EMBEDDINGS AND IMMERSIONS OF A 2-SPHERE IN 4-MANIFOLDS

GAN DAN-YAN AND GUO JIAN-HAN

(Communicated by Frederick R. Cohen)

Abstract

Let M be $C P^{2} \#\left(-C P^{2}\right) \# P_{1} \# \cdots \# P_{m+k}$, where P_{1}, \ldots, P_{m+k} are copies of $-C P^{2}$. Let $h, g, g_{1}, \ldots, g_{m+k}$ be the images of the standard generators of $H_{2}\left(C P^{2} ; Z\right), H_{2}\left(-C P^{2} ; Z\right), H_{2}\left(P_{1} ; Z\right), \ldots, H_{2}\left(P_{m+k} ; Z\right)$ in $H_{2}(M ; Z)$ respectively. Let $\xi=p h+q g+\sum_{i=1}^{m} r_{i} g_{i}$ be an element of $H_{2}(M ; Z)$. Suppose $\xi^{2}=l>0, p^{2}-q^{2} \geq 8,|p|-|q| \geq 2$, and $r_{i} \neq 0$, $i=1, \ldots, m$. If $2(m+l-2) \geq p^{2}-q^{2}$, then ξ cannot be represented by a smoothly embedded 2 -sphere. If $2(m+r+[(l-r-1) / 4]-1) \geq p^{2}-q^{2}$ for some r with $0 \leq r \leq l-1$, then for a normal immersion f of a 2-sphere representing ξ the number of points of positive self-intersection $d_{f} \geq[(l-r-1) / 4]+1$.

1. Introduction

The problem that prevents automatic extension of higher-dimensional surgery techniques to dimension 4 is the failure of the Whitney trick for codimension 2 submanifolds of 4 -manifolds. In the early 1950s, Rohlin $\left[R_{1}\right]$ pointed out that not every 2-dimensional homotopy/homology class of a 4-manifold can be represented by a smoothly embedded 2 -sphere. Although not relevant to the problem of doing surgery in dimension 4 , the question of representing such a class is still of great interest.

In 1961 Kervaire and Milnor started the investigation [KM], followed by Wall [W], Boardman [B], Tristram [T], Hsiang and Szczarba [HS], and Rohlin [R_{2}]; but until Donaldson's paper [D] was published, the results about $S^{2} \times S^{2}$ had not been complete. In 1984 Kuga [K] obtained the necessary and sufficient condition of representing a 2-dimensional homology class of $S^{2} \times S^{2}$ by applying Donaldson's theorem and "blowing down" of Kervaire and Milnor. Since then, Gompf [G], Lawson [La], Luo [Lu], Suciu [S], and D.-Y. Gan and J.-H. Guo [GG] used the same method of Kuga to obtain further information about representing a 2-dimensional homology class by a smoothly embedded or immersed 2-sphere for some other 4-manifolds.

[^0]Let M be $C P^{2} \#\left(-C P^{2}\right) \# P_{1} \# \cdots \# P_{m+k}$, where P_{1}, \ldots, P_{m+k} are $m+k$ copies of $-C P^{2}$. Let $h, g, g_{1}, \ldots, g_{m+k}$ be the images of the standard generators of $H_{2}\left(C P^{2} ; Z\right), H_{2}\left(-C P^{2} ; Z\right), H_{2}\left(P_{1} ; Z\right), \ldots, H_{2}\left(P_{m+k} ; Z\right)$ in $H_{2}(M ; Z)$ respectively. Let $\xi=p h+q g+\sum_{i=1}^{m} r_{i} g_{i}$ be an element of $H_{2}(M ; Z)$. We have
Theorem 1. Suppose $\xi^{2}=l>0, p^{2}-q^{2} \geq 8,|p|-|q| \geq 2, r_{i} \neq 0, i=$ $1, \ldots, m$, and $2(m+l-2) \geq p^{2}-q^{2}$. Then ξ cannot be represented by a smoothly embedded 2-sphere.
Remark 1. If $l=1$ and $k=0$, we get a stronger version of Theorem 1 of [GG].

Let $f: S^{2} \rightarrow M$ be a normal immersion representing ξ and d_{f} the number of points of positive self-intersection of $f\left(S^{2}\right)$. We have
Theorem 2. Suppose $\xi^{2}=l>0, p^{2}-q^{2} \geq 8,|p|-|q| \geq 2, r_{i} \neq 0, i=$ $1, \ldots, m$, and $2(m+r+[(l-r-1) / 4]-1) \geq p^{2}-q^{2}$ for some r with $0 \leq r \leq l-1$. Then $d_{f} \geq[(l-r-1) / 4]+1$.
Remark 2. The estimate in Theorem 2 is the best one. For example, let $\xi=$ $5 h+3 g$; then $l=p^{2}-q^{2}=16$ and $m=0$. Letting $r=7$ Theorem 2 implies $d_{f} \geq 3$ for normal immersion $f: S^{2} \rightarrow M$ representing $5 h+3 g$. Choose five copies of $C P^{1}$ in $C P^{2}$ such that one of the intersections is tripled and the others are doubled. We can cap off a $-C P^{2}$ with three copies of $C P^{1}$ in it with just a triple intersection to eliminate the original triple intersection. Then tubing the four intersections along another copy of $C P^{1}$, we obtain a normal immersion of a 2 -sphere with three positive intersections.

Remark 3. In Theorems 1 and 2, q and each r_{i} are equal in position, so one can choose any one of them as q if the hypotheses are satisfied.

2. Proof of Theorem 1

For convenience we assume $q \geq 0, p, r_{i}>0, i=1, \ldots, m$. The other cases are similar.

Suppose that Theorem 1 is false, i.e., ξ can be represented by a smoothly embedded 2 -sphere. Adding $l-1$ copies of $-C P^{2}, P_{m+k+1}, \ldots, P_{m+k+l-1}$, we obtain $M^{\prime}=M \# P_{m+k+1} \# \cdots \# P_{m+k+l-1}$. Set

$$
\eta=p h+q g+\sum_{i=1}^{m} r_{i} g_{i}+\sum_{i=m+k+1}^{m+k+l-1} g_{i} \in H_{2}\left(M^{\prime} ; Z\right) .
$$

We have $\eta^{2}=1$, and η can also be represented by a smoothly embedded 2sphere S. Then surger the tubular neighbourhood of S from M^{\prime} to obtain a simply connected smooth 4 -manifold N. We get

$$
M^{\prime}=N \# C P^{2} .
$$

Let Q_{X} denote the intersection form of manifold X. Thus we have

$$
Q_{M^{\prime}} \sim Q_{N} \oplus Q_{C P^{2}}
$$

but $Q_{M^{\prime}}=\langle 1\rangle \oplus(m+k+l)\langle-1\rangle$ and $Q_{C P^{2}}=\langle 1\rangle$; so Q_{N} is negative definite. By Donaldson's theorem [D], we obtain

$$
Q_{N} \sim(m+k+l)\langle-1\rangle .
$$

Therefore there exist $2(m+k+l)$ homology classes in $H_{2}(N ; Z)$ with selfintersection number -1 . The images of them in $H_{2}\left(M^{\prime} ; Z\right)$ have self-intersection number -1 and intersection number 0 with η.

Let $a=x h+y g+\sum_{i=1}^{m+k+l-1} z_{i} g_{i} \in H_{2}\left(M^{\prime} ; Z\right)$ such that $a \cdot \eta=0$ and $a \cdot a=-1$. Then $x, y, z_{1}, \ldots, z_{m+k+l-1}$ satisfy the following Diophantine equations:

$$
\left\{\begin{array}{l}
p x-q y-\sum_{i=1}^{m} r_{i} z_{i}-\sum_{i=m+k+1}^{m+k+l-1} z_{i}=0, \tag{1}\\
x^{2}-y^{2}-\sum_{i=1}^{m} z_{i}^{2}-\sum_{m+1}^{m+k} z_{i}^{2}-\sum_{i=m+k+1}^{m+k+l-1} z_{i}^{2}+1=0
\end{array}\right.
$$

It is sufficient to prove (1) has at most $2(m+k+l)-1$ integral solutions.
Discarding the z_{i} 's, $1 \leq i \leq m$ and $m+k+1 \leq i \leq m+k+l-1$, which are zero, and renumbering the nonzero ones and corresponding r_{i} 's (note that $r_{i}=1$ for $m+k+1 \leq i \leq m+k+l-1)$ as z_{1}, \ldots, z_{s} and $r_{1}, \ldots, r_{s}, 0 \leq s \leq m+l-1$, and renumbering the original z_{m+1}, \ldots, z_{m+k} as $z_{m+l}, \ldots, z_{m+k+l-1}$, one obtains

$$
\left\{\begin{array}{l}
p x-q y-\sum_{i=1}^{s} r_{i} z_{i}=0 \\
x^{2}-y^{2}-\sum_{i=1}^{s} z_{i}-\sum_{i=m+l}^{m+k+l-1} z_{i}^{2}+1=0
\end{array}\right.
$$

One may eliminate x to obtain

$$
\begin{gather*}
\left(p^{2}-q^{2}\right) y^{2}-2 q\left(\sum_{1}^{s} r_{i} z_{i}\right) y-\left(\sum_{1}^{s} r_{i} z_{i}\right)^{2} \tag{2}\\
+p^{2}\left(\sum_{1}^{s} z_{i}^{2}+\sum_{m+l}^{m+k+l-1} z_{i}^{2}-1\right)=0
\end{gather*}
$$

As a quadratic equation of y, its discriminant times $\left(p^{2}-q^{2}\right)^{2} / 4$ is

$$
\Delta=p^{2}\left(\sum_{1}^{s} r_{i} z_{i}\right)^{2}-p^{2}\left(p^{2}-q^{2}\right)\left(\sum_{1}^{s} z_{i}^{2}-1\right)-p^{2}\left(p^{2}-q^{2}\right)\left(\sum_{m+l}^{m+k+l-1} z_{i}^{2}\right)
$$

Set

$$
\delta_{1}=\Delta / p^{2}=\left(\sum_{1}^{s} r_{i} z_{i}\right)^{2}-\left(p^{2}-q^{2}\right)\left(\sum_{1}^{s} z_{i}^{2}-1\right)-\left(p^{2}-q^{2}\right)\left(\sum_{m+l}^{m+k+l-1} z_{i}^{2}\right)
$$

We have

$$
\begin{equation*}
\delta_{1}=\delta-\left(p^{2}-q^{2}\right)\left(\sum_{m+l}^{m+k+l-1} z_{i}^{2}\right) \tag{3}
\end{equation*}
$$

where $\delta=\left(\sum_{1}^{s} r_{i} z_{i}\right)^{2}-\left(p^{2}-q^{2}\right)\left(\sum_{1}^{s} z_{i}^{2}-1\right)$.

Case 1. $s=0$. If $\sum_{m+l}^{m+k+l-1} z_{i}^{2}>1$, (2) has no solution; if $\sum_{m+l}^{m+k+l-1} z_{i}^{2}=1$, (2) has $2 k$ solutions; if $\sum_{m+l}^{m+k+l-1} z_{i}^{2}=0$, (2) has two solutions. All together, we have at most $2(k+1)$ solutions.

Case 2. $s=1$. For $z_{1}= \pm 1$, (2) becomes

$$
\left(p^{2}-q^{2}\right) y^{2} \mp 2 q r_{1} y-r_{1}^{2}+p^{2}\left(\sum_{m+l}^{m+k+l-1} z_{i}^{2}\right)=0 .
$$

If $\sum_{m+l}^{m+k+l-1} z_{i}^{2}=0$, the solutions of (2) are $\pm\left(-r_{1} /(p+q), r_{1} /(p-q)\right)$. Since $p+q \geq p$ and $r_{i}^{2}<p^{2}-q^{2}, r_{1} /(p+q)$ is not an integer and $r_{1} /(p-q)$ is an integer if and only if $(p-q) \mid r_{1}$. Since $p-q \geq 2$ and there are at least two r_{i} 's which equal 1 (otherwise, $\sum_{i=1}^{m+l-1} r_{i}^{2} \geq \sum_{i=1}^{m+l-2} r_{i}^{2}+1 \geq 4(m+l-2)+1>p^{2}-q^{2}$, contradicting $\left.\sum_{i=1}^{m+l-1} r_{i}^{2}=p^{2}-q^{2}\right)$, (2) has at most $2(m+l-3)$ integral solutions. If $\sum_{m+l}^{m+k+l-1} z_{i}^{2}>0$, then

$$
y=\frac{\left(\pm q r_{1} \pm p \sqrt{r_{1}^{2}-\left(p^{2}-q^{2}\right)\left(\sum_{m+l}^{m+k+l-1} z_{i}^{2}\right)}\right.}{\left(p^{2}-q^{2}\right)}
$$

Since $r_{1}^{2}<p^{2}-q^{2}$, (2) has no solution.
For $z_{1}^{2} \geq 4$, since $2(m+l-2)>p^{2}-q^{2}$, we have $r_{1} \leq r_{1}^{2}<\frac{1}{2}\left(p^{2}-q^{2}\right)<$ $\left(z_{1}^{2}-1\right)\left(p^{2}-q^{2}\right) / z_{1}^{2}$ and $\delta=r_{1}^{2} z_{1}^{2}-\left(p^{2}-q^{2}\right)\left(z_{1}^{2}-1\right)<0$, hence $\delta_{1}<0$. Thus (2) has no solution.

Case 3. $2 \leq s \leq m+l-2$. We have $p^{2}-q^{2}-\sum_{1}^{s} r_{i}^{2}=p^{2}-q^{2}-\sum_{1}^{m+l-1} r_{i}^{2}+$ $\sum_{s+1}^{m+l-1} r_{i}^{2}=1+\sum_{s+1}^{m+l-1} r_{i}^{2} \geq 1+m+l-s-1=m+l-s$ and $\sum_{1}^{s} z_{i}^{2} \geq s$.
Thus

$$
\begin{equation*}
\left(p^{2}-q^{2}-\sum_{1}^{s} r_{i}^{2}\right)\left(\sum_{1}^{s} z_{i}^{2}\right) \geq(m+l-s) s \tag{4}
\end{equation*}
$$

By hypothesis we have

$$
\begin{equation*}
2(m+l-2) \geq p^{2}-q^{2} \tag{5}
\end{equation*}
$$

If we have

$$
\begin{equation*}
\left(p^{2}-q^{2}-\sum_{1}^{s} r_{i}^{2}\right)\left(\sum_{1}^{s} z_{i}^{2}\right)>p^{2}-q^{2} \tag{6}
\end{equation*}
$$

we get

$$
\begin{align*}
\frac{\sum_{1}^{s} r_{i}^{2}}{p^{2}-q^{2}} & =\frac{p^{2}-q^{2}-\left(p^{2}-q^{2}-\sum_{1}^{s} r_{i}^{2}\right)}{p^{2}-q^{2}} \\
& <\frac{\left(p^{2}-q^{2}-\sum_{1}^{s} r_{i}^{2}\right)\left(\sum_{1}^{s} z_{i}^{2}-1\right)}{\left(p^{2}-q^{2}-\sum_{1}^{s} r_{i}^{2}\right)\left(\sum_{1}^{s} z_{i}^{2}\right)}=\frac{\sum_{1}^{s} z_{i}^{2}-1}{\sum_{1}^{s} z_{i}^{2}} \tag{7}
\end{align*}
$$

and hence

$$
\begin{aligned}
\delta_{1} & =\left(\sum_{1}^{s} r_{i} z_{i}\right)^{2}-\left(p^{2}-q^{2}\right)\left(\sum_{1}^{s} z_{i}^{2}-1\right)-\left(p^{2}-q^{2}\right)\left(\sum_{m+l}^{m+k+l-1} z_{i}^{2}\right) \\
& \leq\left(\sum_{1}^{s} r_{i}^{2}\right)\left(\sum_{1}^{s} z_{i}^{2}\right)-\left(p^{2}-q^{2}\right)\left(\sum_{1}^{s} z_{i}^{2}-1\right)-\left(p^{2}-q^{2}\right)\left(\sum_{m+l}^{m+k+l-1} z_{i}^{2}\right) \\
& <-\left(p^{2}-q^{2}\right)\left(\sum_{m+l}^{m+k+l-1} z_{i}^{2}\right) \leq 0 .
\end{aligned}
$$

Thus (2) has no solution.
Note that $(m+l-s) s>2(m+l-2)$ unless $s=2$ or $s=m+l-2$; so we obtain (6) for $2<s<m+l-2$. For $s=2$ or $s=m+l-1$, if the Cauchy-Schwarz inequality $\left(\sum_{1}^{s} r_{i} z_{i}\right)^{2} \leq\left(\sum_{1}^{s} r_{i}^{2}\right)\left(\sum_{1}^{s} z_{i}^{2}\right)$ is a strict inequality, we have $\delta_{1}<0$ also. When the Cauchy-Schwarz inequality becomes equality, we obtain $z_{i}=r_{i}, i=1, \ldots, s$, or $z_{i}=-r_{i}, i=1, \ldots, s$.

If $s=2$ and (4) becomes equality, we have $z_{1}^{2}+z_{2}^{2}=2$ and $p^{2}-q^{2}-r_{1}^{2}-r_{2}^{2}=$ $m+l-2$. It follows that $z_{1}^{2}=z_{2}^{2}=r_{1}^{2}=r_{2}^{2}=1$ and $2(m+l-2)=2\left(p^{2}-q^{2}-2\right)>$ $p^{2}-q^{2}$. So we get the strict inequality in (5).

If $s=m+l-2$ and (4) becomes equality, we have $\sum_{1}^{s} z_{i}^{2}=m+l-2$ and $p^{2}-q^{2}-\sum_{1}^{s} r_{i}^{2}=2$. It implies $z_{1}^{2}=\cdots=z_{s}^{2}=r_{1}^{2}=\cdots=r_{s}^{2}=1$ and $m+l-2=p^{2}-q^{2}-2$; thus $2(m+l-2)=2\left(p^{2}-q^{2}-2\right)>p^{2}-q^{2}$, and we also get the strict inequality in (5).

Thus (2) has no solution for $2 \leq s \leq m+l-2$.
Case 4. $s=m+l-1$. Suppose $r_{i}=1$ for $i=n+1, \ldots, m+l-1$. Since $\sum_{i=1}^{m+l-1} r_{i}^{2}<p^{2}-q^{2}$, there are at least two r_{i} 's which equal 1 (otherwise, $\sum_{1}^{m+l-1} r_{i}^{2} \geq \sum_{1}^{m+l-2} r_{i}^{2}+1 \geq 4(m+l-2)+1>p^{2}-q^{2}$, a contradiction!), i.e., we have $n \leq m+l-3$.

If $z_{i}=r_{i}, i=1, \ldots, m+l-1$, or $z_{i}=-r_{i}, i=1, \ldots, m+l-1$, then

$$
\begin{aligned}
\delta_{1} & =\left(\sum_{1}^{m+l-1} r_{i}^{2}\right)^{2}-\left(p^{2}-q^{2}\right)\left(\sum_{1}^{m+l-1} r_{i}^{2}-1\right)-\left(p^{2}-q^{2}\right)\left(\sum_{m+l}^{m+k+l-1} z_{i}^{2}\right) \\
& =\left(\sum_{1}^{m+l-1} r_{i}^{2}\right)^{2}-\left(\sum_{1}^{m+l-1} r_{i}^{2}+1\right)\left(\sum_{1}^{m+l-1} r_{i}^{2}-1\right)-\left(p^{2}-q^{2}\right)\left(\sum_{m+l}^{m+k+l-1} z_{i}^{2}\right) \\
& =1-\left(p^{2}-q^{2}\right)\left(\sum_{m+l}^{m+k+l-1} z_{i}^{2}\right) \leq 1 .
\end{aligned}
$$

We will show that if $\left\{z_{i}\right\}_{i=1}^{m+l-1} \neq \pm\left\{r_{i}\right\}_{i=1}^{m+l-1}$ then $\delta_{1}<0$, hence (2) has at most two solutions.

It is easy to see that if $\operatorname{sign}\left(z_{i}\right) \neq \operatorname{sign}\left(z_{j}\right)$ for some $i, j, i \leq i, j \leq m+l-1$, then the Cauchy-Schwarz inequality is strict inequality and $\delta_{1}<0$. So we
assume $\operatorname{sign}\left(z_{i}\right)=\operatorname{sign}\left(z_{j}\right), 1 \leq i, j \leq m+l-1$. Without loss of generality, we assume $z_{i}>0, i=1, \ldots, m+l-1$.
(a) $z_{i} \geq 2$ for some $i, n+1 \leq i \leq m+l-1$, say, $z_{m+l-1} \geq 2$. As proved in Case 3 for $s=m+l-2$, we have $\left(\sum_{1}^{m+l-2} r_{i} z_{i}\right)^{2}-\left(p^{2}-q^{2}\right)\left(\sum_{1}^{m+l-2} z_{i}^{2}-1\right)<0$ from (7).

If

$$
\sum_{1}^{m+l-2} r_{i} z_{i}-\left(p^{2}-q^{2}\right) \geq-2
$$

then

$$
\left(\sum_{1}^{m+l-2} r_{i}^{2}\right)\left(\sum_{1}^{m+l-2} z_{i}^{2}\right) \geq\left(\sum_{1}^{m+l-2} r_{i} z_{i}\right)^{2} \geq\left(p^{2}-q^{2}-2\right)^{2}
$$

Since

$$
\sum_{1}^{m+l-2} r_{i}^{2}=p^{2}-q^{2}-2
$$

we have

$$
\sum_{1}^{m+l-2} z_{i}^{2} \geq p^{2}-q^{2}-2
$$

thus

$$
\sum_{1}^{m+l-1} z_{i}^{2}=\sum_{1}^{m+l-2} z_{i}^{2}+z_{m+l-1}^{2} \geq p^{2}-q^{2}-2+z_{m+l-1}^{2} \geq p^{2}-q^{2}+2>p^{2}-q^{2}
$$

It follows that (7) is valid for $s=m+l-1$. Thus $\delta<0$ and $\delta_{1}<0$.
If

$$
\sum_{1}^{m+l-2} r_{i} z_{i}-\left(p^{2}-q^{2}\right) \leq-3
$$

then

$$
\begin{aligned}
\delta= & \left(\sum_{1}^{m+l-2} r_{i} z_{i}+z_{m+l-1}\right)^{2}-\left(p^{2}-q^{2}\right)\left(\sum_{1}^{m+l-2} z_{i}^{2}+z_{m+l-1}^{2}-1\right) \\
= & \left(\sum_{1}^{m+l-2} r_{i} z_{i}\right)^{2}+2 z_{m+l-1}\left(\sum_{1}^{m+l-2} r_{i} z_{i}\right)+z_{m+l-1}^{2} \\
& -\left(p^{2}-q^{2}\right)\left(\sum_{1}^{m+l-2} z_{i}^{2}-1\right)-z_{m+l-1}^{2}\left(p^{2}-q^{2}\right) \\
< & 2 z_{m+l-1}\left(p^{2}-q^{2}-3\right)-z_{m+l-1}^{2}\left(p^{2}-q^{2}-1\right) \\
\leq & z_{m+l-1}^{2}\left(p^{2}-q^{2}-3\right)-z_{m+l-1}^{2}\left(p^{2}-q^{2}-1\right)<0 .
\end{aligned}
$$

Thus $\delta_{1}<0$.
(b) $z_{n+1}=\cdots=z_{m+l-1}=1$. Let $t_{i}=r_{i}-z_{i}, i=1, \ldots, n$. Since $\left\{z_{i}\right\} \neq\left\{r_{i}\right\}$, we have $t_{i} \neq 0$ for some i. Thus

$$
\begin{aligned}
\delta= & \left(\sum_{1}^{m+l-1} r_{i} z_{i}\right)^{2}-\left(p^{2}-q^{2}\right)\left(\sum_{1}^{m+l-1} z_{i}^{2}-1\right) \\
= & \left(\sum_{1}^{m+l-1} r_{i}^{2}-\sum_{1}^{n} r_{i} t_{i}\right)^{2}-\left(p^{2}-q^{2}\right)\left(\sum_{1}^{m+l-1} r_{i}^{2}-1-2 \sum_{1}^{n} r_{i} t_{i}+\sum_{1}^{n} t_{i}^{2}\right) \\
= & \left(\sum_{1}^{m+l-1} r_{i}^{2}\right)^{2}-\left(p^{2}-q^{2}\right)\left(\sum_{1}^{m+l-1} r_{i}^{2}-1\right)-2\left(\sum_{1}^{m+l-1} r_{i}^{2}\right)\left(\sum_{i}^{n} r_{i} t_{i}\right) \\
& +\left(\sum_{i}^{n} r_{i} t_{i}\right)^{2}+2\left(p^{2}-q^{2}\right)\left(\sum_{1}^{n} r_{i} t_{i}\right)-\left(p^{2}-q^{2}\right)\left(\sum_{1}^{n} t_{i}^{2}\right) \\
= & \left(p^{2}-q^{2}-1\right)^{2}-\left(p^{2}-q^{2}\right)\left(p^{2}-q^{2}-2\right) \\
& -2\left(p^{2}-q^{2}-1\right)\left(\sum_{1}^{n} r_{i} t_{i}\right)+\left(\sum_{i}^{n} r_{i} t_{i}\right)^{2} \\
& +2\left(p^{2}-q^{2}\right)\left(\sum_{i}^{n} r_{i} t_{i}\right)-\left(p^{2}-q^{2}\right)\left(\sum_{1}^{n} t_{i}^{2}\right) \\
= & 1+2\left(\sum_{1}^{n} r_{i} t_{i}\right)+\left(\sum_{i}^{n} r_{i} t_{i}\right)^{2}-\left(p^{2}-q^{2}\right)\left(\sum_{1}^{n} t_{i}^{2}\right) \\
= & \left(1+\sum_{1}^{n} r_{i} t_{i}\right)^{2}-\left(p^{2}-q^{2}\right)\left(\sum_{1}^{n} t_{i}^{2}+1-1\right)<0 .
\end{aligned}
$$

The last inequality is proved in Case 3. Therefore $\delta_{1}<0$.
By Cases 1, 2, 3, and 4, we have that the number of solutions of (2), hence of (1), are at most $2(m+k+l-1)$. This proves Theorem 1 .

3. Proof of Theorem 2

Suppose the theorem is false, i.e., there is a normal immersion $f: S^{2} \rightarrow M$ representing ξ with $d=d_{f} \leq[(l-r-1) / 4]$.

We can remove each self-intersection by "blowing up a $-C P^{2}$ " (cf. [G]). We add two copies of $C P^{1}$ with opposite orientations in a new $-C P^{2}$ to eliminate a negative self-intersection and we do not change the homology class of the immersed 2 -sphere. This enlarges the value of k. Moreover, we add two copies of $C P^{1}$ with positive orientation in a new $-C P^{2}$ to eliminate a positive self-intersection and the homology class of the immersed 2 -sphere is changed by twice the generator of $H_{2}\left(-C P^{2} ; Z\right)$.

Eventually we can represent the homology class

$$
\eta=p h+q g+\sum_{1}^{m} r_{i} g_{i}+\sum_{m+k+1}^{m+k+d} 2 g_{i}
$$

by a smoothly embedded 2 -sphere in M^{\prime}, where

$$
M^{\prime}=C P^{2} \#\left(-C P^{2}\right) \# P_{1} \# \cdots \# P_{m+k} \# P_{m+k+1} \# \cdots \# P_{m+k+d} .
$$

We can check that M^{\prime} and η satisfy the hypothesis of Theorem 1. Setting $l^{\prime}=\eta^{2}=\xi^{2}-4 d=l-4 d, m^{\prime}=m+d$, we have

$$
\begin{aligned}
2\left(m^{\prime}+l^{\prime}-2\right) & =2(m+d+l-4 d-2) \\
& \geq 2\left(m+r+(l-r-1)-3\left[\frac{l-r-1}{4}\right]-1\right) \\
& \leq 2\left(m+r+\left[\frac{l-r-1}{4}\right]-1\right) \geq p^{2}-q^{2}
\end{aligned}
$$

by the hypothesis of Theorem 2. Theorem 1 implies that η cannot be represented by a smoothly embedded 2 -sphere. The contradiction completes the proof.

References

[B] J. Boardman, Some embeddings of 2-spheres in 4-manifolds, Proc. Cambridge Philos. Soc. 60 (1964), 354-356.
[D] S. Donaldson, An application of gauge theory to four-dimensional topology, J. Differential Geom. 18 (1983), 279-315.
[GG] D. Y. Gan and J. H. Guo, Smooth embeddings of 2 -spheres in manifolds, J. Math. Res. Exposition 10 (1990), 227-232.
[G] R. E. Gompf, Infinite families of Casson handles and topological disks, Topology 23 (1984), 395-400.
[HS] W. C. Hsiang and R. Szczarba, On embedding surfaces in 4-manifolds, Proc. Sympos. Pure Math., vol. 22, Amer. Math. Soc., Providence, RI, 1970, pp. 97-103.
[KM] M. Kervaire and J. Milnor, On 2-spheres in 4-manifolds, Proc. Nat. Acad. Sci. U.S.A. 47 (1961), 1651-1657.
[K] K. Kuga, Representing homology classes of $S^{2} \times S^{2}$, Topology 23 (1984), 133-137.
[La] T. Lawson, Representing homology classes of almost definite 4-manifolds, Michigan Math. J. 34 (1987), 85-91.
[Lu] F. Luo, Representing homology classes in CP ${ }^{2} \# \overline{C P^{2}}$, Pacific J. Math. 133 (1988), 137-140.
[$\left.\mathbf{R}_{1}\right] \quad$ V. Rohlin, New results in the theory of 4-dimensional manifolds, Dokl. Akad. Nauk SSSR 84 (1952), 221-224.
[$\left.\mathbf{R}_{\mathbf{2}}\right] \quad$, Two dimensional submanifolds of four dimensional manifolds, J. Funct. Anal. Appl. 5 (1971), 39-48.
[S] A. Suciu, Immersed spheres in $C P^{2}$ and $S^{2} \times S^{2}$, Math. Z. 196 (1987), 51-57.
[T] A. G. Tristram, Some cobordism invariants for links, Proc. Cambridge Philos. Soc. 66 (1969), 251-264.
[W] C. T. C. Wall, Diffeomorphisms of 4-manifolds, J. London Math. Soc. 39 (1964), 131-140.

Department of Mathematics and Centre for Mathematical Science, Zhejiang University, Hangzhou, China

Department of Mathematics, Hangzhou University, Hangzhou, China

[^0]: Received by the editors December 12, 1991.
 1991 Mathematics Subject Classification. Primary 57R95; Secondary 57N13, 57R42.
 Key words and phrases. Representing, normal immersion, positive self-intersection.
 This project was supported by the National Natural Science Foundation of China. The results of this paper were announced at a session on 28 May 1991 of the "Symposium in Topology and Related Topics in Honor of Professor Chiang's 90th Birthday, Beijing, May 1991".

 The first author was partially supported by a Zhejiang Natural Science Foundation Grant.

