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(Communicated by Charles Pugh)

Abstract. We study self-similar sets in the case where the construction diffeo-

morphisms are not necessarily conformal. Using topological pressure we give

an upper estimate of the Hausdorff dimension, when the construction diffeo-

morphisms are Cx+K and satisfy a K-pinching condition for some k < 1 .

Moreover, if the construction diffeomorphisms also satisfy the disjoint open set

condition we then give a lower bound for the Hausdorff dimension.

1. Introduction

The construction of a self-similar set starts with a k x k matrix A = (ajj)

which has entries zeros and ones, with all entries of As positive for some

N > 0; see [H]. For each nonzero 0{j we give a contraction map fp,j: R1 —> 7?'

with ||9»,y(x) - ^//(jOH < c||jc - j>||, where c < 1 is a constant and we are using

the Euclidean norm on 7?'. Define the Hausdorff metric by

d(E, F) = inf{d \d(x,F) <SfoTallx£E, and d(y,E) < S for all y £ F}

in the space % of all nonempty compact subsets of R1. See, for example, [H]

or [F]. The map <J> on the /c-fold product space Wk given by

Q>(Fx,...,F,)=l\J flJ{Fj),...,[} <pk](Fj) j

is a contraction map. By the Banach Fixed Point Theorem the contraction map

O has a unique fixed point in <&k , i.e., a vector of compact nonempty subsets

of 7?', (Ei,..., Ek) £ Wk , with Ua,.=i <Pu(Ej) = E,. The union E = lj*=i E(

is called a self-similar set.

Let Z = X^ = {(xq , x\, ... , x„, . ..)\1 < x, < k and aXiXi+, = 1 for all
/' > 0} be the shift space with the following metric: for x = (xq, Xi, ...),

y = (yo,y\, ■■■) in 2, d(\, y) = 2~" if and only if n = min{m\xm # ym}.

Let ct be the shift map of X, and let n: X —> E be given by

n(x0,xx, ... ,xn, ...)= the only point in f] <pXoXl<pXlXl •• ■ (px„x„^(EXnt[).

n>\
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It is clear that n is a Holder continuous surjective map. We will denote the

composition q>XoX, ■ ■ ■ <pXn_,Xn by tpXo...Xn. Also, we assume all cpi} to be C1

diffeomorphisms and denote the derivative of tptj at a point x by Txtpij or

T<pu(x).

Definition 1.1. The jth Lyapunov number of a linear map L, denoted by

ctj(L), is the square root of the jth largest eigenvalue of LL*, where L* is

the conjugate of L. Write co,(L) = ax(L) •• •ar,](L)a[I]+1(L)'-['1. For a set of

construction diffeomorphisms {<ptj} , define Xt: X -> 7? for each t £ [0, /] and

x = (x0xx ■ ■ ■) £ X by

X,(x) = logax(TtpXoXl (ncrx)) + ■■■ + log a[t](TtpXoXl (nax))

+ (t-[t])loga[t]+x(T<pXoX,(nox))

= \ogcot(TtpXQX^(Tiox)).

Here "log" is the natural logarithm.

The constructions and dimensions of self-similar sets have been studied by

several authors under various restrictions. In this paper we relax the restrictions

on construction diffeomorphisms to a k-pinching condition, which is defined
as follows.

Definition 1.2. We say that a C1 homeomorphism cptj satisfies the K-pinching

condition if for all x £ E the derivatives satisfy ||7,jcPi_/||1+k • \\T,Pu(X)Cp7jl\\ < 1 .

Remark. If TxcpijTxcp*j has eigenvalues ai);j(jc)2 > ••• > a/jj(x)2 where

Txcp*j denotes the conjugate of Txtpjj , the numbers aXyij(x), ... , atjj(x) are

Lyapunov numbers with 1 > aXjj(x) > ■■■ > aijj(x) > 0. The pinching

condition is equivalent to ax,ij(x)x+K < a/,;(x).

For the definition and properties of Hausdorff dimension, refer to [K]. Also,

we use the definitions and notions of [W] in the discussion concerning topolog-

ical pressure.

Theorem 1. Let {cptj}  be the Cx   construction diffeomorphisms for the self-

similar set E, satisfying the K-pinching condition for some positive number

K< 1. Suppose the derivatives of all {cpjj} are Holder continuous of order k. If

t is the unique positive number such that the topological pressure P(o, Xf = 0,

then the Hausdorff dimension HD(Ti) < /.

Let us recall the disjoint open set condition on the construction of self-similar

sets; see [H]. It states that for each integer i from 1 to k there is a nonempty

open set C, such that

|J tpij(Uj) c Ui   and   tpu(Uj) n q>ik(Uk) = 0       if j ? k.
a(j=i

For n > 0, denote U„(x) = <pXoXl tpXiXl • • • tpXn_]Xn(Ux„). It follows that E, c C,

and that the collection {U„(x):x£ X} is pairwisely disjoint for each fixed n .

Theorem 2. Let {cptj} be the Cx construction diffeomorphisms for the self-

similar set E, satisfying both the K-pinching condition for some positive

number k < 1, and the disjoint open set condition. Suppose the derivatives of

all {cptj} are Holder continuous of order k . If t is the unique positive number
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such that the topological pressure P(a, Xf = 0, then the Hausdorff dimension

HD(E)>t/(l+K)-lK.

Remark. We call a C1 diffeomorphism Cx+K if its derivative is Holder con-

tinuous of order k . If we fix the construction to be C1+^ for some /? > 0 but

let k —> 0 for the K-pinching condition, then our upper and lower bounds will

coincide with the estimate for conformal cases in [BI].

Theorem 1 is proved in §2, and Theorem 2 is proved in §3. As a corollary of

Theorems 1 and 2, in §4 we will also discuss some continuity in the C1 topology

of the Hausdorff dimension at conformal Cx+K constructions under disjoint

open set condition. For discussions of the constructions of self-similar sets using

similitudes and their dimensions, see [H] and [MW]. For the constructions using

"conformal" contraction maps, see [BI]. Other related works can be found in

[D, B2, F]. A similar result for basic sets in two dimensions can be found in

[MM].

2. The upper bound

Lemma 2.1. If all construction diffeomorphisms tp\j are Cx+K and satisfy the

K-pinching condition, then for any e > 0, there exists 5 > 0 depending only on

e , such that for all x £ E, all a with 0 < a < 8, and all x = (xo, xx, ...) in

X, all integers n > 0, we have

(2.1) cpXo...XnB(x, a) C tpXo...Xn(x) + (l+E)nTxtpXo...XnB(0, a).

Here B(x, a) denotes a ball of radius a centering at x in Rl.

Proof. Using Taylor's formula, for any y, w £ R1,

(2.2) <pXoXl (y + w) = tpXoXl (y) + TytpX(jXl (w) + rXoXl (w , y).

Since E compact, we can find some constant C > 0 and c > 0, such that for

all y £ E and w £ Rl with ||tu|| < c, we have \\rXoXl(w , y)\\ < C\\w\\x+K . We

will set also b = min*^, iy j{aptj(x)}, where a/>1;- is the square root of the

least eigenvalue of Txtp,jTxtp*j.

Fix any small e > 0. Since E is compact and all construction diffeomor-

phisms satisfy the K-pinching condition, without loss of generality we can as-

sume e to be so small that for all pairs (i, j),

(2.3) \\(1 + e)Txfij\\ < 1    forallxe£,

(2.4) (l+E)KaXJJ(x)x+K <aUj(x)    for all x £ E.

Pick d > 0, with S < min{c, (bs/C)x/K}. Thus 8K < EaLlj(x)/C for all

x £ E and all pairs of (i, j). Let a <8 , and pick any w £ R1 with ||u;|| < a .

For any x in E, \\rXoXl(x, w)\\ < C\\w\\x+K < Cax+K < aCSK < asaLxoXl(x)

and thus rXoXl(w, x) £ sapXoXl(x)B(0, a). Since

ea,yXoXl(x)B(0, a) c sTxtpXoXlB(0, a),

it follows from (2.2) that

(pXox, (x + w) = tpXoXl (x) + Tx<pXoXl (w) + rXoXl (w , x)

e <pXoX,(x) + TxtpXaX{B(0, a) + ETxtpXoXxB(0, a)

= <Pxox,(x) + (1 +s)TxtpXoXiB(0,a).



1284 XIAOPING GU

This gives (2.1) for n = 1. Now the induction hypothesis gives

cpxoX,-xnB(x, a) = tpXoXitpXr..XnB(x, a)

C cpXQX\cpXv..Xn(x) + (l+E)n-xTxtpXr..XnB(0, a)].

Using (2.2),

<pXoX,[<pXr..x„(x) + (1 + E)"-xT<pXr..Xn(w)]

= cpXo...Xn(x) + (1 + E)n-xTtpXQ...Xn(w)

+ rXoXl((l + E)n~xTcpXv..Xn(w), tpx,..Xn(x)).

Because of (2.3), ||(1 + e)"-1r^JC|...XB(ri;)|| < ||w|| < a, where w £ 5(0, a).

Using (2.4), we have

\\rX0M((i+E)n-xTcpXi...Xn(w),cpXi...Xn(x))\\

<C\\(l+E)n-xTtpXv..Xn(w)\\x+K

<C(1+ b)(-»(»-hc) • [a, ,x,X2(cpXr..Xn(x)) ■ ■ ■ a, ,x„_,Xn(x)\\w\\]{+K

<C(l+E)n-xai^Xl(cpX2...xSx))---aLXn_tXSx)\\w\\x+K

<(1+ E)n-xaKCapX[X2(tpXr..Xn(x)) • • • apXn_lXn(x)\\w\\

<£(1 +e)n-xapXoXl(<pXr..Xri(x))-apXiXl(tpXr..Xn(x))---aiyXn_lXf:(x)a.

On the other hand TxtpijB(0, a) D a/jj(x)B(0, a), and it follows that

TxcpXo...XriB(0,a) 7>aLxaXi(<pXv..Xn(x))---aLXri xXn(x)B(0,a).

Hence rXoXl((l + s)"-xTtpXr..Xn(w), <pXr..x„(x)) £ e(1 + £)"-xTxtpXo...XnB(0, a).

Therefore,

<pXoX,[<px,...x„(x) + (1 + £)"~lTtpXr..Xri(w)]

£<pXo...xAx) + (l+E)n-lTx<pXo...XnB(0,a) + £(l+£)"-xTx<pXo...XnB(0,a)

C <pXo...x.(x) + (!+£)"TxtpXo...XnB(0, a).

Thus (2.1) is true for n . This completes the induction process.   □

I have learned that Jiang [J] has a distorsion lemma for a regular nonconfor-

mal semigroup, which is a semigroup of pinched contracting diffeomorphisms.

His version is stronger than our version here. However, for our purpose of

estimating Hausdorff dimensions, our version is strong enough.

Proposition 2.2. If all construction diffeomorphisms tp,j are Cx+K and satisfy

the K-pinching condition where 0 < k < 1, and if the topological pressure

P(a, Xf < 0 where a is the shift map in X, then the Hausdorff dimension

F\F)(E)<t.

Proof. Choose small £ > 0 with P(o, Xf < -2t£, satisfying both (2.3) and
(2.4). By Lemma 2.1, there exists 3 > 0 such that (2.1) holds for all integer
n > 0 and each x £ E, when 0 < a < 8 .

We fix a < 8 small enough, and a positive integer n big enough, such

that (see [W] for notation) logPn(o, X,, a) < -2nt£ . Recall that n is Holder

continuous. Suppose that y is the exponent such that there exists a constant D
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with \n(x)-7i(y)\ < D-d(x, y)? for all x, y in X. Fix a1 < minfT)-'/^1^, a}.
Pick m with 2~m-x < a' < 2~m . Let

K' = {(xo, ... , xm+„)\ there exists x £ X with x= (xo,..., xm+„ , ...)}.

Choose for each word (xq, ... , xm+n) in K' a point x in X with the initial of

Xq, ... , xm+n to form a subset K of X. The subset K is (n, a') separated and

is maximal in the sense that one cannot add another point to K such that it is

still (n, a') separated. Thus, the collection {o~nB(anx, a')\x£ K} is an open

cover for X. Notice that nx = tpXoXinox. Since nB(x, a') c B(n(x), a) and

n{o-nB(o-"x,a')\x e Tv"} c {cpXQXv..XnB(nonx, a) |x = (x0, xx, ... , x„...) £

K} follows, {<pXoXl...XnB(nanx, a)\x = (x0, xx, ... , x„ ...) £ K} is an open

cover for E = |J,=1 7s,.
Using (2.1) of Lemma 2.1,

(2.5)       cpXa...XnB(nonx, a) C tpXo...Xn(nonx) + (1 + £)nTnanxtpXo...XnB(0, a).

The right side of (2.5) is an ellipsoid with axes {a(l + E)"ctj(TMar,xtpXo...Xa) \ 1 <

j < 1}. Pick j with j — 1 < t < j. Then that ellipsoid can be covered by

C • ax(TnanXcpXo...Xrf) ■ ■ ■ aj(T7ianXtpXo...Xri)/aj(Tna«xtpXo...Xn)1

= C ■ cOj-X(TnanxcpXo...Xn)a7]+x(TnanXtpXo...x„)

balls of radius a(l + E)naj(TnanXtpXfj...Xri), where the constant C > 0 depends

only on the dimension of 7?'. Now we calculate the Hausdorff /-measure of

E, using the smaller balls of radius a(l +e)" -aj(TnanxtpXo...Xn) < a to cover the

open set tpx<j...XnB(nonx, a). If {P, : i £ 1} is an open cover for E where Pt is

a ball of radius r,, then we define |7| = max/e/ r, and p(a, t) = inf|/|<a ^2ieI r\.

We have

p(a, t)<Ys CcOj-X(TKanxcpXo...Xn)a7J+x

xeK

x (TnanXtpXo...xJ[a(l +£)naj(T„ar,xtpXo...Xr)]'

= (l + e)ntatcY,<»t(Tno*x(px0-x„)
\€K

< (l+E)ntC^cot(TnaxtpXoXfcot(Tna2XtpXlX2)---cot(TnanxtpXn_tXri)

= (1 + s)ntC YI exp[Xt(x) + Xt(ox) + ■■■ + X,(o"-xx)]
xeK

< (1 +E)ntCPn(o, Xt, a') < (l+E)"'CP„(<j,Xt,a)

< Cexp(nts) exp(-2nt£) -» 0,

as n -> oo. Thus p(a, t) = 0. Since a can be arbitrarily small, p(t) = 0. It

follows that HD(£) < t.   U

Proof of Theorem 1. T^cr, Xf is a decreasing function of fs since E is compact

and X, is strictly decreasing with respect to f. So there is only one real number

t such that T'(ct, Xf = 0. Also, the unique t with P(o, Xf = 0 is equal to
inf{t: P(o, Xf < 0} . Consequently, we have HD(£) < t where P(o, Xf = 0.
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3. The lower bound

Proof of Theorem 2. Notice that for each t, the map X, is Holder continuous

on X. So there exists an equilibrium state p for X,, in the sense that

P(a, Xf = hfl(o) +     X,dp.

Fix any p > 0, let us estimate the //-measure of a ball B(z, p) centered at z

with radius p. For each x e X choose the unique n = n(x) > 0 such that the

diameters satisfy

diam(U„(x)) < p < diam(C„_i(x)).

Lemma 3.1. There exists a constant c > 0 such that for all x £ X, the open set

C„(x)(x) is contained in a ball of radius p and contains a ball of radius cpx+K .

Proof. It is clear that U„(x) is contained in a ball of radius p. Since the radius

of U„(x) decreases to 0 as n grows to infinity, without loss of generality we

can assume the maximum diameter 7? of all C, is less than the number 8

given in Lemma 2.1. Also pick r small enough that each C, contains a ball of

radius r. Then U„(x) contains a ball of radius

r • a/,x0x, (nox) ■ ■ ■ aLXn_iXn(nonx) > r • a\+«oX, (nox) ■ ■ • aj+* __Xn(no"x).

But on the other hand

p < diam(C„_,(x)) < qi >XoXi(nox) ■ ■ ■ax,Xn_2Xn_[(no"-xx)R,

which implies that aXyXoXl(nox) ■ • -ax,x„_lX„(nonx) > axp/R where the con-

stant ax = minyeE,i,j{aXjj(y)} > 0 does not depend on either n or x.

Therefore U„(x) contains a ball of radius > rpx+Ka\+K/Rx+K . Writing c =

a\+Kr/Rx+K a constant, C„(x) contains a ball of radius cpx+K as desired.   □

For two points x, y £ X, since the construction maps satisfy the open set

condition, C„(X)(x) and Cn(v)(y) are either equal or disjoint. Let T c X be

a subset such that {C„(x)(x) |x £ F} is a disjoint collection which contains all

C„(x)(x) for xeX. Notice that {Un{x)(x) \ x £ F} covers E.

Lemma 3.2 (similar to [H, 5.3(a)]). At most 7>!c~lp~Kl of (C„(x)(x) |x 6 F} can

meet B(z, p).

Proof. Suppose that V\, ... ,Vm in {C„(x)(x) |x £ F} meet B(z, p). Then

each of them is a subset of B(z, 3p). By the definition of F the sets in the

collection {C„(X)(x)|x £ F} are disjoint. Comparing the volumes we have

mJc1 pl(x+K"> < J31 pl where J is the volume of a unit ball in R1. Hence
m < 3lc~lp~Kl.   □

Let Cn(x) = {y = (y0, yx,...) £ X\y0 = x0,..., y„ = x„} be the n cylin-
der. Recall that p is a Gibbs measure (see [Bo] for a discussion or [B2] for a

summary). There exists a constant d > 0, with

p(Cn(x)) £ [d~x, d]-exp(-P(o, Xfn+S„X,(x)),    for each cylinder C„(x) in X.
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Thus p(C„(x)) £ [d~x, d] ■ exp(S„Xt(x)), since P(o ,Xf = 0. So,

p(C„(x)) <dexpSnX,(x)

< d[aXyXQXl (nox) ■ • ■ a, ,Xn_,x„(nonx)]'

<d[aLxoXx(nox).-.apXn_iXn(no"x)]^x^

<d-[diam(UnW/r]^x+K\

Hence if n = n(x) we obtain

dp'l(x+K)

MC„(x)(x)) < -fa-r-.

Noticing nC„(x) d U„(x) n E, by Lemma 3.2,

n*p(B(z, p)) < [3lc-ldr-'^x+K^p^x+K^!K.

By the Frostman lemma (see [K] for a proof), HD(7s) > t/(l +k) - Ik .

4. Some continuity of the Hausdorff dimension in C1 topology

The construction of the self-similar set Ey, depends on the contracting dif-

feomorphisms {cpij}. Now let us fix 0 < /? < 1, and consider a C per-

turbation to a C1+/? conformal construction with diffeomorphisms {^},and

obtain another matrix of contracting diffeomorphisms {y/jj}, which is not nec-

essarily conformal. Denote the new self-similar set for tp by Ev. Define

dC\(cp, y/) = maxjjdCi{(<Pij, Wij)}> where the latter dC\ is the C1 metric.

Note that for any k < p, when y/ is sufficiently C1 close to cp, \p must be

Cx+K and also k-pinched. The following theorem is a corollary of Theorems 1

and 2, which states that at a C1+^ conformal construction satisfying the open
set condition for self-similar sets, the Hausdorff dimension FFD(EV) depends

continuously on {y/jj} in C1 topology.

Theorem 4.1. Let {cptj} be a matrix of Cx+P conformal construction diffeomor-

phisms for the self-similar set Ev, satisfying the open set condition. For any

e > 0, there exists 8 > 0, such that for any Cx+P construction yi satisfying the

open set condition, with dc, (tp, y/) < 8, we have | HD(E(/>) - HD(El//)\ < e .

Proof. Let X(p<s(x) = logcos(TipXoXl(nox)) and X¥yS(x) = logcos(Ty/XoXl(nox))

be two real functions on X as defined in Definition 1.1.  Let t be such that

P(o, Xyj) = 0. Because cpi/s are conformal, the Hausdorff dimension of Ev
equals t. Also, remark that T^er, X9J+E) < 0 for any e > 0.

Now fix any e > 0. Let k = min{/?, e/4/} and let

(4.1) e' = imin{-7>(CT,/l!/,,,+£), P(o, A,,,_e/4)} > 0.

Since tp is C1+/? and conformal, there is 8 > 0 such that a Cl+/? diffeomor-

phism y/ is Cx+K and /c-pinched with \X(p<s(x)-Xv<s(x)\ < e' for all s £ [0, /],

if dCi(tp, y/) < 3 .

Then P(o, X¥J+e) < P(o, A?>,+,+«') < P(a, X,,,+e)+e' < 0. So HD(7f„) <
t + e = HD(Ti^) + e, by Proposition 2.2.

On the other hand, by (4.1), when dc\(tp, y/) < 8 , we have

P(<r, V,_£/4) > p(a^9,t-e/4-e') > P(a,XvJ_e/A)-e' > 0.
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So we have some s > t - e/4 with T^er, XVtS) = 0 since T^cr, Xv%s) is strictly

decreasing with respect to s. By Theorem 2, HD(E¥) > s/(l + k) - Ik >

s/( 1 + e/4/) - /(e/4/) > s(l - e/4l) - e/4 > s - e/2 > t - e . It then follows that
HD(E¥) >t-e = HD(Ef) - e .    D

We say a construction tp with diffeomorphisms {<Pij} satisfies the strong

open set condition if there are open sets U\, ... ,Ui in 7?' with tpij(Uj) c C,

for all i, j . If the construction tp satisfies the strong open set condition, then

y/ must also satisfy the strong open set condition if it is C1 close enough to

tp . Thus we have obtained an immediate corollary of the above Theorem 4.1:

Corollary 4.2. Let {cptj} be a matrix of Cx+P conformal construction diffeomor-

phisms for the self similar set E9 , satisfying the strong open set condition. For

any e > 0, there exists 8 > 0, such that for any Cx+P construction y/ with

doiv > V) < S> we have |HD(2s,,) -UD(El//)\ < e.

Finally we have a remark on the continuity of the Hausdorff dimension in

C1 topology at nonconformal constructions.

Remark 4.3. The following example shows that if the "conformal" condition

for the construction diffeomorphisms {cptj} fails, then the results in Theorem

4.1 and Corollary 4.2 can be false. The example is derived from Example 9.10

of Falconer [F, pp. 127-128].
Let S, Tx: R2 -* R2 be given by

S(x, y) = (x/2, y/3 + 2/3),        Tk(x, y) = (x/2 + X, y/3)

where A 6 [0, 1/2) and (x, y) £ R2. Let <pxx = tplx = S, tpxl = tp12 = T0.

Take yix = {y/ijtx} where y/xx<x = y/2x,x = S and y/x2,x = y>n,x = Tx. The
strong open set condition is met for {cptj}. In fact, if we let Ux = U2 =

(-1/8, 9/8)2 c R2 then pu(Uj) C C,.
Let Tip, EVk be the self-similar sets for cp and y/i. Considering the pro-

jection of En to the x-axis, one knows that HF)(En) > 1 for X > 0.

But Ey is a Cantor set contained in the y-axis with the Hausdorff dimen-

sion HD(£p) = (log2)/log3 < 1 . Since dC\(y/x, cp) = X, letting X —> 0 we
know the Hausdorff dimension is not continuous at tp . We notice that {tpjj}

are not conformal although {cptj} and {y/u,i} are all 3/4 pinched.
It is a pleasure to thank Albert Fathi for his encouraging and helpful advice.
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