 - 3) - z_{m+l-1}^2 (p^2 - q^2 - 1) \\ &\leq z_{m+l-1}^2 (p^2 - q^2 - 3) - z_{m+l-1}^2 (p^2 - q^2 - 1) < 0 \,. \end{split}$$

Thus $\delta_1 < 0$.

1328

(b) $z_{n+1} = \cdots = z_{m+l-1} = 1$. Let $t_i = r_i - z_i$, i = 1, ..., n. Since $\{z_i\} \neq \{r_i\}$, we have $t_i \neq 0$ for some *i*. Thus

$$\begin{split} \delta &= \left(\sum_{1}^{m+l-1} r_{i} z_{i}\right)^{2} - \left(p^{2} - q^{2}\right) \left(\sum_{1}^{m+l-1} z_{i}^{2} - 1\right) \\ &= \left(\sum_{1}^{m+l-1} r_{i}^{2} - \sum_{1}^{n} r_{i} t_{i}\right)^{2} - \left(p^{2} - q^{2}\right) \left(\sum_{1}^{m+l-1} r_{i}^{2} - 1 - 2\sum_{1}^{n} r_{i} t_{i} + \sum_{1}^{n} t_{i}^{2}\right) \\ &= \left(\sum_{1}^{m+l-1} r_{i}^{2}\right)^{2} - \left(p^{2} - q^{2}\right) \left(\sum_{1}^{m+l-1} r_{i}^{2} - 1\right) - 2 \left(\sum_{1}^{m+l-1} r_{i}^{2}\right) \left(\sum_{i}^{n} r_{i} t_{i}\right) \\ &+ \left(\sum_{i}^{n} r_{i} t_{i}\right)^{2} + 2(p^{2} - q^{2}) \left(\sum_{1}^{n} r_{i} t_{i}\right) - (p^{2} - q^{2}) \left(\sum_{1}^{n} t_{i}^{2}\right) \\ &= (p^{2} - q^{2} - 1)^{2} - (p^{2} - q^{2})(p^{2} - q^{2} - 2) \\ &- 2(p^{2} - q^{2} - 1) \left(\sum_{1}^{n} r_{i} t_{i}\right) + \left(\sum_{i}^{n} r_{i} t_{i}\right)^{2} \\ &+ 2(p^{2} - q^{2}) \left(\sum_{i}^{n} r_{i} t_{i}\right) - (p^{2} - q^{2}) \left(\sum_{1}^{n} t_{i}^{2}\right) \\ &= 1 + 2 \left(\sum_{1}^{n} r_{i} t_{i}\right) + \left(\sum_{i}^{n} r_{i} t_{i}\right)^{2} - (p^{2} - q^{2}) \left(\sum_{1}^{n} t_{i}^{2}\right) \\ &= \left(1 + \sum_{1}^{n} r_{i} t_{i}\right)^{2} - (p^{2} - q^{2}) \left(\sum_{1}^{n} t_{i}^{2} + 1 - 1\right) < 0 \,. \end{split}$$

The last inequality is proved in Case 3. Therefore $\delta_1 < 0$.

By Cases 1, 2, 3, and 4, we have that the number of solutions of (2), hence of (1), are at most 2(m + k + l - 1). This proves Theorem 1.

3. Proof of Theorem 2

Suppose the theorem is false, i.e., there is a normal immersion $f: S^2 \to M$ representing ξ with $d = d_f \leq [(l - r - 1)/4]$.

We can remove each self-intersection by "blowing up a $-CP^2$ " (cf. [G]). We add two copies of CP^1 with opposite orientations in a new $-CP^2$ to eliminate a negative self-intersection and we do not change the homology class of the immersed 2-sphere. This enlarges the value of k. Moreover, we add two copies of CP^1 with positive orientation in a new $-CP^2$ to eliminate a positive self-intersection and the homology class of the immersed 2-sphere is changed by twice the generator of $H_2(-CP^2; Z)$.

Eventually we can represent the homology class

$$\eta = ph + qg + \sum_{1}^{m} r_i g_i + \sum_{m+k+1}^{m+k+d} 2g_i$$

by a smoothly embedded 2-sphere in M', where

$$M' = CP^2 \# (-CP^2) \# P_1 \# \cdots \# P_{m+k} \# P_{m+k+1} \# \cdots \# P_{m+k+d}.$$

We can check that M' and η satisfy the hypothesis of Theorem 1. Setting $l' = \eta^2 = \xi^2 - 4d = l - 4d$, m' = m + d, we have

$$2(m'+l'-2) = 2(m+d+l-4d-2)$$

$$\geq 2\left(m+r+(l-r-1)-3\left[\frac{l-r-1}{4}\right]-1\right)$$

$$\leq 2\left(m+r+\left[\frac{l-r-1}{4}\right]-1\right) \geq p^2-q^2$$

by the hypothesis of Theorem 2. Theorem 1 implies that η cannot be represented by a smoothly embedded 2-sphere. The contradiction completes the proof.

References

- [B] J. Boardman, Some embeddings of 2-spheres in 4-manifolds, Proc. Cambridge Philos. Soc. 60 (1964), 354–356.
- [D] S. Donaldson, An application of gauge theory to four-dimensional topology, J. Differential Geom. 18 (1983), 279-315.
- [GG] D. Y. Gan and J. H. Guo, Smooth embeddings of 2-spheres in manifolds, J. Math. Res. Exposition 10 (1990), 227-232.
- [G] R. E. Gompf, Infinite families of Casson handles and topological disks, Topology 23 (1984), 395-400.
- [HS] W. C. Hsiang and R. Szczarba, On embedding surfaces in 4-manifolds, Proc. Sympos. Pure Math., vol. 22, Amer. Math. Soc., Providence, RI, 1970, pp. 97–103.
- [KM] M. Kervaire and J. Milnor, On 2-spheres in 4-manifolds, Proc. Nat. Acad. Sci. U.S.A. 47 (1961), 1651–1657.
- [K] K. Kuga, Representing homology classes of $S^2 \times S^2$, Topology 23 (1984), 133–137.
- [La] T. Lawson, Representing homology classes of almost definite 4-manifolds, Michigan Math. J. 34 (1987), 85-91.
- [Lu] F. Luo, Representing homology classes in $CP^2 \# \overline{CP^2}$, Pacific J. Math. 133 (1988), 137–140.
- [R1] V. Rohlin, New results in the theory of 4-dimensional manifolds, Dokl. Akad. Nauk SSSR 84 (1952), 221–224.
- [R₂] _____, Two dimensional submanifolds of four dimensional manifolds, J. Funct. Anal. Appl. 5 (1971), 39-48.
- [S] A. Suciu, Immersed spheres in CP^2 and $S^2 \times S^2$, Math. Z. 196 (1987), 51–57.
- [T] A. G. Tristram, Some cobordism invariants for links, Proc. Cambridge Philos. Soc. 66 (1969), 251-264.
- [W] C. T. C. Wall, Diffeomorphisms of 4-manifolds, J. London Math. Soc. 39 (1964), 131-140.

DEPARTMENT OF MATHEMATICS AND CENTRE FOR MATHEMATICAL SCIENCE, ZHEJIANG UNI-VERSITY, HANGZHOU, CHINA

DEPARTMENT OF MATHEMATICS, HANGZHOU UNIVERSITY, HANGZHOU, CHINA

1330