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ABSTRACT. Let M be CP*#(—CP2)#P#---#P,, , ,where Py, ..., P, are
copies of —CP%. Let h, g, g,..., &msk be the images of the standard
generators of Hy(CP?;Z), Hy(~CP?;Z), Hy(P\;Z), ..., Hy(Ppsx; Z)
in Hy(M; Z) respectively. Let & = ph+qg + 3L, rig be an element
of Hy(M; Z) . Suppose &2 =1>0, p2—q?>>8, |p|—|q/>2,and r; £0,
i=1,...,m.If 2(m+1—-2)>p?—q?, then ¢ cannot be represented by a
smoothly embedded 2-sphere. If 2(m+r+[(I—r—1)/4]—1) > p2—q? for some
r with 0 < r < /-1, then for a normal immersion f of a 2-sphere representing
¢ the number of points of positive self-intersection d > [(/ —r—1)/4] + 1.

1. INTRODUCTION

The problem that prevents automatic extension of higher-dimensional surgery
techniques to dimension 4 is the failure of the Whitney trick for codimension
2 submanifolds of 4-manifolds. In the early 1950s, Rohlin [R;] pointed out
that not every 2-dimensional homotopy/homology class of a 4-manifold can be
represented by a smoothly embedded 2-sphere. Although not relevant to the
problem of doing surgery in dimension 4, the question of representing such a
class is still of great interest.

In 1961 Kervaire and Milnor started the investigation [KM], followed by
Wall [W], Boardman [B], Tristram [T], Hsiang and Szczarba [HS], and Rohlin
[R:]; but until Donaldson’s paper [D] was published, the results about S? x S?
had not been complete. In 1984 Kuga [K] obtained the necessary and suffi-
cient condition of representing a 2-dimensional homology class of S2 x $? by
applying Donaldson’s theorem and “blowing down” of Kervaire and Milnor.
Since then, Gompf [G], Lawson [La], Luo [Lu], Suciu [S], and D.-Y. Gan and
J.-H. Guo [GG] used the same method of Kuga to obtain further information
about representing a 2-dimensional homology class by a smoothly embedded or
immersed 2-sphere for some other 4-manifolds.
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Let M be CP?#(—CP>#P\#---#P, .., where P;,..., P, are m+k
copies of —CP?. Let h,g,g,..., &nsx be the images of the standard
generators of Hy(CP?; Z), Hy(—-CP?;Z), Hy(P,; Z), ..., H3(Pysk; Z) in
Hy)(M; Z) respectively. Let & = ph +qg + Y-, rig& be an element of
Hy(M; Z). We have

Theorem 1. Suppose &2 =1 >0, p>—q* > 8, |p|—1lgq| >2, i #0, i =
1,....,m, and 2(m +1—-2) > p* — q*. Then ¢ cannot be represented by a
smoothly embedded 2-sphere.

Remark 1. If =1 and k = 0, we get a stronger version of Theorem 1 of
[GG].

Let f:S? — M be a normal immersion representing £ and d; the number
of points of positive self-intersection of f(S?). We have

Theorem 2. Suppose &2 =1 >0, p>—q>*> 8, |p|-qg| >2, rn#0, i =
1,...,m, and 2(m+r+[(l —r—1)/41 = 1) > p* — q* for some r with
0<r<l—-1.Then ds>[(I-r—-1)/4]1+1.

Remark 2. The estimate in Theorem 2 is the best one. For example, let & =
S5h+3g;then ] =p?—g2=16 and m =0. Letting r = 7 Theorem 2 implies
ds > 3 for normal immersion f: S2 — M representing 5h + 3g. Choose five
copies of CP! in CP? such that one of the intersections is tripled and the
others are doubled. We can cap off a —CP? with three copies of CP! in it
with just a triple intersection to eliminate the original triple intersection. Then
tubing the four intersections along another copy of CP!, we obtain a normal
immersion of a 2-sphere with three positive intersections.

Remark 3. In Theorems 1 and 2, ¢ and each r; are equal in position, so one
can choose any one of them as g if the hypotheses are satisfied.

2. PROOF OF THEOREM 1

For convenience we assume ¢ >0, p,r;, >0, i =1,..., m. The other
cases are similar.

Suppose that Theorem 1 is false, i.e., & can be represented by a smoothly
embedded 2-sphere. Adding / — 1 copies of —CP?, Piki1s --- s Pkt
we obtain M’ = M#P,, ., \# - #P, k- - Set

m m+k+{—1
n=ph+qg+)Y rigi+ Y, 6 &E€HM;Z).

i=1 i=m+k+1

We have 5% = 1, and 7 can also be represented by a smoothly embedded 2-
sphere S. Then surger the tubular neighbourhood of S from M’ to obtain a
simply connected smooth 4-manifold N. We get

M' = N#CP?.
Let Qx denote the intersection form of manifold X . Thus we have

Om ~ On D Qcp2,

but Qu = (1)® (m+k+1)(—1) and Qcp: = (1); s0 Qn is negative definite.
By Donaldson’s theorem [D], we obtain

Ov~(m+k+1(-1).
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Therefore there exist 2(m + k + /) homology classes in H,(N; Z) with self-
intersection number —1. The images of them in H,(M’; Z) have self-intersec-
tion number —1 and intersection number 0 with 7.

Let a=xh+yg+ Zm+k+[ Yz:gi € H>,(M'; Z) such that a-n = 0 and

a-a=-1. Then x, y, 21, ..., Zmiks+i—1 satisfy the following Diophantine
equations:
m m+k+1—1
px—qy-Y rizi—= ». z=0,
i=1 i=m+k+1
(1) m+k m+k+1—1
2y -Zz —-Zz - Z zZ2+1=0.
m+1 i=m+k+1

It is sufficient to prove (1) has at most 2(m + k + /) — 1 integral solutions.
Discarding the z;’s, 1 <i<m and m+k+1<i<m+k+[-1, which are
zero, and renumbering the nonzero ones and corresponding 7;’s (note that r; = 1

for m+k+1 <i<m+k+l-1)as z;,...,zgand ry, ..., r;, 0<s<m+l-1,
and renumbering the original z,.1, ..., Zyik 85 Zpmiss -vv s Zmiksai—1, ONE
obtains

)
px—qy-) rizi=0,
i=1

(1)
s m+k+[—1
x2=p2=%"zi— Y Z+1=0
i=1 i=m+l

One may eliminate x to obtain

S ) 2
(P - qH)y* - 2q (Z rizi) y- (Z rizi)
m+k+[—1
(Zz + z z — 1) =0.

m+l

(2)

As a quadratic equation of y, its discriminant times (p? — ¢2)?/4 is

s 2 K m+k+[—1
= p? (Zrizi) -p*(0* - ¢ (Z 2} - l) —pz(pz—cf)( > Z?) :
1 |

m+l
Set
2 m+k+[-1
o =A/p? —(Zna) (P -4 (Zz —1) (p —q)( > Z?).
m+l
We have
m+k+1—1
(3) 5|=5—(p2—q2)( > Z?)
m+l

where & = (Y] rizi)? — (p? — ¢)(3) 22
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Case 1. s=0.If Y7122 5 1 (2) has no solution; if YHh+=122 -1
(2) has 2k solutions; if EZ’I?”” '22 =0, (2) has two solutions. All together,

we have at most 2(k + 1) solutions.

Case2. s=1. For z; = %1, (2) becomes

m+k+l—1
(P* - a*)y* ¥ 2qriy —ri +p? ( > Z?) =0.
m+l[
If Z,':’,:f”" z? =0, the solutions of (2) are +(—r,/(p+q), n/(p—q)). Since
p+q>p and r} <p*-q?, r;/(p+q) is not an integer and r,/(p — q) is an
integer if and only if (p —q)|r; . Sincc p—q > 2 and there are at least two r;’s
which equal 1 (otherwise, Z’”” b2 > 2”’*1 2r2+l > 4(m+1-2)+1 > p*—q?,
contradicting Y712 = p2 2), (2) has at most 2(m + [ — 3) integral

solutions. If Y7 tk+~ 'z% >0, then

(g, £ p/r? — (p? - @2)(Sh ™1 22))

y= (r? - 43

Since r? < p* - 4%, (2) has no solution.

For z? 24 since 2(m+1—2) > p? —¢?, wehave ry <r} <i(p?—¢? <
(z2=1)(p?*—q?)/z? and 6 = r}z} — (p* —¢*)(z? - 1) < 0, hence J; < 0. Thus
(2) has no solution.

Case3. 2<s<m+1-2. We have p? —q* -3 1r?=p? - ¢? m+l|r2+

Yl oyl > l+m+l—s—1=m+l——s and Z, 22 >s.

Thus
(4) (Pz-qz—zs:r,»2> (Zz) (m+1—s)s.
1

By hypothesis we have

(5) 2m+1-2)>p*—4*.

If we have
s N

(6) (p2 -¢2-) r?) (Z Z?) >p? - g
1 1

we get

i _ P - -0 - -y
(7) p2_q2 p2_q2
(r? - ¢* Zl Zl 1)_251212_1

<

(p?—q? - Zl le,z B Zslzlz
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and hence
2 K m+k+[—1
(Zna) (p —q)(ZZ?—1>—(p2—q2)< > Z?)
1 m+l

IA

(B -wfgr) e (£

m+k+1—1
w78 4) <o

m+l

A

Thus (2) has no solution.

Note that (m +/—5s)s >2(m+/—2) unless s=2 or s=m+1[-2; s0
we obtain (6) for 2 < 5 < m+l—2 For s-2 or s =m+1[-1, if the
Cauchy-Schwarz inequality (Y] r:z:)? < (3] r2) (3] z?) is a strict inequality,
we have d; < 0 also. When the Cauchy-Schwarz mequality becomes equality,
weobtain z;=r;, i=1, ,8,0r z;=—-ri,i=1, ,S.

If s =2 and (4) becomes equality, we have 22423 = ) and pl—q*-ri-ri=
m+[-2. Itfollowsthat z? = z2 = r? = r} = | and 2(m+/-2) = 2(p? q2 -2)>
p? —q*. So we get the strict inequality in (5).

If s =m+1-2 and (4) becomes equality, we have Y |z? = m+1[-2
and p?-¢?>-Yir?=2. Itimplies z2 = - =z2=r}=...=r2 =1 and
m+l-2=p2—q*-2;thus 2(m+1-2)=2(p* —q*>-2)>p?—¢?*, and we
also get the strict inequality in (5).

Thus (2) has no solution for 2<s<m+1/-2

Case 4. s=m+l—1. Suppose r;, =1 for i=n+1,..., m+1/—-1. Since
2:"*11'1 r? < p? — ¢?, there are at least two r;’s which equal 1 (otherwise,
Y-l 2 >Y 22 41> 4(m+1-2)+1 > p?— g%, a contradiction!), i.c.,
we have n§m+l—

If zi=r;, i=1,... , m+Il—-1,0r z;=—r;, i=1,..., m+[—1, then
mil—-1 \ 2 ml—1 mak+i—1
1 m+l

2

b TR (S

1 m+l

m+k+l—1
l—(pz—qz)( > 2?)51.

m+l

We will show that if {z;}7+/=! # £{r,}"+/=! then J, < 0, hence (2) has at
most two solutions.

It is easy to see that if sign(z;) # sign(z;) forsome i, j, i <i, j < m+/-1,
then the Cauchy-Schwarz inequality is strict inequality and 4, < 0. So we
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assume sign(z;) =sign(z;), 1 <i, j<m+1[—1. Without loss of generality,
weassume z; >0, i=1,..., m+I[-1.

(@) z;>2 forsome i, n+1<i<m+l-1,say, zy,,_ > 2. Asproved in
Case 3 for s = m+1—-2,we have (X7 "2r,2)2 - (p2—g) (T2 22-1) < 0

from (7).
If
m+1-2
Y rizi-(*-4¢h) > -2,
1
then
m+l-2 m+1-2 m+l-2 2
( > r?) ( > Z?) > ( S ri2i> > (p? - q* - 2)2.
1 1 1
Since
m+l-2
S =pr-q*-2,
1
we have
m+[-2
Yo zixpr-4t-2,
1
thus
m+l—1 m+l-2

Z z2? = Z 224zl >0 -q?-2+2%,, 2P —qd*+2>pP -4
1 1

It follows that (7) is valid for s=m+/—1. Thus 6 <0 and J, <O.
If

m+[-2

Y onizi—(p* -4} < -3,
|

then
2

m+{-2 m+(—2
o= ( > riz,-+zm+1_|) —(pz—qz)( Yooz - 1)
1 1
m+l—2 2 m+l=2
= ( Z rizi) + 22y ( Z riz,-) +Zr2n+l—l
1 1

m+l-2

—(pz—qz)( > z- 1) — 22 (PP - 4%)

1
<2Zmu(PP—q*=3) - 2%, (PP -q* - 1)
<zl 0r-¢*-3) -z, (p*-¢*-1)<0.

Thus 5[ <0.
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() zpy1 = - = Zpyyy = 1. Let t;, =r,—z;, i =1,...,n. Since
{z;} # {ri}, we have t; # 0 for some i. Thus

2

(el
i) <><> £
() o))

=p2-¢* -1 - (P-4 )(p*-4¢*-2)

2

Il

—_

+

[\S)
/N
=

.

-
N~

+
N
™

=

=
N——
L S)

|

)

(8]

|

<Q

N>y
RS
-=

~

hall IS
N~

The last inequality is proved in Case 3. Therefore d; < 0.
By Cases 1, 2, 3, and 4, we have that the number of solutions of (2), hence
of (1), are at most 2(m + k +/ — 1) . This proves Theorem 1.

3. PROOF OF THEOREM 2

Suppose the theorem is false, i.e., there is a normal immersion f: S? — M
representing & with d =d, <[(/ —r—1)/4].

We can remove each self-intersection by “blowing up a —CP?” (cf. [G]).
We add two copies of CP! with opposite orientations in a new —CP? to
eliminate a negative self-intersection and we do not change the homology class
of the immersed 2-sphere. This enlarges the value of k. Moreover, we add two
copies of CP' with positive orientation in a new —CP? to eliminate a positive
self-intersection and the homology class of the immersed 2-sphere is changed
by twice the generator of Hy(-CP?; Z).

Eventually we can represent the homology class

m m+k+d
n=ph+qg+> rg+ » 2&

1 m+k+1
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by a smoothly embedded 2-sphere in M’ , where
M' = CP#(—CPH)#P#- - - #Py i #Pskii# - #Prkrd -

We can check that M’ and 7 satisfy the hypothesis of Theorem 1. Setting
I'=n*=¢-4d=1-4d, m'=m+d, we have

2m' +1I'=2)=2(m+d +1[—4d - 2)
22(m+r+(l—r—1)—3[1_—;_—1] —1>

52(m+r+ [HT—I] —l) >p?—¢°

by the hypothesis of Theorem 2. Theorem 1 implies that n cannot be rep-
resented by a smoothly embedded 2-sphere. The contradiction completes the
proof.
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