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Abstract. Fundamental groups of Milnor fibers of some minimally elliptic

singularities are computed via globalizations of smoothings. A conjecture of

Looijenga-Wahl is verified for triangle singularities, which states that embed-

ding dimension at most seven implies that any smoothing has simply-connected

Milnor fiber.

Let (X, p) be the two-dimensional germ of a minimally-elliptic (m.e.) sin-

gularity; we assume that (X, p) belongs to one of the following three classes:

simple-elliptic, cusp, or triangle singularity (their resolutions appear below). Let

M be the Milnor fiber of a smoothing of (X, p). Questions about the topology

of Milnor fibers in general are difficult to answer, beyond the rational or hyper-

surface case. This paper is concerned with the m.e. singularities named above.

In particular, we show that a conjecture of Looijenga-Wahl is true in the case of

triangle singularities: Embedding dimension (X, p) < 7 implies M is simply-

connected. We also show that nx(M) is abelian for all triangle singularities

to which our methods apply (about 75% of all values of (p, q, r) for which

Dpqr has a smoothing) and to some smoothing components of some others.

We also describe the topology of M for simple-elliptic and cusp singularities

and compute nx(M) in all cases of smoothings of simple-elliptic singularities.

To some extent we show that nx (M) distinguishes smoothing components. We
also provide proofs of statements made without proofs in [LW] concerning these

examples.

1. Globalizations and dual configurations

In this section we explain the general set-up and basic facts that will be used.

Our approach is to exploit the globalizations of smoothings of these singularities

which were constructed by Looijenga.

Each of the three types can be realized on a complete surface which is con-

ceived of as a neighborhood of the singularity with a configuration of curves

glued on 'at infinity'; we call the latter the dual configuration, or just the dual.

Except in the simple-elliptic case (which has a one-dimensional moduli given
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1018 L. J. McEWAN

by the y-invariant), the topological data of the dual determines the singularity.

For reference we list the graph of each resolution and dual configuration. In the

diagrams that follow, a node represents a smooth rational curve and a number

or a symbol denotes the self-intersection of that curve. Each edge represents a

transverse intersection. (There are no triple points.)

(1.1) In type 1 the number of components in the dual equals -C2.

(1.2) In type 2 dj and c; > 2 and some rf,-0, Cj0 > 3. If n (or m) equals
1, the configuration is a rational curve with an ordinary double point and has

negative self-intersection. There is an algorithm for obtaining one configuration

from the other [L].

(1.3) In types 1 and 2 the dual configuration D is a negative anticanonical

divisor: -D £ \K\. We refer briefly to such a configuration as an anticanonical

cycle.

(1.4) In type 3 we require \/p + 1/q + 1/r < 1 and suppose r > q > p > 2.

The dual configuration labeled Tpqr, has arms of p, q , and r nodes, counting

from the center.

(1.5) Table

Singularity Type Resolution graph Dual Configuration

1. Simple-elliptic Smooth elliptic curve C, ~i

... ££

-2

2. Cusp -CS /       *

"d4

-    _. -1 -2-2-2-2-2-2        -2
3. Triangle singularity ♦-♦-♦ ♦-♦ ♦ ♦ ♦ >  ---»

-P ~r -2*"1
-1

-2*

The complete surface which contains a singularity and its dual configuration

will be called simply the globalization. We will not recall the constructions here,

except to say that in cases 1 and 2, the globalization is a so-called Inoue surface;

for details see [L3]. An essential point in our program is that any deformation

of each singularity is induced by a deformation of the globalization, which also

preserves the dual configuration [L3]. In particular, a smoothing is induced by

a deformation of the globalization to a smooth surface. The invariants of such

a surface can be computed from those of the globalization. For either a cusp

or simple-elliptic, any smooth fiber in a deformation is a rational surface. For
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a triangle singularity, a smooth fiber is a K3 surface. In each case the smooth

fiber contains the dual configuration and the Milnor fiber is just the complement
of the dual.

In the case of simple-elliptic and triangle singularities, there is a complete

converse: the existence of a smooth surface as described above implies that the

corresponding singularity has a smoothing. Any such abstractly given surface is

isomorphic to a fiber in the versal deformation of the (globalized) singularity.

These results appear in [LI, L2]. The analogous statement for cusps is known

as Looijenga's conjecture.

2. Triangle singularities

Let Dpqr denote the triangle singularity corresponding to the values (p, q, r).

To construct a smoothing, we need only find a K3 surface which possesses a dual

configuration, i.e., a Tpqr curve. The following facts ((2.1)—(2.7)) are stated in

[LW].

(2.1) Dpqr has a smoothing iff p + q + r < 22 and (p, q, r)^(2, 10, 10) [P].
(There are 187 values of (p, q, r) satisfying (1.4) and these two conditions.)

(2.2) The set Sm(Dpqr) of smoothing components of Dpqr corresponds bijec-

tively to £(Dpqr)  (— the set. of smoothing data of Dpqr).

(2.3) Let N(Dpqr) be a regular neighborhood of Dpqr, and let L = dN(Dpqr)
be the boundary of its closure; L is the 'link' of the singularity, diffeomorphic

to the boundary of a Milnor fiber of any smoothing, i.e., L « dN(Tpqr) where

N(Tpqr) is a regular neighborhood of a Tpqr curve on a K3 surface. Then

the first integral homology group Hi (L; Z) is finite and has the structure of

a quadratic group; to conform with the notation of [LW], we will write this

group as Hi(L), (t indicates torsion subgroup). Any smoothing determines an

isotropic subgroup I of Hx (L),. I is part of the 'smoothing data' which are

the elements of C(Dpqr).

(2.4) By [LW, (4.18) and Table 1], p + q + r < 17 implies:

(1) 7 = 0 is the only isotropic subgroup; and

(2) I determines the other smoothing data.

(2.5) Combining the above statements, p + q + r < 17 implies that Dpqr has

a unique smoothing component.

(2.6) Part (2) of (2.4) is also true when p + q + r = 17, 18, 19 and when
p + q + r = 20, 21 and I1-/I is cyclic. Hx(L)t is cyclic exactly when (p, q, r)

has no common divisors. Thus there are unique smoothing components in

several cases where \l<p + q + r< 21 and no nontrivial / occur.

(2.7) The embedding dimension of Dpqr is given as follows [LW, (6.1.1) and

(6.5)]:

(r-6, (p,q,r) = (2,3,r)    r>l,

Emb.dim(Dpqr)= l q + r-$, (p, q, r) = (2, q, r)   q>4,

{ p + q + r-9, />>3.

(In cases where these formulas give less than 3, the embedding dimension is 3.)
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(2.8) Next we construct K3 surfaces with Tpqr curves on them. We have two

methods for doing this, both of which involve elliptic fibrations. In what follows

we use the results and notation of Kodaira [K, II, p. 565] concerning elliptic

fibrations. The following lemma may be found in [SI].

(2.9) Lemma. Assume D is an effective divisor on a K2> surface X and that

D has the same type as a simple singular fiber of an elliptic surface (call such D

a Kodaira singular fiber). Then there exists a unique elliptic pencil </>: X —> P1

such that D is a singular fiber. Any irreducible curve C such that (C • D) = 1

defines a section of (/>.

(2.10) Now suppose X is a K3 surface containing a Tpqr curve. We can locate

a Kodaira singular fiber inside the Tpqr of type II*, III*, or IV*, depending

on the values of p, q, and r. Specifically, let D be the divisor defined by

one of the following diagrams, where the integers denote multiplicities of the

components in D (each D is contained set-wise in a Tpqr):

(a) liJlllli -      P = 2, q = 3,r>7;DisaU*.

1   2 3 4 3 2   1
(b) ♦♦♦»♦♦♦ p = 2,q>4;D\salll*.

12  3 2   1
(c) -♦ ♦♦♦♦-- p > 3; D is a IV*.

i

By Lemma (2.9), D must induce an elliptic pencil on X, and the other com-

ponents of the Tpqr curve can be analyzed in terms of this fibration. It is easily

checked that every component C of the Tpqr, regarded as an effective divisor,

satisfies (D-C) = 0 or 1 , with (D-C) = 1 exactly for the components adjacent

to D. By Lemma (2.9) these components define sections of 0.

(2.11) Lemma. Let <p: X —> P1 be an elliptic surface, E a reducible curve on X

such that E contains at most one complete fiber (E may contain components

of several fibers), and N the complement of E on X. Let f be any non-

multiple fiber of <p (smooth or singular) which contains no component of E. Let

f = f\(f n E) and /:/'—> N be the inclusion. Then the induced map on

fundamental groups is a surjection: U: nx(f) -» nx(N).

Proof. Fix / as in the hypothesis, and let y be a loop in N representing

[y] £ iti(N). We take the base point of nx(N) to be on /. Let p = 4>(f) and

let {Pi}"=0 be the points in P1 which are the images of the components of E

that belong to fibers of qb, with p0 the image of the only complete fiber in E.

Then <p(y) lies in P1 \ {p0}. We wish to homotope y in N onto f, i.e., we

want a homotopy of y to a loop y with <f>(y) = p . y can be contracted above

P1 \ {po} until <f>(y) reaches a /?,-,/> 0. By assumption 4>~x(Pi) contains

a component which does not belong to E. Let A be the image of a local

topological section to 0 which passes through this component and is contained

in N. Then 4>(dA) is a loop around p,. Since <f>~x((f>(A)) is connected, we

can homotope a portion of y so that it runs along part of the boundary of A

and then across A to move over pt. Doing this for each p,■, i > 0, we can

eventually homotope y to y , a loop supported on /'. Then i,([y]) - [y].
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el   2 3  2   1♦♦♦♦♦♦ ♦♦♦♦♦♦
sx        2o 53

to

<►
T9, 9, 10 < ►

(2.12) We will apply this lemma to a K3 surface X with a Tpqr. Such an

X is an elliptic surface with the divisor D as a (complete) singular fiber. The

components of Tpqr adjacent to D are sections of <p, by Lemma 2.10. The

connected chain of components on the other side of each section must belong

to a single fiber of tp; for a concrete example, consider the following r9 9 i0

diagram. The divisor D (a IV* fiber in Kodaira's notation) consists of the cen-

tral seven components with indicated multiplicities. The adjacent components

are labeled St, i — 1, 2, 3; they must be sections. The remainder of each arm

(one is circled in the drawing above) must belong to a single fiber of the elliptic

pencil; this is because each component Ck is disjoint from D, and so cannot

meet the generic fiber, i.e., <j>(Ck) is a point. Since the chain is connected, each
component maps to the same point.

By the classification of singular fibers, a complete fiber cannot be constructed

out of the three arms alone; there must be extra components not belonging to

the Tpqr. Therefore, D is the only complete fiber of <p whose components all

belong to the Tpqr. Consequently, the Tpqr curve satisfies the hypothesis of

Lemma (2.11), with Tpqr as the curve E.

(2.13) The following three cases are most easily examined: (p, q, r) =

(2, 3, r), (2, 4, r), and (3,3, r). Applying (1.4) and (2.1), these three cases
account for 34 smoothable triples. In the situation of (2.12), there is only one

section of <p in the curve Tpqr in any of these cases (the divisor D is at one

end of the configuration). In the notation of Lemma (2.11) f' = f\(fn Tpqr)

is a once-punctured fiber. If / is any singular fiber, then by the classification

of singular fibers, nx(f) is abelian. Since the Milnor fiber M of Dpqr is just

X \ Tpqr, we have by Lemma (2.11) that ni(M) is a quotient of ni(f'), so

7ix(M) is abelian. We need only show that any pencil cp constructed as above

must contain singular fibers with no components in common with Tpqr. We

will do this for the case T2^r; the other two cases follow exactly the same way.

Suppose a K3 surface X with a T2yr is given, and the elliptic pencil <p has

only two singular fibers: D (a II* fiber) and the fiber F which contains the

r — 1 components adjacent to the sole section. We are in the case of (2.10a).

It is well known that the euler characteristic of an elliptic fibration over P1 is

equal to the sum of the euler characteristics of the singular fibers [K]. Since X

is a K3, e(X) = 24. Then since e(U*) = 10, we must have e(F) = 14. By the
classification of singular fibers, either F = IX4 or F = 7*. In either case, the

Picard number of X is now too big: D contributes eight independent elements

to the Neron-Severi group in addition to the section and the class of a smooth
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fiber; an 714 would contribute 13 additional independent elements, and an 7£

would contribute 12, giving the group 22 or 23 independent generators. But the

Picard number of X is at most 20. (See [S, Theorem 1.1].) We have proven

the following

(2.14) Proposition. Let M be the Milnor fiber of any smoothing of the triangle

singularity Dpqr, where (p, q, r) = (2, 3, r), (2, 4, r), or (3, 3, r). Then

nx(M) is abelian (and cyclic).

(2.15) In the last paragraph we considered a natural elliptic pencil carried by a

K3 with a Tpqr; another approach is to construct an elliptic K3 surface directly

and then find a Tpqr curve on it. Constructions of a special type of such sur-

faces were given by Miranda and Persson [MP]; their program was to construct

all elliptic K3 surfaces which possess only In singular fibers ("semi-stable fibra-

tions"). In particular, they were able to give a complete list of all combinations

of In singular fibers which can occur in an elliptic K3; the members of the list

do occur, and any combination not on the list cannot occur. A combination

is a set {/»,,..., /«,} of I„ fibers and is referred to by the tuple of positive

integers [nx, ... , ns];by reasoning with the Picard number as above, we must

have 5 > 6, and Y ni = 24 by the Euler characteristic. All of their examples

are algebraic and so possess a section s . We may find a Tpqr on such a surface

as follows. Select three of the In fibers (and write them as Ia, Ib, and 7C)

and the section. From each of the three In fibers, drop one of the components

which is adjacent to the component that meets the section. What remains is

a Tpqr configuration, with (p, q, r) — (a, b, c) (in some order); the central

component of the Tpqr is the section s .

(2.16) The Tpqr constructed above satisfies Lemma (2.11); it also has the

same properties as the fibrations considered in Proposition (2.14); namely, the

generic fiber meets Tpqr in only one point, and there are singular fibers no

component of which belongs to the Tpqr (the s - 3 > 3 remaining I„ fibers).

Therefore, reasoning as we did for Proposition (2.14), any K3 surface X and

Tpqr c X constructed by this method satisfies the conclusion of the proposition:

nx(X \ Tpqr) = nx(M) is abelian and cyclic.

The following is a partial list of the 6-tuples which correspond to constructible

configurations of 7„ fibers on elliptic K3 surfaces (the list is copied out of the

complete list in [MP, Theorem 3.1]). The sum of the last three integers in

each tuple is 21; following the outline of (2.15), each tuple gives a Tpqr with

p + q + r = 21. All but six such smoothable triples appear in the list.

[1,1,1,2,3,16] [1,1,1,2,4,15] [1,1,1,2,5,14] [1,1,1,2,6,13]
[1,1,1,2,7,12] [1,1,1,2,8,11] [1,1,1,2,9,10] [1,1,1,3,3,15]
[1,1,1,3,4,14] [1,1,1,3,5,13] [1,1,1,3,6,12] [1,1,1,3,7,11]
[1,1,1,3,8,10]* [1,1,1,4,6,11]* [1,1,1,4,7,10]* [1,1,1,5,5,11]
[1,1,1,5,6,10] [1,1,1,5,7,9]* [1,1,1,6,7,8] [1,1,1,7,7,7]

The table is arranged lexicographically from left to right. Asterisks indicate

gaps where smoothable triples (p, q, r) would occur, but no elliptic pencil ex-

ists in the list. Explicitly, the following are the only triples missing from the list:

[1, 1, 1,3,9,9], [1, 1, 1,4,4, 13], [1, 1, 1,4,5, 12], [1, 1, 1,4,8,9],
[1, 1, 1, 5, 8, 8], [1, 1, 1,6,6,9]. We can also obtain Tpiq*r< configurations
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whenever (p', q', r') < (p, q, r) and (p, q, r) appears, by dropping some

components from Tpqr. Thus from the list above, we can obtain a TP'qir for

all values of (p', q', r') with p' + q' + r' = 20 except the following: [4,4, 12],
[4,8,8]. These can be constructed from other entries in Miranda-Persson's

list: [1, 1,2,4,4, 12] and [1, 1,2,4,8,8] also occur. Using the last three
integers in each tuple as before, we can construct the missing values. We collect

these observations as

(2.17) Lemma. For any (p, q, r) satisfying (2.1) and (1.4) and p + q + r <

21 with the possible exception of (3,9,9), (4,4,13), (4,5,12), (4,8,9),
(5, 8, 8), and (6,6,9), there exists a K3 surface having a Tpqr curve such that

nx(X \ Tpqr) is abelian and cyclic.

Remark. This shows that at least one smoothing component of Dpqr has a Mil-

nor fiber with abelian nx for every value of (p, q, r) for which the singularity

has smoothings except for 35 cases, three of which are covered by Proposition

(2.14). Most of these cases are at the upper limit: p + q + r = 22.

(2.18) Proposition. Emb.dim(Dpqr) < 1 implies nx(M) is abelian where M

is the Milnor fiber of any smoothing.

Proof. If p > 2 then Yzmb.dim(Dpqr) = p + q + r - 9 by (2.7). Then
Emb.dim(7J)p9r) < 7 is equivalent to p + q + r < 16; by (2.5) Dpqr has a

unique smoothing component, and by Lemma (2.17) there exists a Milnor fiber

with abelian nx . If p = 2 and q = 3 or 4 then all smoothings have abelian

nx by Proposition (2.14). There remains the case p = 2, q > 4. By (2.5)

again, Emb. dim(Dpqr) = q + r -8 < 7 implies p + q + r -=2 + q + r < 17. If

p + q + r < 17, we argue as before that Dpqr has a unique smoothing compo-

nent and some fiber has an abelian nx (M). Suppose p + q + r = 17. There are

only three such triples: (2,5,10), (2,6,9), and (2,7,8). None of these
occur in the list of [LW] (see (2.4)-(2.6)), i.e., each of the singularities given by

these triples has a unique smoothing component and the same argument applies

again.

Actually it is easy to see from the list in [LW] that the smoothing data

is unique in all cases of this proposition. It then follows from [LW] that

nx(M) = HX(M) = Hx(L)t/I1- = 0. This can also be proved directly from
the construction of the K3 surfaces used in Lemma (2.17). Thus:

(2.19) Corollary. Emb. dim(Dpqr) < 1 implies any Milnor fiber of any smooth-

ing is simply connected.

3. Cusps and simple-elliptics

Let (X, p) be a cusp or simple-elliptic singularity. Then any smoothing

globalizes to a rational surface, with dual configuration an anticanonical cycle

(see (1.3)). We will employ the usual practice of referring to the cycle by the

sequence of negative self-intersections of its components: [dx, ... , d„] stands

for the cycle with n components (7),} with D2 = -d,. The ordering of the

sequence is determined by D up to a cyclic permutation or reversal. Of course,

for a simple-elliptic every dj equals 2, and only the length n is important. The
topology of rational surfaces with anticanonical cycles was analyzed in [M]. We

apply the results of that analysis.
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(3.1) Emb. dim(X, p) = max(3, n) where n is the length of D.
The following proposition is due to Miranda; see [M] for a proof.

(3.2) Proposition. Suppose (Y, D) is a rational surface with anticanonical cy-

cle D = [dx, ... , dn], with n > 3 . Then Y is obtained by blowing up P2 on
three general lines.

In other words we can think of Y as obtained from P2 by blowing up

on the triangle formed by the three standard coordinate lines x,■■ = 0 (i =

0, 1,2), where [xo : xx : x2] are homogeneous coordinates. It is convenient

to arrange the blowing up into two sequences. The first sequence consists of all

blowups at nodes of the cycle ("corner blowups"); the second sequence consists

of all blowups away from nodes, i.e., on smooth points of the cycle ("interior

blowups"). Let Y be the intermediate surface obtained after performing all

the corner blowups. Y has^an anticanonical cycle of the same length as that

of Y. Let D = [dx, ... , d„] denote the cycle of Y. (Then di < di, with
equality for components with no interior blowups.) The complement of D is

isomorphic to the complement of the triangle in P2, which can be viewed as

C* x C* (where C* is the complex numbers minus zero). The space Y\D can

be understood topologically as the result of attaching two-handles to Y \ D;

each interior blowup contributes one two-handle.

(3.3) It is important to note that the sequence of blowups which realize a given

cycle D is not unique; different sequences yield a different Y and Y in general,

with possibly different nx(M). In fact, different smoothing components of the

singularity may be detected this way.

(3.4) Since Y \ D is isomorphic to C* x C*, nx (Y \ D) (= Z e Z) is abelian.
Attaching two-handles to a topological space in general either has no effect on

nx or kills some classes. Therefore, nx(Y\D) is always abelian. From [GS,
Theorem 2, p. 540], bx (the first betti number of Y\D) is zero; it follows that

nx is finite.

(3.5) Let N(D) be a regular neighborhood of D in 7, and let (Y_\ N(D))C

be the closure of the complement of N(D). Then the boundary of (Y \ N(D))C

is diffeomorphic to the product of three circles: d(Y \ N(D))C » Sx x Sx x Sx .

One factor of the product is homotopically trivial in (Y \ N(D))C.

It is natural to regard this three-manifold boundary as a (trivial) torus-bundle

over Sx, in which the homotopically-trivial cycle appears as a section of the

bundle. (Think of a generator of HX(D).) We may speak of 1-cycles supported

in fibers of this bundle. Then the attaching spheres of the two-handles occurring

in the interior blowups are all 1-cycles supported in fibers. We mayjuppose

henceforth (via a cyclic permutation of the labeling, if necessary) that d x < dx ;

this simply means that Dx has interior blow-ups occurring on it. Let m be the

number of components which receive internal blow ups and ij be the index

of the ;'th such, j = I, ... , m. (So, e.g., ix = 1; di2 < di2 and di = dt for
1 < i < i2.)

(3.6) Define:

(at   ^V/ft'oK^,    J)-(?\i).    «>1.
VC<    */       l(o?), «■=!■
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Let N be the total number of internal blow-ups on Y. Let d be the 2x(N+\)

matrix with first column (°) and subsequent columns defined by

l~Z)-    >-•."■
with each column repeated as many times as the number of internal blow-ups

on the corresponding component Dtj, i.e., dij - d>j. The following is a slight

generalization of [M, Lemma (3.5) and succeeding discussion]:

(3.7) Proposition. There is a handle-body decomposition of M := Y \ N(D)

consisting of two-handles {/z2, h2, ... , h2N}, one-handles {h\, h\}, and a zero-

handle such that the homology of M is just the homology of the sequence

0^1(hl,h2,...h2N)^Z(h\,hx2)^0.

Remark. From (3.6), d has (0, 1) as a column. So nx(M) = 1(h\, hx2)/im(d)
is always cyclic, as claimed in [LW].

It is possible to compute examples using this proposition. In particular,

since the embedding dimension is precisely the length n of the dual (3.1),

for bounded embedding dimension the number of intermediate surfaces Y is

also bounded, and all possible smoothings can be constructed by determining

all the ways of blowing up from one of these to realize a given D. For each

realization, Proposition (3.7) allows us to compute nx(M) = HX(M). There

are, in fact, 18 different Y of length equal to 7 , six of length 6, two of length

5, and one each of length 4 and 3. Here is the list of (the negatives of) their

self-intersection numbers:

(3.8)   Table

Length = 3 : Length = 6 : Length = 7 :

[-1,-1,-1]       [3,0,-1,1,2,1] [4,1,2,2,1,-1,0] [2,1,2,0,1,1,2]
[2,2,0,-1,2,1] [3,2,1,3,1,-1,0] [2,1,2,-1,1,1,3]

Length = 4: [2,1,2,0,0,1] [3,1,3,1,2,-1,0] [3,1,2,-1,0,3,1]

[-1,0,1,0]        [2,1,1,0,1,1] [3,1,2,2,1,0,0] [3,1,2,2,1,0,0]
[3,1,1,-1,1,1] [3,1,2,1,0,1,1] [2,2,1,3,1,0,0]

Length=5: [1,1,1,1,1,1] [4,1,2,1,-1,1,1] [2,1,3,1,2,0,0]

[1,1,2,0,-1] [3,1,2,2,-1,0,2] [2,1,2,1,1,1,1]
[1,1,1,0,0] [2,2,1,3,-1,0,2] [3,2,1,2,-1,1,1]

[2, 1, 3, 1,0,2] [3, 1, 1,0, 1, 2, 1]

Any (Y, D) must arise from blowing up at interior points of one of these

surfaces. It is first necessary to blow up sufficiently to make the cycle negative-

definite, so there is some mandatory blowing up on each of these cycles (see

(1.2)). In each case the minimum required blowing-up is already sufficient to

make the complement of D simply-connected.

(3.9) Lemma. For a cusp singularity (X, p) satisfying Emb.dim^, p) < 1,

itx(M) = 0 for M the Milnor fiber of any smoothing.

Proof. Any smoothing of a cusp satisfying the hypothesis must arise from Table

(3.8). If a smoothing arises from a (Y, D) such that a pair of adjacent com-

ponents Di, Di+X both require internal blow-ups (i.e., -Dk < 2, k = i, i + I)

then d in (3.7) is surjective, implying the result. To see this, relabel the adjacent
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components as Dx and D2, and compute d directly using (3.6):

GSM*?) - (;S)-(?ii)-
From this, d has the following form: d = (q ? "»' ) > which is clearly sur-

jective. To finish the proof, note that every cycle in Table (3.8) has a pair of
—2

consecutive components satisfying -Dk < 2 , thus requiring internal blow-ups.

The lemma's conclusion is not true for Emb. dim > 7. A simple example is

the following. Start with the length 7 cycle [2, 1,2, 1, 1, 1], and blowup at
_2

a node so as to separate the components which satisfy -D, < 2 . One obtains

a surface (Y, D) which blows up to a cusp smoothing with nontrivial nx .

Explicitly:

[2,1,2,1,1,1,1]     =*      [2,1,2,1,2,1,2,1]     =*     [3,2,2,2,2,2,2,2]

Using (3.6), <9 = (o ? _t2 — t — i ) (redundant columns are omitted). So

ni(Y\D) = Z/2Z.
The content of (3.9) is stated without proof in [LW, Theorem 6.6.1]; there

it is also claimed that Emb.dim(X, p) < 8 implies nx(M) = 0 or Z/2Z. It
is clear from this lemma how to prove the other part of their claim, though it

requires some calculation.

Proposition (3.7) also applies to simple-elliptic singularities. Any smoothing

of a simple-elliptic (X, p) is again obtained from an intermediate surface as
—2

in Table (3.8) but must satisfy the additional condition -D, = 2. Thus, in

particular,

(3.10) Lemma. For a simple-elliptic singularity (X, p) satisfying

Emb. dim(A", p) < 1, nx (M) = 0 for M the Milnor fiber of any smoothing

Proof. Same as for Lemma (3.9). As was true for cusps, nx(M) is in general a

finite cyclic group. The example of the cusp smoothing of Emb. dim = 8 with

nontrivial nx can be adapted to give an example of a simple-elliptic smoothing

with 7*1 (Af) = Z/2Z: Contract one of the exceptional curves passing through

Dx to obtain the cycle [2,2,2,2,2,2,2,2]. The calculation of its fun-
damental group is the same as for the cusp (more than one internal blow-up

on a component contributes cycles to the second homology group, rather than

destroying cycles in Hx).

(3.11) Not every smoothing of a degree 8 simple-elliptic has nx = Z/2Z. If in-

stead of blowing up [2, 1,2, 1, 1, 1, 1] symmetrically at the node between the
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third and fourth "1" to get the intermediate surface [2, 1,2, 1,2, 1,2, 1], we

blow up asymmetrically between the fourth and fifth " 1" to get [2, 1,2, 1, 1,

2, 1, 2], the result is a surface with two adjacent components requiring inter-

nal blow-ups. Therefore, when the internal blow-ups are performed to get the

smoothing, its Milnor fiber is simply-connected, by the proof of Lemma (3.9). It

is shown in [LW, (6.4)] that degree 8 simple-elliptics have five smoothing com-

ponents and that degree 9 simple-elliptics have nine smoothing components. It

appears that the fundamental group of M can distinguish two such components

for degree 8 simple-elliptics.

(3.12) It is well known that a simple-elliptic (X, p) has a smoothing if and

only if its degree (= Emb. dim) is at most nine (see [LW, 6.4]). For degree 8,

the only possibilities for 7ti(Af) are 0 and Z/2Z. For degree 9, the group Z/3Z
appears. The intermediate surface that blows up to the degree 9 smoothing is

[2,1,2,2,1,2,2,1,2]. It is constructed by blowing up [1,1,1,1,1,1]
symmetrically at the three nodes between the first and second, third and fourth,

and fifth and sixth components. Using (3.6), d is the map d = (o ? ~)3 -2) •

The quotient by the image of d is Z/3Z. There is no other way to realize a

length 9 cycle of (-2) rational curves on a rational surface, so this is the only

group that occurs for a simple-elliptic smoothing of degree 9.
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