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THE INVARIANT OF CHEN-NAGANO ON FLAG MANIFOLDS
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(Communicated by Jonathan M. Rosenberg)

Abstract. In this paper an extension of the 2-number (#2(Af)) of a symmetric

space is given for A;-symmetric spaces. The new invariant is computed for flag

manifolds which are not symmetric. It turns out to be equal to the Euler-

Poincare characteristic.

1. Introduction

In a recent paper [ChN], Chen and Nagano introduced a new numerical in-

variant associated to compact symmetric spaces which they call the "2-number".

For a compact connected symmetric space M this 2-number, #2M, is defined

as the maximal possible cardinality of the subsets A c M with the following

property. For each x £ A the symmetry sx of the symmetric space at the point

x fixes every point of A. This definition is equivalent to saying that #2M is the

maximal possible cardinality of the subsets Ac M with the property that for

each pair of points x, y in A there exists a closed geodesic in M on which x

and y are antipodal to each other. With this last form of defining the 2-number

this invariant makes sense for arbitrary connected Riemannian manifolds, but

it is clear that in this general situation it is very difficult to compute this number.

In the case of symmetric spaces, however, Chen and Nagano are able to

compute #2M for a great deal of spaces and at the same time obtain many

interesting connections between the 2-number and topological invariants of the

manifold. The results of greater interest to us, which motivate the present

paper, are those relating the 2-number of a compact symmetric space to its

Euler characteristic /(Af). In (4.1) and (4.3) of [ChN] they prove

1.1.   Theorem (Chen-Nagano), (i) For a compact connected symmetric space

M, x(M) <#2M.
(ii) If M is a compact hermitian symmetric space of semisimple type, then

X(M) = #2M.

Now if one wants to extend these results to more general homogeneous spaces,

there are two ways of doing this. One is to consider general compact homoge-

neous Riemannian spaces where one may try to study #2M, and the other one

Received by the editors December 19, 1991.

1991 Mathematics Subject Classification. Primary 53C30; Secondary 53C35.
Key words and phrases. 2-Number, fc-number, /c-symmetric spaces, flag manifolds.

This research was supported by a grant from the Consejo de Investigaciones Cientificas y Tecnicas

de la Provincia de Cordoba (CONICOR), Argentina.

©1993 American Mathematical Society
0002-9939/93 $1.00+5.25 per page

1237



1238 C.U.SANCHEZ

is to extend the definition of the 2-number of a " /c-number" for /c-symmetric

spaces (regular s-manifolds of order k in the sense of [K]), of which ordinary

symmetric spaces are a particular case. From our point of view this last pro-

cedure gives coherence to the whole picture of ^-symmetric spaces, and at the

same time it is a genuine extension of the problem. As it is well known, there are

many conspicuous examples of £-symmetric spaces which are not 2-symmetric.

They are interesting objects of study, and it seems worthwhile to obtain geo-

metric information about their topological invariants. On the other hand, it is

clear that the study of #2M in Riemannian homogeneous spaces seems just as

difficult as for general Riemannian manifolds.

2. The /c-number

Let us recall the definition of /V-symmetric space. If Af is a connected

Riemannian manifold, an isometry of M with isolated fixed point x is called

a symmetry of Af at x. A family {dx:x £ M} of symmetries is called an

s-structure on M. The 5-structure is said to be of order k if dx = id(Af) for

each x £ M and 6rx ̂  id(Af) for all r < k. Furthermore, if the 5-structure

satisfies

(2.i) exoey = ezoex,   where z = ex(y),

then M is said to be a regular s-manifold. If M has an ^-structure of order 2

then this structure is automatically regular and Af is a symmetric space in the

usual sense.
Let M be a compact connected Riemannian manifold with a regular s-

structure of order k > 2. We define now the " k-number" #k(M) as the maxi-

mal possible cardinality of the subsets AkcM with the property that for each

x £ Ak the symmetry 6X fixes every point of Ak . Clearly, if k = 2 then this

is just the 2-number of M defined on [ChN]. Notice that #k(M) is finite.

Let A c M be a subset such that for each x £ A the symmetry dx fixes every

point of A , and assume that the cardinality of A is precisely #k(M). We shall

say that this subset A is a #-set of M. Let a £ A; since M is homogeneous,

we may take it as the base point. By definition, A is contained in the fixed

point set of the symmetry which we shall denote by F(8a , M). Since a is an

isolated fixed point of 8a , we have F(6a , M) = {a} U A, u N2 u • • • U Nj where

each Ns is a connected totally geodesic submanifold of M, which is itself

a A:-symmetric space. Now let As = A n Ns. Then we clearly have that the

cardinality of As, #AS, satisfies #AS < #k(Ns), and therefore we immediately

have the following formula, which was established for k = 2 in [ChN],

(2.2) #k(M) - 1 <£#k(N,).
;=1

Given a compact manifold M we shall denote by fij(M, Zp) the /th Betti

number of M with coefficients in Zp and put b(M, Zp) = £V /?,(M, Zp).

(2.3) Proposition. Let M be a p-symmetric manifold with p > 2 a prime

number. Then

#p(M)<b(M,Zp).
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Proof. Let us proceed by induction on the dimension of M. The statement

is obviously true if this dimension is zero. Let us assume that the proposition

is true for every p-symmetric space N such that dim N = k < n, and take

now our ^-dimensional manifold M. Let Ac M be a subset such that #A =

#P(M), and take a £ A . Then as before, A c F(6a, M) = {a} U TV. U • • • U Nj,
and by (2.2) and the inductive hypothesis we have

(2.4) #P(M) - 1 < J2 #pW) < £ W > zp)-
i=i i=i

Now by considering the subgroup of the isometry group of M generated

by 6a, we have an action of Zp on M, and by [B, p. 144, 7.9] we know the

inequality

£ pi(F(Oa ,M),ZP)<Y, fii(M, Zp),
i>s i>s

which in particular implies

(2.5) b(F(9a,M),Zp)<b(M,Zp).

It follows now from (2.4) that

;'
%(M)<l+YJb(Nl,Zp),

i=\

and since b({a], Zp) = 1, we obtain

#P(M) < b(F(6a , M), Zp) < b(M, Zp),

which proves the proposition.   □

Proposition (2.3) can be extended to the case in which the order of the k-

symmetric space is not prime.

(2.6) Proposition. Let M be a compact k-symmetric space and p a prime

number which divides k . Then

#k(M) < b(M, Zp).

Proof. Let k = tp, and choose, as in the proof of (2.3), the subset A c M

such that #A = #fc(A7). Take a £ A and consider the isometry of M defined

by da = 6'a. Clearly 8pa = id(Af) and again by considering the subgroup of

the group of isometries generated by Sa we obtain an action of Zp on M.

Now F(Sa, M) = Nx u • • • U N„ where a e Nx and each A, is a connected
component of the fixed point set. Each of these submanifolds is easily seen to

be a k-symmetric space; the manifold Nx is, in fact, /-symmetric, but this fact

will not be used in the present paper.

The proof will now continue by induction on the dimension of the manifold

M. It is obvious that the proposition is true if dim M = 0. Let us assume then

that the statement is true for each /c-symmetric space N such that dim N =

r < n , and consider our ^-dimensional manifold M and the subset A c M as

above. Clearly A c F(8a, M) and then

h h

#k(M) = #A = J2#(An N,) < Y,#kW).
i=l i'=l
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Now by the induction hypothesis we have

h

#k(M) < £ b(N,, Zp) = b(F(3a, M), Zp),
;=1

and since M is again supporting an action of Zp , by (2.5) we have

b(F(8a,M),Zp)<b(M,Zp),

which completes the proof of the proposition.   □

(2.7) Corollary. Let M be a compact k-symmetric space, and let {p,: 1 <

i < s} be the set of all the prime numbers which divide k. Then #k(M) <

Min{b(M, Zp.): 1 < i < s}.

3. The A:-number for extrinsic ^-symmetric manifolds

In this section we give a condition under which we obtain a converse of the

results of the previous one.

Let Af be a compact connected ^-dimensional Riemannian manifold, and

let i: M -» Rn+q be an isometric embedding which has the following properties.

(i) For each x £ M there is an isometry ax:Rn+q —> Rn+q such that ox =

identity, ox(x) = x, and ox\Mx = identity on Mx , where Mx denotes the

normal space to Af at x.

(ii) ox(M)CM.

(iii) Let 6X = (ox\M). The collection {6x:x £ M} defines on Af a Rie-

mannian regular s-structure of order k [K, pp. 4-6], as was defined in §2.

If conditions (i), (ii), and (iii) are satisfied, we say that M is an extrinsic

k-symmetric submanifold of Rn+q .

To mention examples of these submanifolds we indicate that the spheres of

dimensions 6, 5, and 2 are examples of orders k = 3, 4 and arbitrary [SI].
Every generalized flag manifold has an embedding with this property [S2].

(3.1) Theorem. Let M" c Rn+q be an extrinsic k-symmetric submanifold. If

p>2 is a prime number which divides k then

#k(M) = b(M, Zp).

Proof. Let V = Rn+q and S(V) = {v e V: \\v\\ = 1}. For each v £ S(V) let hv
denote the "height" function in the direction of v , i.e., hv(x) = (v , x) Vx £ V.

The following basic principle is well known and frequently used in the literature;

we know no reference for it, but it seems to be a "folk theorem".

For almost all v £ S(V) the function hv is stable in M; that is, hv is a

Morse function with only one critical point in each critical level.

For each critical point x of hv (a stable height function), the isometry ox

leaves hv invariant since v is normal to TX(M), the tangent space to Af at

x. Now

(3.2) hv(ax(y)) = (v , ox(y)) = (ox(v), ox(y)) = hv(y)   My £ M.

Then, for fixed hv and x , the critical point of hv , we have that ox fixes every

critical point of hv . In fact, if a is a critical point of hv, let 5 = ox(a).

Then 5 is another critical point of hv . This is so because if Y £ TS(M) then

Y — ox*\aX for some X £ Ta(M) and, therefore,

dhv\sY = dhv\soxt\aX = d(hv °ox)\aX = dhv\aX = 0;
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but since (3.2) implies hv(s) = hv(a) and hv has only one critical point on

each critical level, we have s = a and so a is a fixed point of ax .

Let Av be the set of critical points of hv . Then this set has the property

that the symmetry of M at each point of Av fixes every other point of Av . It

follows immediately that #AV < #fc(Af), and in turn, Proposition (2.6) yields

(3.3) #Av<#k(M)<b(M,Zp).

On the other hand, if we denote by pi(hv) the number of critical points of

index i of the function hv and call p(hv) = 2~Z,>oPi(hv) > tnen by definition

of the set Av we have

(3.4) p(hv) = #AV.

Now we recall the Morse inequalities

(3.5) Pj(hv)>p}(M,F)

where Bj indicates the jth Betti number of Af with coefficients in the arbitrary

field F.
It follows from (3.5) that

p(hv) > b(M, Zp),

and from this, (3.3), and (3.4) we obtain

p(hv) = #AV < #k(M) < b(M, Zp) < p(hv);

therefore

p(hv) = #k(M) = b(M,Zp).

This completes the proof of the theorem.   D

Remark. Due to a well-known result of Ferus [F], the collection of symmetric

F-spaces coincides with that of 2-symmetric submanifolds of Euclidean spaces.

Then Theorem (3.1), in the case of k = 2, is equivalent to the main theorem

of Takeuchi in [T]; therefore, our result yields a completely different proof of

it. This theorem of Takeuchi is also mentioned in [ChN].
Since it is known that every generalized flag manifold admits /c-symmetric

structures, and, as we mentioned, it is extrinsic k-symmetric for this structure

[S2], we have immediately

(3.6) Corollary. 7/ Af is a generalized flag manifold then any of its k-

symmetric structures satisfies

#k(M) = X(M) = b(M,Z).

Clearly this result is related to Theorem (1.1). In fact, for hermitian sym-

metric spaces, which are generalized flag manifolds and admit a 2-symmetric

structure, the corollary yields a different proof of (1.1). At the same time it

places the [ChN] result in a general perspective.
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