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Abstract. Let G be a reductive p-adic group, K a good maximal compact

subgroup, Kx C K any open subgroup, and n an admissible representation

of G of finite type. In A submersion principle and its applications, Harish-

Chandra proves the theorem that fK7t(kgk~l)dk is a finite-rank operator

for g in the regular set G' in order to show that the character &n(g) is a

locally constant class function on G' . From this, the authors derive the formula

6(l)GAg)=d(7t)fG/zfK6(xkgk-lx-l)dkdx {g e G") for any K-finite

matrix coefficient 8 of a discrete series representation n with formal degree

d(n). They use another technical result of the paper to prove that invariant

integrals of Schwartz space functions converge absolutely. None of these results

depends upon a characteristic zero assumption.

1. Introduction

Let F be a commutative p-field, G the group of F-points of a connected

reductive F-group G, and G' the set of regular (semisimple) points of G.

There is a well-known integral formula, proved originally by Harish-Chandra

[4, pp. 60, 94] and rederived and used by Kutzko [6] (cf. also [7, Theorems 1.7
and 1.9]), which allows one in principle to compute the values of the character

of a supercuspidal representation of G on ff, either by integrating a matrix

coefficient of the representation or the character of a TC-type which induces

the representation. One purpose of this paper is to point out that this integral

formula is actually valid for any discrete series representation of G and, in

this context, to give a new and simple proof of the integral formula based on

Harish-Chandra's elegant paper [3].

In order not to obtain an unnecessarily restrictive special case of the inte-

gral formula for discrete series, the authors found it necessary to sharpen the

statement of [3, Theorem 2]. The restatement appears here in §2 as Theorem 1;

the modification to Harish-Chandra's argument is given in §4. Theorem 2 of §2

presents the integral formula for the character of a discrete series representation;

the derivation of this formula from Theorem 1 is also given in §2.
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Although he does not present the details, Harish-Chandra mentions that [3,

Theorem 3] can be used to give a characteristic-free proof of the absolute con-

vergence of invariant integrals for Schwartz space functions. In §3, Theorem 4,

we use [3, Theorem 4] to prove this absolute convergence. Our proof, while rem-

iniscent of the argument presented in [9, p. 244] for real reductive Lie groups,

simplifies Wallach's approach through the use of the "numerical function" of

Geometric Invariant Theory from Kempf [5] and Mumford. In Corollary 5 we

use Theorem 4 to express the discrete series characters on elliptic Cartan sub-

groups as invariant integrals of their matrix coefficients. It is interesting that the

integral formula from Theorem 2 has support on all Cartan subgroups, whereas

the invariant integrals vanish on the Cartan subgroups which are not elliptic.

Related work also appears in Clozel [1].

2. The integral formula for the character

of a discrete series representation

We use the notational conventions of [2, 3, 8]. In particular, for X an F-

group, we write X to denote its corresponding group of F-points.

Let Z denote the split component of G. Let (7*, A) (P = MN) denote

a minimal p-pair of G and K an vl-special maximal compact subgroup of

G. In the following Kx denotes an arbitrary open subgroup of K. Fix Haar

measures dg on G and dg on G/Z such that JK dg = JK ,ZnK dg = 1.

Let n be an admissible representation of G acting in a complex vector space

V. Let C^°(G) denote the convolution algebra of compactly supported locally

constant functions on G. For any / e CC°°(C)

n(f)= I f(g)n(g)dg
JG

is an operator of finite rank acting in V . The mapping

f~en(f) = tT(n(f))       (f£C°°(G))

is the (distributional) character of n. Harish-Chandra has proved in [3] that

if V is a module of finite type under CC°°(C7), then there is a locally constant

function &n(g) defined for all g £ G' such that

Q*(f)=   [   f(g)®n(g)dg

for all / £ C^°(G) with support in G'. His proof depends upon the following

assertion, proved in [3] only for the case Kx = K:

Theorem 1 (Harish-Chandra). Assume that n is an admissible representation of

G in a complex vector space V and that V is a left Cc°° (G)-module of finite

type under n . Then

g~ f n(kgk~x)dk       (g£G')
Jk,

is a locally constant function with range in the space of finite rank operators on
V.

As we shall need Theorem 1 for arbitrary Kx , we shall indicate the modifi-

cation in Harish-Chandra's argument needed to prove the more general version

in §4.
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For the remainder of §2 assume Theorem 1, as stated. Let it now be an

irreducible, admissible discrete series representation which is unitary on the

pre-Hilbert space V. Write (u, v) for the inner product of u, v £ V. Let

s/(n) denote the vector space spanned by functions of the form

x >-> (n(x)u, v)       (x £ G; u, v £ V).

With respect to the fixed Haar measure dx on G/Z the formal degree d(n)
of 7i is defined such that

d(n)~l(ux, u2)conj(vx, v2) = /     (n(x)ux,vx)con)(%(x)u2,v2)dx.
Jg/z

Theorem 2. Let 0(x) £ sf(n) and let g £ G'. Then

d(l)Sn(g) = d(n) f     [ d(xkgk~xx-l)dkdx.
Jg/z Jk,

Remark. Since JG,ZxK \6(xkgk~xx~x)\dx x dk does not exist, in general, it

is not possible to use the right invariance of the Haar measure dx to absorb

the integration over Kx into the integration over G/Z. Indeed, without the

integration over Kx, the integrand would be constant on cosets of the central-

izer of g; the centralizer of g not being compact (when g is not an elliptic

element), the integral would diverge trivially.

Proof. Since the operator

Tg= f n(kgk~x)dk
Jk,

has finite rank, there exists an open normal subgroup K c Kx such that

n(kx)Tgn(k2) = Tg

for all kx,k2 £ K. Let V2 denote the subspace consisting of all K-fixed

vectors in V. By the choice of K we may assume dim(r/2) > 0. Choose an

orthonormal basis {ef} for V such that ex, ... , eN is an orthonormal basis
for V2. Without loss of generality we assume that 8(g) = (n(g)u, v) for some

u, v £ V. Then

/ d(xkgk-xx~x)dk= f (n(kgk-x)n(x~x)u, n(x~x)v)dk
Jk, Jk,

N

= Y^ (Tgei> ei) (n(x~x)u, e,)con)(n(x'x)v, ej)

',7=1

AT

~ zZ (Tze'' el) (n(x)eJ' v) con)(n(x)ei, u).

Since, for the discrete series representation n ,

/     (n(x)ej, v) conj(n(x)el■, u)dx = d(n)~x(ej, ef) (u,v) = d(n)~x6jjd(l)
JG/Z
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and since we can interchange JG/Z and the finite summation ^f ■ , , we obtain

d(n) I     I d(xkgk-xx-x)dkdx = d(7i)Y(Tgei,eJ)d(n)-xdue(l)
Jg/z Jk, ij=x

= tv(Tg)d(l).

Finally, if / G Q°(G'), then

Qn(f) = \i(J f(g)n(g)dg) = tr(y J f(k-xgk)dk n(g)dg)

= tr(7 f(g) j  n(kgk-x)dkdg] = f f(g)tr(Tg)dg.
\Jg' Jk, /     Jg'

This concludes the proof of Theorem 2.

3.  ON THE INVARIANT INTEGRALS OF SCHWARTZ FUNCTIONS

In this section we use [3] to construct a proof of the convergence of invariant

integrals for Schwartz functions. Let

tp: G->GL„(F)

be an irreducible faithful rational representation of G on V = ¥", defined over

F. For T £jfn(¥) (the space of n by n matrices over F) define

||r|| = max\Tij\,
i,j

and for x £ G define

|W| = infmax(||p(xz)||, ||^(xz)-'||).

Define the relations -< and x as in [8, p. 149]. In [3, p. 101] Harish-Chandra

defines
A(*) = sup(/„,,,(*))        (g£G',  KX=K).

x

Let T be an elliptic Cartan subgroup of G, let F' = F n G' denote the

set of regular elements in F, and let E denote the spherical function used

in Harish-Chandra's definition of the Schwartz space for G ([2, §14] or [8,

§4.2]).

Lemma 3. Let co be a compact subset of F'. Then there are positive constants

c and r such that, for any g £ co,

(1) [ E(m-Xk-Xgkm)dk <c/3(g)E(m)2
Jk

and

(2) Hm-'/c-'grcmll >c-'||m|r

for all m £ M.

Proof. A stronger version of (1) is proved in [3, p. 101] (where co cF' only has

to be precompact in F and F need not be elliptic). (Harish-Chandra ostensibly

proves the assertion of (1) only for m £ M+ , but one can use the A"-invariance
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of S to obtain his assertion for any m £ M.) We prove only (2), using an idea

from [5]. The assertion (2) factors through G/Z , so for the rest of the proof

we assume that Z = {1} . Set

Q = {k~xgk: k £ K and g £ coUto~x},

a compact set of elliptic regular points of G. Let A be the set of weights of tp

for A, the split component of M, and let Ex (X £ A) be the corresponding

projection onto the A-eigenspace Vx. Without loss of generality we assume that

for y ££i and m £ M,

\\<p(m~xym)\\ = max{\\Ex<p(m~xym)Ev\\ : X,v £ A}

x max{q^~x' H(m)) \\EX <p(y)Ev\\ : X,v£A}.

For m £ M with m £ °M [8, p. 8] we have the flag in V ,

Fx = ®{Vv:  (v,H(m)) < (X, H(m))}       (i/.AeA).

Let Pm = MmNm be the proper parabolic subgroup in G which stabilizes this

flag, so cp(Mm) consists of block diagonal matrices and <p(Nm) of block upper

triangular matrices with respect to Fx . Thus

Pm = {x£G: Eltp(x)EIJ = 0if (v, H(m)) > (X,H(m))}.

Define

l(m,y) = max{(u-X, H(m)) :  \\Ek<p(y)Ev\\ f 0}

for m £ M with m i °M and y £ £1 (cf. [5, p. 306]). Clearly, if l(m,y)<0,
then y £ Pm (cf. [5, p. 305]); conjugating by Nm , we may assume that y £ Mm .

It follows that

r = cent(y)0 D Am = split center of Mm,

which is impossible since F is elliptic. Set

L(m, y) = max{\\Extp(y)Ev\\ :  (v-X, H(m)) = l(m, y)}.

Then

\\tp(m-xym)\\ > L(m, y)q'(m>7)       (y £ Q, m £ M).

Next note that L and / are strictly positive (for m £ °M) locally constant

functions. As y varies over the compact set Q, the set of values assumed by

L(m, y) is a finite set of positive numbers; let L be the smallest of these. Since

the X - v are integral linear combinations of roots, it is clear that / extends to

the real Lie algebra,

/: aK x £1 -» R+

as a continuous function which is convex and positively homogeneous of degree

one on aR and locally constant on £i.

On the other hand, if 77(a) lies in a closed positive Weyl chamber a+ and

X is the highest weight for tp relative to a+ , then ||a|| = q(k<H(-a^ relative to a

basis of eigenvectors for A , since the other weights are of the form X - ^ mna

with integers mn > 0 and a > 0 on A+ . Thus

a h-» a (a) = max{(A, 77(a)) : A is an extreme weight of tp}
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extends to a continuous, convex function on or which is positively homoge-

neous of degree one and strictly positive away from zero (strictly positive be-

cause tp is faithful). Let S? be the unit sphere in or . Then

r = inf{/(77, y)/o(H) : (H,y)£3"xQ}

is positive, and

\\cp(m-xym)\\ > Lql(m'y) > Lqra(Hl-m)) y L\\m\\r

for y £ £1. But also y~x £ £1, so ||m-13>/w|| >- ||m||r. This completes the proof

of the lemma.

Recall that the Schwartz space W(G) is the space of functions f on G such

that / e C(G//Ko), the space of AVbi-invariant functions, for some compact

open subgroup K0 C G, and that

\f\N = sup\f(x)\E(x)-x(l+log\\x\\)N
x€G

is finite for each N £ N. If F is a Cartan subgroup of C, Ar is its split

component, and f £W(G), then

Ff(g) = \D(g)\xl2 j      f(xgx~x)dx*       (g£V)
Jg/at

is called the invariant integral. Here D(g) is the lowest coefficient in the char-

acteristic polynomial of Ad(g) - 1 and dx* is the invariant measure on G/Ar .

Theorem 4. There exists an integer N with the following property. For any

compact set co c F' there is a constant C > 0 such that for all f £ff(G)

\Ff(g)\ < C\f\N

for all g £ co. Moreover, Ff is locally constant on F' (for every f £ W(G)),

and for a fixed compact open subgroup Ko c G, the space of restrictions

{Ff\co: f£W(G//K0)}

is a finite-dimensional vector space.

Proof. If T is not elliptic, then choose a parabolic subgroup P = MN so that

A = Ar is the split component of M, and F c M is elliptic. Then we have

the continuous map

f~fp:   W(G)^W(M), \fP\M,n<Cn\f\G,n+dA

(for some integer af^ and all integers n [8, p. 176]) which satisfies

Ff3/r(g) = Fp/r(g)       (g£V)

(where J(x) = JK f(kxk~x)dk) [4, p. 58].
This reduces the proof to the case of an elliptic Cartan subgroup F. We use

the Cartan integration formula [8, p. 149]. For g £ co (and letting p denote
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our normalized Haar measure)

\D(g)\-l'2\FJ(g)\

= \f f(rxm~xk-xgkml) p(KmK) dkdmdl
\JkxM+xK

-< f       E(m-xk-xgkm)(l+log\\m-xk-xgkm\\)-"p(KmK)dkdm
Jm+xK

-<  /    (1+rlog||rn||)_" SPo(m)   / E(m~xk~xgkmfdkdm
Jm+ Jk

(Lemma 3 and [8, Lemma 4.1.1])

-< P(g) /    (1+rlog\\m\\)~" dp0(m)E(m)2dm    (Lemma 3)
Jm+

<P(g)   £   (l+'"log||m||)-"+2r»    [8, p. 154]

M+/°M

<P(g)   [8, p. 150].

This implies the first sentence of the theorem. The rest comes directly from [3,

Theorem 3] and the fact that CC(G//K0) is dense in W(G//K0).

As a corollary to the last result, note that if F is elliptic (so Ar = Z), the

integral in Theorem 2 is absolutely convergent, since 9 is a matrix entry of a

discrete series representation, so lies in W(G). Thus we can reverse the order

of integration and absorb the integration over K into the Haar invariance of

dx . Moreover, since 6 is a cusp form, we obtain

Corollary 5. Under the assumptions of Theorem 2, if g £ G' is regular elliptic,
then

d(n)   j    6(xgx-')dx = 6(l)en(g),
Jg/z

and if g is regular but not elliptic and F is the centralizer of g, then

f     9(xgx~x) dx = 0
Jg/av

(cf. [1, p. 9]).

4. The proof of Theorem 1

We use notation like [3, p. 98], and where notation or terminology is not ex-

plained we have used Harish-Chandra's. (To read this proof it will be necessary

to have Harish-Chandra's article close at hand.)

For simplicity assume that K\ is a normal subgroup of K. There is no

loss of generality in this assumption inasmuch as every open subgroup of G

contains an open normal subgroup of K . Moreover, if Theorem 1 is true for

an open subgroup of Kx, then it is obviously true for Kx , too. Let Kx, ... , K„

be the cosets of Kx in K, and for 1 < / < n define

TgJ= f n(kgk-x)dk,     Tg = Tg,x       (g£G').
Jk,
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For every k £ K there exists i = i(k) such that

Tgn(k) = 7t(k)Tg,;       (g£G', k£K).

Let To be an open compact subgroup of P chosen as at the top of [3, p. 99]. Let

a, £ C£°(G x P) be the characteristic function of Tv", x P0 for each i. Harish-

Chandra's "submersion principle" applied to the submersion of G x P —> G

defined by
(x, p) i-> xgx~xp    (hxedg £ G')

implies the existence of functions fa,,g£ C^°(G) such that

/       F(kgk"xp)dkdip = /      a,(x, p) F(xgx~xp)dxd\p
JKjXP0 Jgxp

= [ fn,,g(y)F(y)dy
Jg

for any locally integrable function F on G (d/p denotes a left Haar mea-

sure on P). Let V0 denote a finite-dimensional subspace of V such that

n(C£°(G))Vo = V and such that Vq is the space of all TC0-fixed vectors for

some open normal subgroup Kq of K. Then for F = n and on the vector

space spanning set for V

{n(km)v \k £ K, m £ M+ , v £ V0}

we obtain the relation

Tgn(km)v = n(k)Tgj /   n(p)d[pn(m)v = n(k)n(faiig)n(m)v ,
Jp0

which implies that Tg is an operator of finite rank. In fact, choosing an open

normal subgroup K c K such that faitg £ C™(G//K) for each i = 1, ... , n

we have

7i(E~)Tgn(km)v = n(k)n(E~fai,g)n(m)v = Tgn(km)v ,

where E~ is the identity element in the convolution algebra C£°(G//K). As-

suming that K c Kx and using the fact that Tg commutes with 7t(7vi), we

conclude that, since

niiEK)Tg = Tgn(E~) = Tg,

Tg is of finite rank. (Harish-Chandra also shows that (g, x) i-> fat,g(x) lies

in C°°(G' x G) and is compactly supported in x. This implies that Tgj is

locally constant in g .)
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