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RELATIONS ON SOME SUMMABILITY METHODS

W. T. SULAIMAN

(Communicated by Andrew M. Bruckner)

Abstract. In this paper we prove a new result connecting the summability

methods \N, p„\k with either \N, q„\k or \N, w„\k forgiven sequences

{Pn} , {in} , and {w„} of positive real constants. Several results, some of

them known, are deduced.

1. Introduction

Let Yl an be an infinite series with partial sums sn. Let o^ and rfn denote

the «th Cesaro mean of order 8 (8 > -1) of the sequences {s„} and {nan}

respectively. The series J2a„ is said to be summable (C, 8) with index k , or

simply summable \C, 8\k , k > 1, if

oo

n=\

or, equivalently,

n=\

Let {pn} be a sequence of real or complex constants with

Pn=P0+P\+---+Pn, P-r = P-r = 0,       r =  1 , 2 , . . . .

The series Y<an is said to be summable \N, pn\ if

oo

(i-i) £|r„-rB_,|<oo,

«=i

where

1    -
Tn = p" Y2p"-vSv    (r-'= °)-

We write p = {pn} and

M = {p:pn> 0&pn+x/pn <pn+2/p„+x < 1, n = 0, 1, ...}.
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It is known that for p £ M (1.1) holds if and only if (see [3])

OO . «

Y.-fp- Y.p»-»vav <og-
n=\        "   v=X

Definition 1 (Sulaiman [6]). For p £ M, we say that J2a„ is summable

\N,pn\k, k>l,if
L-

oo    .       .      n "•

Y.n    p-nJ2Pn-vVav      <oc-
n=\ v=X

In the special case in which pn = Afx , r > -1 , where Arn is the coefficient

of x" in the power series expansion of (1 - x)~r~x for \x\ < 1 , \N, p„\k

summability reduces to |C,r|^ summability.

The series ^an is said to be summable \N, pn\k , k > 1, if

°°   /p \k~l
£   -T |*»-*w-i|fc<oo    (Bor[l]),

n=\  yPnJ

where

1  A
tn —   p   / jPvSy-

v=0

If we take p„ = 1 , then \N, pn\k summability is equivalent to |C, 1^ summa-

bility. In general, these two summabilities are not comparable.

Throughout this paper we set

Qn = qo + q\ + ••• + <?„, q-X=Q_x=0;

Wn = Wo + wx-\-\-w„,       w_x = w-i = 0;

A/n = fn — fn+\-

Here we give the following definition:

Definition 2. Let {p„} and {q„} be sequences of positive real constants such

that q £ M. We say that J2an 1S summable \N, p„, q„\k , k > 1 , if

oo n "■

Epgl      ^7J„_it7n_„a„    <oc,
n=\ r»Kn-\    V=X

where

Rn =PoQn+P\qn-i +---+Pnqo-

With t„ as previously defined,

.      n v .      n

tn = -p-Y^PvHar= -p-^iPn-Pv-Oclv,
n v=0       r=0 " v=0

hence

-Atn„i = j%-±Pv-iav.
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Therefore,

oo    / n \ k-\ oo n

n=X  KPnJ n=\ Wn-\    „=1

This shows that \N,p„, l\k =► \N, pn\k .

In 1985 and 1986, respectively, Bor established the following two results.

Theorem A. Let {p„} be a sequence of positive real constants such that as n —►

oo

(1.2) (i)   npn = 0(Pn),        (ii)   Pn = 0(npn).

If Ylan is summable \C, l\k , then it is summable \N, pn\k , k > 1.

Theorem B. Let {p„} be a sequence of positive real constants such that it satisfies

(1.2). If Ylan is summable \N, pn\k , then it is also summable \C, \\k.

We prove

Theorem 1. Let {pn}, {qn}, and {wn} be sequences of positive real constants

such that q £ M and {Pn/PnRn-X} is nonincreasing for q„ ^ c. Let tn denote

the (N, w„)-mean ofthe series Y,an- Let {e„} be a sequence of constants. If

d-3) E^T^W),       m-oo,
''-',    r„J<„_]

n=v+X

°°   (P \k~X

(1.4) £   TT l«»l*|A/„_,|*<oo,

rn  \ wn j
n=\

(>•«)    E(^r'o'M'^-.i'<».
and

then the series ^2ane„ is summable \N, pn, qn\k , k>\.

2. Lemmas

Lemma 1. Let q £ M. Then for 0 < y < 1,

oo

n=v+\       ^"   '
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Proof. Since nq„ = 0(Q„),

oo /    2v oo     \
EQn-v-l   _   I    \~* V^     I   an-v-\

n?Qn-x      \ ^       ^   I WQn-i
n=v+\      vcn   ' \n=v+\     n=2v+X/       *■"   '

(.      \       2v oo

^y>_„_,+0(i)y;j|-W  n=v+\ r=v      ^r

oo

= 0(v-?) + 0(l) J2 r~7~1 = 0(v~y).

3. Proof of Theorem 1

Write
n

rn —  / _, Cy — 1 Qn—v&v£y ,

v=\

then we have, by Abel's transformation,

T» = £ ^-1^' \Pv-\Qn-vjy—e«]

=  E f E ^-Iflrj A x[pv.xqn-v^—EvJ

+  ( E Wr-\°r ) Pn-\QO^-<*

x s Py-\Aqn-v-jj^     e„ + rv-\qn-v-X-—     jT/-^"

1 1        1 H^
-p„?„_„_i7jre„ + 7>„^„_„_i77rAe„ \ - 7Vi<7o —-e„At„-x

yvv Wv ) Wn

= y < -Pv-iAvqn_v—evAtv-i -7)„_|C7„_„_ie„A/,,_l -pvqn~v-\—-—

v=]

Wv-\ 1 Wn
x evAtv_x +Pvq„-v-x—jL— Ae,A<V_i ^ - Pn-Xqo—n-e„At„-i

= t„;i +Tn,2 + r„,3 + Tn,4 + T„,5,       Say.

In order to prove the theorem, by Minkowski's inequality it is sufficient to show

that
OO

£irfHT«.^<^'        r=l,2,3,4,5.
n=\ r"Kn-\
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Applying Holder's inequality,

k
m+l m+l n-\ w

^^%T|T",l|fc==   ̂ PnW]   T,Pv-^n-y^evAtv_x
n=X     "    n-1 n=l     "    n—\    y=l

m+l n-1 / VU \k
^ E^-E^-.iM-«i(^) i«.ifciM,-,i*

„=i r»Rn-\ „=i \w»/

x JJ^IA^,,-,,! ̂

„=i V«W «=«    ^n-i

m+l m+l n-1  p

T -A—K  2\k =   E —^T-   E~A^n-.-l^A/^
hPnRn-X hPnRU    £f    "»

w+l n-1   • p       v fc

* T,pT-E(lTi) ft«.-.-il«-l*|A«.-.|*
„=2 r"jK"-'  B=1  V   A»    /

fn-1 ^-'
J V^ PvQn-v-l  I

13 *=; }
w    / P \k m+X

r\i 1 \ V^ I    v \ i     iA:i a <        \k   V~*    PnQn—v—X
= °(1)E^j A,|ew||A^,|    e t^t

= o0)£ (£)    w'l^-ti*.

m+l m+l n-1 ,t,

^-^C-|T".3l    =   l^y-R-k—   2^Pvqn-v-X——eytev-i
„=2 ^Kn-\ „=2 ^VSi-l    B=, W«

m+l n-1 / W       \k

n=2 ?;=1

fn-1 /"'
I V"^ PvQn-v-X   I

l£, *■-» I
m / vt/ \k w+1

,tt       ^WvJ ntt-l   PnR"-x

m /jj, \ k

= <x»Et£) i-fi-*—i*.
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m-l-1 m+l n-1 u/ k
EPn       , ,jt        V^       Pn v-v D n rVy-\ .      .,

2P^T}nA   =  \wTx L^n-v-l—^Atv-x
n=2 n—i n=2 n-i y=l

m+X       n n~x  / P \k f Uf       \k

fn-1 }k~X

13   *•-   J
m     / t>  \k / ii/ \ k m+1

-«'>£(£HS)Wi*-.r\

EPn       i ifc        Y^       P« D Wn      A,

„=,^|T"'5|=£^ "-*^"-'

-™££(fe)'(*)Viw,r-.
4. Applications

Corollary 1 (Bor and Thorpe [3]). Le-? {p„} a«af {iu„} be sequences of positive

real constants. If

(4.1) (i)   />„!*; = 0(7>„u;n),        (ii)   7>„w„ = 0(pnWn),

then the series J2an is summable \N, pn\k whenever it is summable \N, w„\k ,

k>l.

Proof. The proof follows from Theorem 1 by putting e„ = 1, q„ = \ .

Corollary 2 (Theorems A and B). If (1.2) is satisfied, then the series Y,an is

summable \C, l\k if and only if it is summable \N, p„\k , k>l.

Proof.   (=>) follows from Corollary 1 by putting pn = 1 .

(<=) follows from Corollary 1 by putting qn = 1 .
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