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TYPICAL INTERSECTIONS OF CONTINUOUS FUNCTIONS
WITH MONOTONE FUNCTIONS

M. HEJNY

(Communicated by Andrew M. Bruckner)

Abstract. For each parameter <E> a typical continuous function intersects ev-

ery monotone function in a (4>)-uniformly symmetrically porous set.

1. Introduction and notation

This paper generalizes the results of Humke and Laczkovich [1]. The notion

of "bilaterally strongly O-porosity" in [1] is replaced by the stronger one of

"(O)-uniformly symmetric porosity" (see Definition 2 and Theorem 3). The

main result of the paper, Theorem 4, is obtained using an adaptation of the

Banach-Mazur game (Theorem 6), and there is a different approach than that

used in [1].

Definition 1. Let <P: (0, 1) —► (0, 1] be a continuous function. A set E c R is

said to be bilaterally strongly <J>-porous if for every x £ E there are sequences

of intervals I„ c (x - \/n, x) \ E and J„ c (x, x + 1/n) \ E such that

(a) l™^S^=lim^7m^-0-

In [ 1 ] Humke and Laczkovich proved the following

Theorem 1. Let O: (0, 1] —» (0, 1] be a continuous function. Then a typical

continuous function intersects every monotone function in a bilaterally strongly

<&-porous set.

Notation 1. The family of all continuous increasing functions 0 on [0, 1 ] for

which 4>(0) = 0 will be denoted by G; such functions will be referred to as

porosity indices.

Notation 2. Let <J> e G and k £ N. By 7v(<D, k) we will denote the set of

all E c E for which there are numbers ak , bk such that for all jc £ E the

following hold:

(i) 0 < ak < bk < k~x,
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(ii) <&(bk - ak) > ak , and

(iii) [x - bk , x - ak] n E = [x + ak , x + bk] n E = 0 .

Further let us denote 7?(<I>) = HfcLi R(®> k) ■

Definition 2. Let $eG. Those sets E £ Tv(O) are said to be (<P)-uniformly

symmetrically porous.

For our purposes Theorem 1 will be slightly reformulated.

Definition 3. Let ¥ 6 G. We call a set £cl (^-bilaterally strongly porous

if for every x £ E there are sequences of intervals I„ c (x — 1/n, x)\E and

JnC(x, x+l/n)\E such that for every n £ N both dist(x, I„) < ^(Ihl) and
distO,/«)<^(|/«|).

We reformulate Theorem 1 as

Theorem 2. Let V £ G. Then the typical continuous function intersects every

monotone function in a (fV)-bilaterally strongly porous set.

In fact, for each continuous function <P:(0,1]-+(0,1] there exists H'o £ G

such that »FoO) < *W for x £ (0, 1]. Let us set «F(jc) = jcI^O) • For
*F £ G we can find (according to Theorem 2) sequences of intervals {7„}^, and

{Jn}T=i such tnat for eveiT " e N, dist(x, In) < ^(|7„|) and dist(x, 7„) <

V(\JH\). Then distO,/B) < V(|/„|) = |7„|4'0(|7„|) < «->(D(|7„|). Similarly
«dist(x, Jn) < 0(|/„|) and, hence, (a).

Therefore Theorem 1 is a consequence of Theorem 2. The fact that Theorem

2 is a consequence of Theorem 1 is evident.

2. Proof of Theorem 3

In this section we will show by Theorem 3 that our main result (Theorem 4)

is stronger than the result of Humke and Laczkovich (Theorem 2).

Theorem 3. Let <P be the identity function on [0,1]. Then for every *F £ G

there is E c [0, 1] such that E is (^-bilaterally strongly porous and is not

(^-uniformly symmetrically porous.

Proof. Let *F e G.   The subsequence  {PkJnZi  of the sequence  {Pk}kLx =

{(§)fc+1}fc^=i will be defined by induction; set kx = 1 and suppose kx, k2, ... ,kn

are given. Since *F € G, there exists kn+x £ N such that *V(Pkn -Pk„+{) > Pk„+i ■

Now denote

E = {0.5 +pm : k2n-x <m<k2n,  n £ N} U {0.5}

U {0.5 -pm:k2n<m< k2n+x,  n £ N}.

Obviously there is only one point, namely, 0.5 , for which it is necessary to

verify (4/)-bilaterally strongly porosity. Setting

7„ = (0.5-/?fc2„_1, 0.5-pkJ

and

J„ = (0.5 + Pk2n+l, 0.5+pkJ,

it is easy to see that the set E is (^-bilaterally strongly porous. Further for each

a£ (0, 0.2) either [0.5 -2a, 0.5-a]n7i / 0 or [0.5 +a, 0.5 + 2a]n£ ^ 0 .
Thus the set E is not (O)-uniformly symmetrically porous.   Q.E.D.
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In Theorem 3 the set E could have been chosen as

E = {0.25-pm : k2n-x <m<k2n, n £ N}

U {0.25 +pm : k2n-X <m<k2n,  n £ N}

U {0.75 -pm :k2n<m< k2n+x, n £ N}

U {0.75 + pm : k2n < m < k2n+x,  n £ N}

U {0.25, 0.75}.

Now for each x £ E and each k £ N there are numbers ak , bk such that

(i), (ii), and (iii) of Notation 1 are fulfilled, but the uniformity is not preserved,

i.e., there are no sequences {<2fc}|bLi , {bk}kLi suca iaat f°r each x £ E (in our
case we put x = 0.25 or x = 0.75) (i), (ii), and (iii) hold.

The main theorem of this paper reads as follows.

Theorem 4. Let <P € G. Then the typical continuous function intersects each

monotone function in a (^-uniformly symmetrically porous set.

It is clear that Theorem 2 is a consequence of Theorem 4, but by Theorem 3

we showed that Theorem 2 is not a consequence of Theorem 4.

3. Proof of Theorem 2

Notation 3. Let / be a real function, g £ C[0, 1], xel, e > 0. We denote

U(x, s) = {y£R: \x-y\<e},

U(g,e) = {<p£C[0, l]:\<p(x)-g(x)\<eforx£[0, 1]},

Mf,E = {(x,y)£R2:\f(x)-y\<s},

and

gr/={(i,/(x))el2:xe[0, 1]}.

For a set Af c I2 we denote P(M) = {x £ R: there exists y £R such that

(x,y)£M}.
We need two lemmas. The first of these is easy to see and is not proved.

Lemma 1. Let S > 0, a > 0. Let r be a continuous piecewise linear function on

interval I, for which r'+(x) < -a, for all x £ intl. Let f be a nondecreasing

function.   Then there exists an interval of length 28/a which contains the set

P(Mr,sngTf).

Lemma 2. Let U c C[0, 1] be open and nonempty. Then there exists n £

N such that for an arbitrary y > 0 there is a function s £ C[0, 1] and a

number 5 > 0 such that for each nondecreasing function f there are intervals

Jx, J2, ... , Jn for which

(i) \Jt\<y for i= 1,2, ... ,n,
(ii) U(s,8)c U,and

(iiii) P(MMngr/)ctXi4--

Proof. Obviously there exists a continuous and piecewise linear function h £

C[0, 1] and a number e > 0 such that U(h, e) c U . Denote

(1) t = max{\h'+(x)\: x £ (0, \)},
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choose «o € N such that

(2) n0 > —— ,

and denote n = 2«0 • Further let y > 0, b = min{l/«, y/2}, and 7 =
[b, l/«o] • Let Mo oe the continuous and piecewise linear function defined as

follows:

(a) Wo is periodic with the period Mq~ ' ;

(b) M0(0) = -f , u0(b) = § , «o(«o"') = ~2> and
(c) «o is linear on [0, b] and on 7.

Let us denote u(x) = «oO)|[o,i] > and let J > 0 be such that

(3) 28 < min{y, e}.

Suppose / is nondecreasing. Denote 5 = h + u and Ji+X = [in^1, in^x+b] for

1 = 0, 1, ... , «o-1 • The upcoming construction of intervals J„Q+X, J„0+x, ... ,

Jn will use Lemma 1.
From (2) and the definition of the function u(x) it follows that u'(x) =

-e/(«0"1 - b) < -e«o <—t—l for x £ intl. Thus by (1)

s'+(x) = u'+(x) + h'+(x) <-t-l + t = -l

for x £ intl. Denote sx = S\i. From (3) and the fact that s'+(x) < -1

for x £ Intl it follows from Lemma 1 that there is an interval J„0+x of the

length less than y for which T^Af^ ;(5 n gr/) c Jno+x . Similarly we define the

intervals J„0+i for i = 2,1, ... , Hq. Thus for s, = sl[(i_X)/no+b< x/„o] it follows

that P(MSi, Sngrf) c Jno+i. Conclusions (i) and (iii) follow directly from the

definition of the intervals Jx, ... , Jn . From (3) and the inequality |w(.x)| < e/2

it follows that U(s, 8) c U(h, e); but then U(h, e) c U and conclusion (ii)
follows.    Q.E.D.

To prove Theorem 4 we introduce the Banach-Mazur game: Assume that X

is a complete metric space and B c X. The Banach-Mazur game is played by

two players, (A) and (B). In the first step, (A) chooses an open and nonempty

set Ux c X, and (B) chooses an open and nonempty set Vx c Ux . In the nth

step (A) chooses an open and nonempty set U„ c V„_x and (B) chooses an

open and nonempty set Vn c Un . This defines a nonincreasing sequence of

open sets. If f)~i V c B then (B) wins. In the opposite case (A) wins.

Theorem 5 (see [1]). In the Banach-Mazur game there is a winning strategy for

the player (B) if and only If the set B is residual in X.

Further the Banach-Mazur game will be looked at with respect to the space

X = C[0, 1].

Definition 4. A nonempty family P of subsets of R is called a family of small

sets if the relation A £ P and B c A yields B £ P.

Notation 4. Let P be a family of small sets. The Banach-Mazur game for which

B = {tp £ C[0, 1]: P(grfr)grtp) £ P for every nondecreasing function /} will

be denoted by BM(T').
Further we will use the F(P) game, which is described as follows: The F(P)

game is played by two players, (A) and (B). In the first step, (A) chooses a
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number «i e N and (B) chooses a real positive number yx > 0. In the kth step

(A) chooses a number nk £ N and (B) chooses a real positive number yk > 0.

This defines a sequence nx,yx, n2,y2, ... . If for every sequence {Tk}kLl of

sets Tk = (J"*, If , where 7f (*' = 1, 2,..., nf) are intervals shorter than yk ,

fl/tLi Tk £ P holds, then (B) wins. In the opposite case (A) wins.

Lemma 3. Let P be a family of small sets. If there is a winning strategy for the

player (B) in the F(P) game then there is in the BM(P) game as well.

Proof. Suppose that the BM(7>) game up to the kth step of (A) is given by

the sequence Ux D Vx d ■ ■ ■ d Uk , and suppose that the F(P) game up to the

(k- l)th step of (B) is given by the sequence nx, yx, ... , nk_x, yk_x and that

(B) has used a winning strategy. Now for Uk c C[0, 1] by Lemma 2 we find

nk £ N. Then with respect to the winning strategy of (B) in the F(P) game for

nk £ N we obtain a number yk > 0. For Uk , nk, and yk by Lemma 2 we find

a function s £ C[0, 1] and a number 8k> 0. Now put Vk = U(sk , 8k) as the
kth step of (B). From Lemma 2 we have VkcUk .

We are going to show that (B) wins in this BM(7>) game. If f|/^i K: = 0

there is nothing to be proved. Let s £ f)^i Vi and let / be a nondecreasing

function. Denote E = P(gr/ngr.y). According to Lemma 2 for each k £ N

there are intervals 7f , l\ , ... , 7*   such that |7f| < % , / = 1, 2, ... , nk , and

(4) P(grfnMSk t3k) c Tk    where 7* = Q l\ .
i=i

Obviously 7s c 7>(gr/n AfJt >($J, and regarding (4) we have

oo

(5) Ecf]Tk.
k=\

Since (B) used the winning strategy in the F(P) game, it follows that f}°^l Tk

£ P. From (5) and the fact that P is a family of small sets we get E £ P.
Hence (B) wins in the BM(7>) game as well.    Q.E.D.

Notation 5. Let P be a family of small sets. Then we denote

WP = {tp £ C[0, 1] : 7>(gr/n gr<?) e P for each / monotone},

Wf = {tp £ C[0, 1]: P(gr f ngr tp) £ P for each / nonincreasing},

W£ = {rp £ C[0, 1]: 7>(gr / ngr tp) £ P for each / nondecreasing}.

Lemma 4. Let P be a family of small sets. The set Wp is residual If and only

if the set Wp   is residual.

Proof. Obviously it is enough to find a homeomorphism 77 from C[0, 1] on

to C[0, 1] such that H(W+) = W~ . Define H(tp) = -tp for tp £ C[0, 1]. Let
tp £ Wp , and let / be nonincreasing. Then P(gr fPigx-tp) = P(%x-ff\%rtp) £

P. Thus -tp £ Wf . Similarly tp £ Wf yields -tp £ W+ .   Q.E.D.

Lemma 5. Let P be a family of small sets such that the set Wf is residual.

Then WP is also residual in C[0, 1 ].

Proof. According to Lemma 4 the set Wp = Wf n Wf is residual. Because

Wp = Wf n Wf , WP is thus residual also.   Q.E.D.
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Theorem 6. Let P be a family of small sets. If there is a winning strategy for

the player (B) in the F(P) game then the set WP is residual in C[0, 1].

Proof. According to Lemma 3 there is a winning strategy for (B) also in the

BM(75) game, and with respect to Theorem 5 the set Wf is residual. Theorem

6 now follows from Lemma 5.   Q.E.D.

Proof of Theorem 4. Let <P £ G. We need to show that WR^ is residual.

To do that it is enough to verify the assumptions of Theorem 5. Obviously

it is enough to find the winning strategy for player (B) in the F(7?(<P)) game.
Let the kth step of player (A) be given by the number nk £ N. add We are

going to find a number yk > 0 as a kth step of player (B). The set A =

{(xx, x2, ... , x„k) £ R"k : 0 < xx < x2 < ■■■< x„k<x}, as a subset of the
metric space (R"*, p) with maxim metric p (i.e., p(x, y) = max{|x, -y,|: i =

\,2, ... ,nk} where x = (xx, x2, ... , x„k) and y = (yx,y2, ... , y„k)), is
compact. For x = (xx, x2, ... , x„k) £ A we define function F(x) = sup{e >

0 : U"=i £/Oi > e) e R{$>, k)}. Further we will prove that there is a number

yk > 0 such that

(6) F(x) > yk    for all x £ A .

Because A is compact, in order to prove (6) it is sufficient to prove the

following two assertions:

(7) F(x) > 0    for all x £ A,

and

(8) F is continuous on A.

The proof of (7) will be divided into two cases.

I. If xx = x„k, denote bk = \/(k + 1). Because O £ G, there exists ak > 0

such that <b(bk-ak) > ak . For e = 2~xak obviously [J"=i U(xx, e) e 7?(0, k).

II. If xx ^ x„k, denote d = min{|x, - Xj\ > 0 : i, j = 1, 2, ... , nk} and

bk = min{fi/2, l/(k + 1)} . It is clear that there is a number ak > 0 such that

4>{bk - ak) > ak . For e = 2~xak it is lj"=, U(xt,e) £ 7?(0, k).
To prove (8) it is sufficient to show

Lemma 6. Let x = (xx, x2, ... , xnk) £ A, y = (yx, y2, ... , y„ J £ A, and
p(x,y)<8. Then F(x) + 8> F(y).

Proof. If F(y) < 8 then clearly Lemma 6 holds. If F(y) > 8 then there
exists e > 8 such that [J"*, U(y,■, e) £ 7v(0, k). From p(x, y) < 8 we have

U"=i U(Xi, £-8) c U"=i U(yt, e), and since 7?(0, k) is a family of small sets,

we obtain IJ"*, U(xt, e - 8) £ 7v(0, k).   Q.E.D.

To finish the proof of Theorem 4 we will show that in the described game

given by «i, yi , «2, 72, • ■ •   (B) wins.

Let there be a sequence {r^}^!,, Tk = (J"*, if , where intervals if (i =

1,2,..., nk) satisfy \lf\ < 8k . Then there exists x = (xx, x2, ... , x„k) £ A

such that Tk c (J"=i C(x,, yk). With respect to (6) and to the fact that R(Q>, k)

is a family of small sets we obtain Tk £ 7v(<P, k). Hence fl~i Tt £ 7v(0>, k),

and also f|"i Tt £ f|~, R(®, 0 = R(&) ■   Q-E.D.

It is not very difficult to show that Theorem 4 yields the following assertion.



INTERSECTIONS OF CONTINUOUS FUNCTIONS WITH MONOTONE FUNCTIONS 1137

Let $eG. Then a typical continuous function intersects every Lipschitz

function in (<P)-uniformly symmetrically porous set.
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