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STATISTICAL LIMIT POINTS

J. A. FRIDY

(Communicated by Andrew M. Bruckner)

Abstract. Following the concept of a statistically convergent sequence x , we

define a statistical limit point of x as a number X that is the limit of a sub-

sequence {xk(j)} of x such that the set {k(j): j £N} does not have density

zero. Similarly, a statistical cluster point of x is a number y such that for every

e > 0 the set {k € N: |x/t —y| < e} does not have density zero. These concepts,

which are not equivalent, are compared to the usual concept of limit point of

a sequence. Statistical analogues of limit point results are obtained. For exam-

ple, if x is a bounded sequence then x has a statistical cluster point but not

necessarily a statistical limit point. Also, if the set M := {k e N: xk > xk+\)

has density one and x is bounded on M , then x is statistically convergent.

1. Introduction and background

In [4] Fast introduced the concept of statistical convergence for real number

sequences; in [10] Zygmund called it "almost convergence" and established a

relation between it and strong summability. In [2, 3, 5, 6, 9] this concept was

studied as a nonmatrix summability method. In the present paper we return

to the view of statistical convergence as a sequential limit concept, and we

extend this concept in a natural way to define a statistical analogue of the set

of limit points or cluster points of a number sequence. In §2 we give the basic

properties of statistical limit points and cluster points. This section develops

the similarities and differences between these points and ordinary limit points.

Section 3 presents statistical analogues of some of the well-known completeness

properties of the real numbers.

If K is a subset of the positive integers N , then K„ denotes the set {k £ K :

k < n} and \K„\ denotes the number of elements in K„ . The "natural density"

of Tv (see [8, Chapter 11]) is given by 8(K) = lim„ «-1|Tv„|. A (real) number

sequence x is statistically convergent to L provided that for every e > 0 the

set Tv(e) = {k £ N : \xk -L\ > e} has natural density zero; in this case we write

st-lim x = L.
In [5, Theorem 1] it is proved that st-lim x = L if and only if there is a

(convergent) sequence y such that limy = L and 8{k £ N : xk ^ yk} = 0.
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The zero density property is described succinctly as "xk = yk for almost all k".

Sets of density zero play an important role, so we introduce some convenient

terminology and notation for working with them. If x is a sequence we write

{xk : k £lN} to denote the range of x. If {xfc(j)} is a subsequence of x and

K = Wt) :)eN}, then we abbreviate {xfc(7)} by {x}a: . In case 8(K) = 0,

{x}k is called a subsequence of density zero, or a thin subsequence. On the other

hand, {x}k is a nonthin subsequence of x if Tv does not have density zero.

It should be noted that {x}k is a nonthin subsequence of x if either rS(7v) is

a positive number or Tv fails to have natural density.

2. Definitions and basic properties

The number L is an ordinary limit point of a sequence x if there is a

subsequence of x that converges to L; therefore we define a statistical limit

point by considering the density of such a subsequence.

Definition 1. The number X is a statistical limit point of the number sequence

x provided that there is a nonthin subsequence of x that converges to X .

Notation. For any number sequence x , let Ax denote the set of statistical limit

points of x, and let Lx denote the set of ordinary limit points of x .

Example 1. Let xk = 1 if A: is a square and xk = 0 otherwise; then Lx =

{0, 1} and Ax = {0}.

It is clear that Ax c Lx for any sequence x . To show that Ax and Lx can

be very different, we give a sequence x for which Ax = 0 while Lx = 1, the

set of real numbers.

Example 2. Let {rk}kLx be a sequence whose range is the set of all rational

numbers and define

( r„,     if k = n2 for n = 1, 2, 3, ... ,
xk = S   ,

[ k,      otherwise.

Since the set of squares has density zero, it follows that Ax = 0 , while the fact

that {rk : k £ N} is dense in R implies that Lx = R.

A limit point L of a sequence x can be characterized by the statement "every

open interval centered at L contains infinitely many terms of x". To form a

statistical analogue of this criterion we require the open interval to contain a

nonthin subsequence, but we must avoid calling the center of the interval a

statistical limit point for reasons that will be apparent shortly.

Definition 2. The number y is a statistical cluster point of the number sequence

x provided that for every e > 0 the set {k £ N : |x* - y\ < e} does not have

density zero.

For a given sequence x, we let Tx denote the set of all statistical cluster

points of x. It is clear that Tx C Lx for every sequence x. The inclusion

relationship between Fx and Ax is a bit more subtle.

Proposition 1. For any number sequence x, Ax C Fx .

Proof. Suppose X £ Ax , say limy Xk(j) = X, and

lim sup-1 {k (j) <n}\=d>0.
n n



STATISTICAL LIMIT POINTS 1189

For each e > 0, {j : \xk(j) - X\ > e} is a finite set, so

{keN:\xk-X\< e}\ 2 {k{j): j £ N} ~ {finite set}.

Therefore,

i|{* < n : \xk - X\ < £} > X-\{k(j) < n}\ - itf(l) > d-

for infinitely many n . Hence, 8{k £N: |x^ - A| <e} / 0, which means that

AeTx.

Although our experience with ordinary limit points may lead us to expect

that Ax and Fx are equivalent, the next example shows that this is not always

the case.

Example 3. Define the sequence x by

xk = l/p,     where k = 2p~x(2q + 1);

i.e., p - 1 is the number of factors of 2 in the prime factorization of k . It is

easy to see that for each p, 8{k : Xk = 1/p} = 2~p > 0, whence 1/p £ Ax.

Also, 8{k : 0 < xk < 1/p} = 2~p , so 0 e Fx , and we have Fx = {0}U{l//?}~ ,.

Now we assert that 0 £ Ax ; for, if {x}k is a subsequence that has limit zero,

then we can show that 8(K) = 0. This is done by observing that for each p ,

\Kn\ = \{k £Kn:xk> 1/P}\ + \{k £Kn:xk< l/p}\

<0(l) + \{k£N:xk< l/p}\<0(l) + n/2p.

Thus 8(K) < 2~p , and since p is arbitrary this implies that <5{Tv} = 0.

It is easy to prove that if x is a statistically convergent sequence, say st-lim x

= X, then Ax and Fx are both equal to the singleton set {X} . The converse is

not true, as one can see by taking xk = [1 + (-l)k]k . The following example

presents a sequence x for which Fx is an interval while Ax = 0 .

Example 4. Let x be the sequence {0,0, 1,0, £,1,0, £,§,1,...}. This
sequence is uniformly distributed in [0, 1] (see [7]), so we have not only that

Lx = [0, 1] but also the density of the x^'s in any subinterval of length d is

d itself. Therefore for any y in [0, 1 ],

8{k £ N : xk £ (y - e , y + £)} > e > 0.

Hence, Tx = [0, 1]. On the other hand, if X £ [0, 1] and {x}k is a sub-
sequence that converges to X, then we claim that 8{K} = 0. To prove this

assertion, let e > 0 be given and note that for each n ,

\K„\ < \{k £ Kn : \xk - X\ < e}\ + \{k £ Kn : \xk -X\>e}\

<2en + 0(l).

Consequently, 8{k(j)} < 2e, and since e is arbitrary, we conclude that 8{k(j)}

= 0. Hence, Ax = 0 .

From Example 3 we see that Ax need not be a closed point set. The next

result states that Fx , like Lx , is always a closed set.
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Proposition 2. For any number sequence x, the set Fx of statistical cluster points

of x is a closed point set.

Proof. Let p be an accumulation point of Fx : if e > 0 then Fx contains some

point y in (p - e , p + e) . Choose e' so that (y - e' , y + e') C (p - e, p + e).

Since y £ Fx , 8{k : xk £ (y - e' , y + e')} ± 0, which implies that 8{k : xk £

(p - £, p + e)} ^ 0. Hence, p £ Yx .

For a given sequence x its statistical convergence or nonconvergence is not

altered by changing the values of a thin subsequence. (See [5, Theorem 1].) We

now show that the same is true for statistical limit points and cluster points.

Theorem 1. If x and y are sequences such that Xk = yk for almost all k, then

Ax = Ay and Yx = Ty .

Proof. Assume 8{k : Xk ^ yk} = 0 and let X £ Ax, say {x}k is a nonthin

subsequence of x that converges to X. Since 8{k : k £ K and xk / yk} = 0,

it follows that {k : k £ K and Xk = yk} does not have density zero. Therefore

the latter set yields a nonthin subsequence {y}ic of {y}ic that converges to

X. Hence, X £ Ay and Ax C A^ . By symmetry we see that Ay C Ax , whence

Ax = Ay . The assertion that Tx = Fv is proved by a similar argument.

In the next theorem we establish a strong connection between statistical clus-

ter points and ordinary limit points.

Theorem 2. If x is a number sequence then there exists a sequence y such that

Ly = Yx and yk = Xk for almost all k ; moreover, the range of y is a subset of

the range of x.

Proof. If Fx is a proper subset of Lx , then for each £ in Lx ~ Yx choose an

open interval 7^ with center Z, such that 8{k : Xk £ 7^} = 0. The collection

of all such 7^'s is an open cover of Lx ~ Yx, and by the Lindelof Covering

Property there exists a countable subcover, say {Ij}JLx. Thus each 77 contains

a thin subsequence of x . By a result of Connor [3, Corollary 9], this countable

collection of sets, each having density zero, yields a single set Q such that

<5(Q) = 0 and for each j, {k : xk £ Ij} ~ & is a finite set. Let N ~ Q :=
{j(k) : k £ N}, and define the sequence y by

"\xk,        ifyceN~Q.

Obviously 8{k : yk / x^} = 0, and Theorem 1 ensures that Tv = Fx . Since

the subsequence {y}a has no limit point that is not also a statistical limit point

of y , it follows that Ly = Yv; hence, Ly = Fx .

Remark. The conclusion of Theorem 2 is not valid if Tx is replaced by Av,

because Ly is always a closed set while Av need not be closed (as in Example

3).

3. Statistical analogues of completeness theorems

There are several well-known theorems that are equivalent to the complete-

ness of the real number system. When such a theorem concerns sequences we

can attempt to formulate and prove a statistical analogue of that theorem by

replacing ordinary limits with statistical limits.  For example, in [5, Theorem
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1 ] it is proved that a number sequence is statistically convergent if and only if

it is a statistically Cauchy sequence. A sequential version of the Least Upper

Bound Axiom (in R) is the Monotone Sequence Theorem: if the (real) number

sequence x is nondecreasing and bounded above, then x is convergent. The

following result, which is an easy consequence of [5, Theorem 1], is a statistical

analogue of that theorem.

Proposition 3. Suppose x is a number sequence and M := {k £ N : xk < xk+x};

if 8{M} = 1 and x is bounded on M, then x is statistically convergent.

Another completeness result for R is the Bolzano-Weierstrass Theorem which

asserts that Lx ^ 0 for a bounded sequence x. Example 4 shows that a

bounded sequence might have Ax = 0, but there is an analogue of the Bolzano-

Weierstrass Theorem that uses statistical cluster points.

Theorem 3. If x is a number sequence that has a bounded nonthin subsequence,

then x has a statistical cluster point.

Proof. Given such an x, Theorem 2 ensures that there exists a sequence y

such that Ly = Yx and 8{k £ }$ : yk ^ xk} = 0. Then y must have a bounded
nonthin subsequence, so by the Bolzano-Weierstrass Theorem Lv ^ 0 , whence

rx^0.

Corollary. If x is a bounded number sequence, then x has a statistical cluster

point.

The next result is a statistical analogue of the Heine-Borel Covering Theorem.

If x is a bounded number sequence, let X denote the compact set {xk : k £

N} U Lx . A sequential version of the Heine-Borel Theorem tells us that if {/„}

is a collection of open sets that covers X, then there is a finite subcollection of

{/„} that covers X. To form a statistical analogue of this result we replace Lx

with Tx and define the set

X:={xk:k£N}uFx,

which we might call the statistical closure of x . It is easy to see that X need
not be a closed set; indeed, X is a closed set if and only if X equals {xk : k £

N} U Lx , the ordinary closure of x .

Theorem 4. If x is a bounded number sequence, then it has a thin subsequence

{x}K such that {xk : k £ N ~ K} U Fx is a compact set.

Proof. Using Theorem 2 we can choose a bounded sequence y such that Lv =

rx , {yk : k £ N} C {x^ : k £ N}, and 8(K) = 0, where K = {k £ N : xk ± yk}.
This yields

{xk : k £ N ~ K} U r* = {yk : k £ N} U Ly,

and the right-hand member is a compact set.

It is easy to see that the proof of Theorem 4 remains valid even for unbounded

x provided that x is bounded for almost all k ; i.e., there is a thin sequence

{x}m such that {xk : k £ N ~ M} is a bounded set.

Finally, we note that for the compact set in Theorem 4 we cannot use Ax

in place of Tx. In Example 3, Ax = {\/p : p £ N} and for each p in N,

8{k £ N : Xk = \/p} = 2~" . If {x}k is any thin subsequence then for each p ,
8{k £ N ~ K : xk = 1/p} = 2~p , and therefore {x^ : k £ N ~ K} still has zero

as a limit point. Consequently, {xk : k £ N ~ K} u Ax is not compact.
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