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Abstract. Landweber provided two proofs of the existence of (level 2) elliptic

cohomology (Lecture Notes in Math., vol. 1326, Springer-Verlag, New York,

1988, pp. 69-93). As Baker pointed out (J. Pure Appl. Algebra 63 (1990),
1-11), one of these proofs gives a level 1 elliptic cohomology theory as well.

In this note we provide an alternative proof of the existence of level 1 elliptic

cohomology. The idea here is to use Landweber's direct proof of the existence of

level 2 elliptic cohomology and an integrality argument to deduce the existence

of level 1 elliptic cohomology from that.

1. Introduction

Elliptic cohomology was originally defined by Landweber, Ravenel, and Stong

[LRS, Land2]. There is a universal elliptic genus

(/>: MSO, -^S

that associates to an oriented manifold of dimension 2k a modular form over

Z[j] of weight k for the congruence subgroup

r°(2) = {(c   J)eSL2(Z)|c = 0(mod2)J.

The graded ring of all such modular forms,  S, is isomorphic to Z[j][r5, e],

where 8, e have weights 2 and 4 respectively and so occur in grades 4 and 8.

Let A = 2X2e(82 - e)2. (The reason for the factor 212 will be clear below.)

One then forms the tensor product

MSO*(A)®mso.S[A-'].

Here and throughout the paper, we take X to be a finite CW complex, though by

working with homology instead we could avoid this assumption. Landweber,

Ravenel, and Stong show that this tensor product satisfies the hypotheses of

the Landweber exact functor theorem [Land 1 ] and is, therefore, a cohomology

theory. Since we will be comparing 5" to level 1 modular forms where 3 should

be inverted as well, let us redefine S = Z[^][8, s].
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In [Bakl] Baker defined a genus

ip: MSO* -^7?

taking values in the graded ring of modular forms over Z[g] for all of SL2(Z).

The ring 7? is isomorphic to Z[|][7i4, 7sD], where E4 and E& are Eisenstein

series of weights 4 and 6, and so are in grades 8 and 12. Let

F3 - F2
A= =*_=*■

2633    "

Baker then points out that the work of Landweber [Land2] shows that

MSO*(A)®mso. R[ATl]

is a cohomology theory, level 1 elliptic cohomology.

In the present paper, we give another proof of this fact using the relation

between level 1 and level 2 modular forms. An outline of the proof is as follows.

There is a canonical ring inclusion a: R —> S. It is shown by Landweber in

[Land2] that the formal group laws over 5* induced by <f> and aip are strictly

isomorphic. Thus we know that a\p satisfies the hypotheses of the Landweber

exact functor theorem if A is inverted. We then have to show that ip does.

This depends on the integrality of a .

We need a lemma about formal group laws. Let p be a prime. Recall

from [Rav] that any formal group law over a Z(p)-algebra A is canonically

isomorphic to a p-typical formal group law. Any p-typical formal group law is

induced from the universal one by a ring homomorphism /; BPt -» A , where

BP* = Z(p)[«i, v2, ...]. We use the Araki generators and let v0 = p .

Lemma 1. Suppose f,g: BP„ —> A induce strictly isomorphic formal group laws

over A . Then for all n ,

f(v„) = g(v„)    mod(g(v0), g(vx), ... , g(v„-x)).

In particular, the ideals generated by

(f(vo),f(vx),...,f(v„))    and   (g(v0), g(vx), ... , g(v„))

are the same.

Proof. Let F and G be the formal group laws associated with / and g. and

let h be the strict isomorphism between F and G. Recall that the p-series

\p]f(x) is the formal sum of the vnxp":

\P]F(X) = Y* fiVn)XP".

A similar statement holds for G. Since h is an isomorphism, we have

h([p]F (x)) = \p]G(h(x)).

Since h is strict, h(x) = x(modx2). It is now easy to prove the lemma by

induction on n .   D

Theorem 1 [Bakl]. Baker's genus tp: MSO, —» R induces a cohomology theory

MSO*(A)®mso./v[A-'].

Proof. As mentioned above, there is a canonical ring inclusion a: R —» S.

It is easy to check using the first few ^-expansion coefficients that a(E4) =



PROOF OF THE EXISTENCE OF LEVEL 1 ELLIPTIC COHOMOLOGY 1333

26(rJ2 + 3e), a(E6) = 298(-82 + 9e). One then checks that a(A) = A. This is
the reason for the factor of 212 in the definition of A e 5.

Landweber shows that the formal group laws induced by ay/ and tp are

strictly isomorphic. In his statement, he considers fields K of characteristic

not 2 or 3, but he actually proves it for the universal example as we have here.

He also uses the Weierstrass curve y = 4x2 - g2x - g-j rather than the Tate

curve y = 4x3 -(1/12)E4X + (1/216)E6 used by Baker. As Baker explains, this

only changes 7? by an isomorphism and so does not affect the result.

Landweber also shows that tj> satisfies the hypotheses of the exact functor

theorem. That is, for a fixed prime p > 3, he shows that cp(p) = p is a non-

zero-divisor, that (j)(vx) is a non-zero-divisor modp, and that (p(v2) is a unit

mod(p, <f>(vx)) when A is inverted. In fact, he shows that tf)(v2) = A(/r_1)/12

mod(p, tf>(vx)). By the above lemma, the same facts are true for ay/ .

Now we must show that they are true for yi. It is certainly clear that y/(p) =

p is a non-zero-divisor in 7v[A_1]. It is also easy to see that a: R®FP —» S®FP

is injective. Indeed, if x = py and x is a level 1 modular form, so is y. This

implies that y/(vx) is not a zero-divisor in 7v[A~'] <g> Fp . Indeed, suppose

y/(vx)x = 0. Then y/(vx)ax = ay/(vx)ax = 0. Thus ax = 0, so x = 0.

Now consider a: (R®Fp)/(y/(vx)) -» (S®Fp)/(ay/(vx)). We claim that this

map is injective. Indeed, we prove the stronger fact that if / / 0, g £ R®FP,

and a(g) = a(f)h where h £ S ®FP , then in fact h is in the image of a. It

clearly suffices to prove this for irreducible /. But in that case (/) is a prime
ideal.

It should be well known in the theory of modular forms that S is integral

over 7?, but the only reference I know is [Bak2]. In this case, one can simply

see that 8 and e satisfy monic cubic polynomials over 7?. Indeed,

ri3 - (3/2*)a(E4)8 + (l/2xx)a(E6) = 0

and

e3 - (l/26)a(E4)e2 + (l/2X4)a(E2)e - (l/2H)a(A) = 0.

Then S ® Fp is integral over 7? <g> Fp as well.
Thus we can apply the theorem of Cohen and Seidenberg [Jac, p. 411], which

says that any prime ideal in 7? ® Fp is the contraction of a prime ideal P in

S ® Fp . Thus (/) = a~x(P). In particular, if a(g) = a(f)h , then a(g) £ P,
so g = fh' for some h' in 7? <8> Fp . Then a(h') = h .

In particular, a is injective. The image under a of y/(v2) is A(p -')/12;

therefore, we must have y/(v2) = A(p -1V12. Thus y/ satisfies the hypotheses of

the Landweber exact functor theorem and so induces a cohomology theory.   □
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