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ON STRONGLY DISCRETE SUBSETS OF co*

MARIUSZ RABUS

(Communicated by Franklin D. Tall)

Abstract. We prove that it is consistent with Martin's Axiom and -CH that

there is a strongly discrete subspace A C co* of cardinality N] such that the

closure of A is not homeomorphic with piox . We also prove that MA and

-iCH imply that there is no convergent strongly discrete subset of co* .

1. Introduction

We consider closures of strongly discrete subsets of co*, the remainder of

Cech-Stone compactification of w. A set D C co* is strongly discrete if for

every p £ D there is an open neighbourhood p £ Up such that Up n Uq = 0

for p ^ q.
It is well known that the closure of any countable, discrete subspace of co*

is homeomorphic with pco. Moreover, the cardinality assumption is essential.

By a result of [2] there exists a discrete subspace D C co* of cardinality N]

which is convergent, i.e., there is p £ co* such that every neighbourhood of p

contains all but countably many elements of D. The closure of such a D is not

homeomorphic with /icox .

However, it is consistent with Martin's Axiom (MA) and, in fact, follows

from the Proper Forcing Axiom that the closure of every strongly discrete sub-

space of co* of cardinality Nj is homeomorphic with fitox (see [6, 5, 3]). In

this paper we show that this result does not follow from MA itself. To prove

this one might try to show the consistency of MA with 'There exists a strongly

discrete, convergent subspace of co* of cardinality vXx\ We prove below that

this is not possible because MA implies that there are no such subsets.

Throughout the paper we use Boolean-algebraic terminology. We consider

co* to be the space of nonprincipal ultrafilters on co with the Stone topology.

In particular, D = {pa : a £ cox} is strongly discrete if there exists an almost

disjoint family {a„ : a £ cox} c £P(co) such that a„ £ p„ for every a £ cox . The

set-theoretical translation of the problem we consider is given by the following

theorem (see [4]): The closure of a strongly discrete subspace D = {pn : a £ cox}

is homeomorphic with /3cox  if for every E C cox   there is c C co such that
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a £ E if and only if c £ pa. We say that c separates {pa : a £ E} and

{pa : a £ (cox - E)} .

Most of our notation is standard. We say that F C 3s(co) has the finite

intersection property if the intersection of any finitely many elements of F is

infinite. If F has the finite intersection property, then we write (F) to denote

the filter generated by F and the cofinite subsets of co. For a c co we write

(a) instead of ({a}).

Theorem 1 (MA+ -CH). There is no convergent strongly discrete subspace of co*

of cardinality Wx.

Proof. Suppose that A = {pa : a £ cox} is strongly discrete and converges to

p £ co*. Let {aa : a £ cox} be an almost disjoint family such that aa £ pa

for every a £ cox, and let cox = Eq U Ex U E2 be a partition of cox into

three uncountable sets. We define a forcing Q. A condition in Q is a triple

(so, ^1, ^2) °f finite partial functions such that dom(,s,) c 7s, and ran(sf c co

for all i and such that the intersection So n Sx n S2 is empty, where S, =

\J{a^ - s,(cj) : c; £ dom(s,)}. A condition t = (to, tx, t2) is an extension of

(so, sx, s2) if /, C Si for i < 3 .

Note that for every i < 3 and a £ Ej the set D'a = {(so, sx, s2) : a £

dom(sf} is dense in Q. Let G be a generic set with respect to {D'a : i <

3 and a £ Ts,} . For / < 3 define

Cj = {J{aa - Sj(a) : (s0 ,sx,s2)£G and a £ E,}.

Note that C, £ pa for every a £ Ej. Since each 7s, is uncountable and A

converges to p , we have Co, Cx, C2 £ p . On the other hand Co n Cx n C2 = 0 ,

a contradiction.

To finish the proof it is enough to show that Q is c.c.c. Let {(s% , s", s^) :
a£oi|} be an uncountable subset of Q. By thinning out we can assume that

for every / < 3 the collection {dom(sy*) : a £ cox} forms a A-system with root

A,- and sf \A = sf [a, for a, B £ cox . Let 7Q = (S% n 5f , S$ n 5f , Sf n S%).
Since 7Q is a triple of finite subsets of co, we can assume that Ia = lp for

a, fj £ cox . Now we show that any two conditions are compatible. Let a,

R £ cox, and let t = (t0, tx, t2) be defined by tt = sf U sf for / < 3 . Note that

To n Tx n Tx c (Sg ns?n s%) u (5^ nsfn sf).

Hence (/o, /1, t2) £ Q and it is a common extension of (Sq , s", s2) and

(Sq , sf , sf). This proves that Q is c.c.c.   □

2. The main result

Let fF = {Fa : a £ cox} and 2? = {Ga : a £ cox} be families of filters on co.

The following is the key property we will deal with.

Definition. We say that (&~, 2?) is good if for every c C co the set Ac = {£, £

cox : c £ F% and (co - c) £ G^} is countable.

If Fa and Ga have the finite intersection property, then we say that (&, 2?)

is good if the families of filters {(Fa) : a £ cox} and {(Ca) : a £ cox} form a

good pair. In particular if A = {aa : a £ cox} and B = {ba : a £ cox} are such
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that A U B is an almost disjoint family in £P(co), then (A, B) is good if for

every c c co the set Ac = {£ 6 cox : a^ c* c and b^nc =* 0} is countable. Let

~W = (Fa : a £ cox} and W = {Ga : a £ cox} . We say that (W, 2?) extends

(y, 2?) if Fa C Fa and Ga C Ga for a £ cox . The goal of this section is to

prove the following

Theorem 2. It is consistent with MA + -<CH that there is a strongly discrete

subset of co* of cardinality ttx whose closure is not homeomorphic with ficox.

Proof. As pointed out in the introduction it is enough to construct a model of

MA with subsets & = {pa : a £ cox} and 2? = {qa : a £ cox} of co* such that

&~ 1)2? is a strongly discrete subspace and there is no c C co which separates
& and 2? .

We start with a model V satisfying 2W = cox and 2Wx = co2 and define a

finite support iteration (PQ : a £ co2) of c.c.c. posets in order to get Martin's

Axiom, i.e., by suitable bookkeeping we make sure that every potential c.c.c.

poset is considered at some intermediate stage. We iterate only posets of car-

dinality N[, thus intermediate models, Va = Vp", also satisfy 2W = cox and

2°» = co2.

The idea of the proof is as follows. First, we construct A = {a% : £ £ tox}

and B = {b$ : £ e cox} such that A U B is an almost disjoint family and

(A, 7?) is good. Next we find a pair (y°, 2?°) of families of ultrafilters which

is good and extends (A, B). Then we proceed by induction. Along with the

iteration we define (&~a, 2?a) to be a Pa-name for a pair of families of filters

^ra = {P% ■ £ e (Dx} and 2?a = {q° : £ £ cox} such that for all a £ co2 the

following hold.

(1) If fi< a, then (Fa, 2?a) extends (ft, 2??).
(2) (9a,2?a) is good.

(3) If a £ co2 is odd, then p? = (x^) and qg = (y$), where x^ c* / for

all / £ p£-x and yi c* g for all g £ qfx .

(4) If a is even, then ^a and 2Ta are families of ultrafilters.

Note that (SFmt, 2?0)2) is as required in VW2. Indeed, A u B witnesses that

^o>i \j5fui is a strongly discrete subspace and, since (fFWl, 2/Wl) is good, no

c Ceo can separate it.

Now let us prove that the construction can be carried out. Using CH in the

ground model it is not difficult to construct A = {a$ : £ £ co\} and B = {b$ :

<t, £ cox} such that A U B is an almost disjoint family and (A , B) is good. We

use the following lemma to find suitable 3rd and 2?° .

Lemma 1 (CH). Let & = {Fi : £ £ (Dx) and 2? = (6\ : £ £ cof be families of

filters such that (&, 2?) is good. Then there is an extension (!F, 2?) of (&~, 2?)

such that (ff, 2?) is good and ff and 2? are families of ultrafilters.

Suppose now that P„ and (SFa, %?") have been defined for all a < y such

that (l)-(4) hold. We have to define fy and {P*, &?).
Assume first that y = a + 1 is a successor. Working in V„ we define a c.c.c.

poset Q and put Pj, = P„ * Q. Then in V® we define (9"*, 2?y) and show
that the inductive conditions are satisfied.
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Case 1. a is even. We have to make sure that condition (3) is satisfied

in Vy, i.e., we have to diagonalize the ultrafilters appearing in .9ra and 2?n .

First let us define a well-known forcing and list some of its basic properties.

Let U be a set with the finite intersection property. Define Q(U) = {(s, K) :

s C co, K c F, and s, K finite} and order it by (s, K) < (r, L) if r C s,

LC K, and s - r cf)L. Q(U) is a standard poset for diagonalizing U , i.e.,

if G(U) is Q(C)-generic and xv = [J{s : 3K (s, K) e G(U)}, then xv c* f
for every f £ F . Recall the following facts about Q(U).

• Q(U) has the c.c.c; moreover, if W is another set with the finite

intersection property, then Q(U) x Q(W) has the c.c.c. In this case

we denote by xu and yw generic reals given by Q(C) and Q(W)

respectively.

• If e C co is such that U U {e} has the finite intersection property, then

the set xrjF\e is infinite.

• If (R<* : £ e cof is a finite support iteration such that for every £ e cox

R{+, = R{ * S{, where S{ is (a name for) Q(U$) x Q(Wi) for some

U^,W^, then R^, is c.c.c. Moreover, for all a < cox Ra is cr-centered;

in particular, it remains c.c.c. in every c.c.c. extension of the universe.

We work in Va. Define Q = RWl , where (R^ : £ £ cof is as above with

C{ = p£ and W^ = qg. Note that Q is c.c.c. and has size Kx as required.

To simplify the notation let x^ = xp« and y^ = vy for £, £ cox . Working

in Vy = V® we define p^ = (x^) and q£ = (yA for £ £ cox. We claim that

(^y ,2?y) is good in Vy. This follows from the following results.

Lemma 2 (CH). Let F = {x$ : £, £ cox} and G = {y^ : £ £ cox} be such that

F u G is an almost disjoint family and (F, G) is good. Suppose that R is a

c.c.c. forcing such that ll-R ' (F, G) is not good\ Then there is a c.c.c. forcing

Q such that in FQ   R is not c.c.c. and (F, G) is good.

Corollary (CH). Let -9~ = {Ft : c; £ cox} and 2? = {Gi : £ £ cox} be families

of filters such that (9~, 2?) is good. Suppose that R is a forcing such that

II-r '(^,^) is not good'. Then there is a c.c.c. forcing Q which adds an
uncountable antichain to R.

First, note that, since R<5 is c.c.c. indestructible, it follows by the corollary

that (9~a ,2^°) is good in V^s for 8 £ cox , in particular, in Vy. Now let e c co

be an element of Vy. Since Q = RWl isafinitesupportiterationofc.ee. posets,

e is in some intermediate model V^s for some 8 £ cox . Now we claim that

(Aye - 8) C A" , where A" is defined in Vy. If c; e Aye - 8 , then x{ c* e and
y^ n e =* 0 . If there was no c £ p? such that c c e , then p? U {co - e} would

have the finite intersection property and the set x^n(co - e) would be infinite.

Similarly we prove that there is d £ q? such that d ne = 0. Hence £ £ A"

and it follows that A\ is countable. This proves that (Sry, 2?y) is good.

Case 2. a is odd. In this case we take care of all potential c.c.c. forcings.

Suppose that R is a Pa-name for a c.c.c. poset given by some bookkeeping

function. If ll-R i(Sra,2?a) is good' , then we put Q = R. Assume that

\fR \9ra, 2?a) is good' . Since a is odd the elements of ,9ra and 2?a are

of the form p? = (x^)  and q% = (y$), where x$ c* f for all / £ p'£~x
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and y$ c* g for all g £ q?~x. Therefore, (■9ra, 2?°) is good if and only if

({x$ : £ £ cox}, {y^ : £ £ ojx}) is good. Hence by Lemma 1 there is a c.c.c. forc-

ing Q such that, in V®, R is not c.c.c. and (3ra, 2?a) is good. We force with

Q in this case. Finally, working in Vy, we define (9y, 2?y). Since (9ra, 2?a)

is good, by Lemma 1 there is a good pair (&"*, 2?y) that extends (&a, 2?a)

and such that &'y and 2?y are families of ultrafilters.

Assume now that y is a limit. We have to define in Vy a good pair (&"*, 2?y)

which extends all previous pairs. Let F^ = \J{F? : a £ y} and C^ = IJ{G| :

a £ y}, and put &~ = {F^ : £ £ cox} and & = {G^ : £ £ cox}. For d c co let

Aj be the set corresponding to {SF, 2?). We will show that (&, 2?) is good in

Vy. Note that this is enough since again by Lemma 1 we can extend (&", 2?)

to a good pair (&y, 2?y) such that &"» and 2?y consist of ultrafilters.

Case 1. cf(y) = cox . Let d c co. Then there is an even a £ y such that

d £ Va . Since ya and 2?a consist of ultrafilters, we have Aad = Ad , and by

the induction hypothesis Aad is countable.

Case 2. cf (y) = co. Let d C co and suppose that Ad is uncountable. Let

{an : n £ co} be a cofinal sequence in y. Let And = {£ £ cox : 3a £ T?" 3b £

G%n (acd and b n d = 0)}. Note that Ad = \J{Ad : n £ co}. Let m £ co be

such that Ad is uncountable, and for each £ £ Ad let a% £ T?m and b$ £ Gy

be such that a( C d and b( n d = 0. Note that 7s = {(a(, b() : £ £ A%} C

Vr<"». Recall now the following well-known result.

Lemma 3. Let (R„ : n < co) be a finite support iteration of c.c.c. posets. Suppose
that in VUia we have an uncountable set E such that E c V. Then there is a

k £co and an uncountable set F £ V^ such that F C E.

It follows that there is k > m and an uncountable set F £ VPak such that

F C 7s. Now let c = \J{c : 3d (c, d) £ F}. Obviously c £ Vp°k . Since
F is uncountable, it follows that A°k is uncountable, a contradiction. This

completes the proof of Theorem 2.

2.1. Proof of Lemma 1. Let {c$ : 8 £ cox} be an enumeration of &>((o). By
induction on a £ cox we construct 9~a = {F£ :£ £cox} and 2?a = {G£ : £ £

cox} such that the following conditions are satisfied.

(1) ^°-^andf0-^.
(2) For £ £ cox , F? and Gi are filters containing no finite sets.

(3) If a < p , then (ft, &P) extends (Fa, %a).

(4) Either ca or (co - ca) is in F£+x for £ £ cox and similarly for G£+1 .

(5) (5ra,2?a) is good.

We denote by Aae the set Ae defined for (f?a ,Wa). Note that if a < R

and e Ceo, then A* c Af. Suppose that ffa and 2?a have been defined for

a < y.

Case 1. y is a limit. Define Fy = \J{F£ : a < y} and G\ = (J{G* : a < y}

for all £ £ (ox. We have to show that (ffy, 2?y) is good. Let e C co. Note

that Aye = [ja€y A". Since Ag* is countable for a £ y, it follows that Aye is

countable and so (&~y ,2?y) is good.
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Case 2. y = a + 1. For every £ e cox we decide whether ca £ 7*7 or

(to - ca) £ 7*7 and define 7*7 = (F£ U {ca}) or 7*7 = (F° U {co - ca}) respec-

tively. Similarly for Gl. To simplify the notation let F$ = F? and G$ = Gi for

£ £ (DX and let c = ca. We have several cases to consider: cox = (J{7?, : / < 8}

where

B0 = {£ : c £ Fi and ceG{},

Bx = {£ : c £ F{ and (co - c) £ G^} ,
B2 = {£:(co-c)£ Ft and c £ G5} ,
7?3 = {£ : (co - c) £ Fi and (co-c)£ Gs} ,
B4 = {£:c£Fi, c^G^, and (co - c) g Gf},
7?5 = {£: (a> - c) £ Fi and c 0 C7{ and (co - c) & G{},
7?6 = {£ : c & Fi and (co - c) £ F$ and c £ G$} ,

Bt = {£:c#Fs and (co-c)^Fi,   (co - c) £ G4} ,
B% = {£ : c, (co - c) & F% and c, (co - c) £ G«j}.

In the first four cases we have nothing to do; we put 7*7 = Fi and Gl = G^

for all { £ \J{Bi : i < 3}. If £ £ B4, we put 7*7 = Fi and Gy = (G; U {c}).

If <f £ B5, we put 7*7 = 7*. and G^ = (G( U {co - c}). If £ £ B6, we put

7*7 = (Fi U {c}) and G£ = G{. If £ e T?7, we put 7*7 = (F( U {co - c})

and GJ = G$. For c; e Bg we extend 7^ and G<* such that c e 7*7 if

and only if c £ Gl; i.e., we shall find a function h : 7f8 -> {0, 1} and put

7*7 = (7^ U {ch^}) and Gy = (G{ U {c*«>}), where c° = c and cx = co - c.

For cj £ cox we consider sets 7s£ and 7sJ , where for / < 1

Tsj = {£ € 7?8: 3a £ F^ 3b eG{(anc' C q and (ft nc') nq = 0)}.

Claim. For every <5, /> e W| the intersection 7s£ n 7s^ is countable.

Proof. For £ £ E$ n Exp we have a* e 7*^ and b* £ G^, a\ £ F( and b% £ G{

as in the definition. Let a$ = ai n af and b^ = bf n bf . Then a«* € 7*^ and

b$ £ G^ . Let e = (cnc,j)U ((<o - c) n c^). Note that a{ C e and ft* C a> - e .

Therefore, E^nExpC A°. Since A™ is countable, we are done.

Now we define the function h : Tig —► {0, 1} by induction. Suppose we have

defined h(£) for all £ £ \J{E°p U Exp : p < 8}. For £ £ E° - \J{E°p uExp:p<8}

we put h(£) = 1 , and for £ £ E\ - (7s° u (j{E°p I) Exp : p < 8}) we put

h(£) = 0. For £ £ [J{£pU7^ : p < «,} define A(£) arbitrarily. Thus h is

everywhere defined and so are 7*7 and Gj for all c; e 7?g. Note that by simple

induction on J € cox , using the Claim, we have

(6)  E's nh~x(i) is countable for i < 1.

We have to show now that (y, 2?y) is good. Let (5 £ co\ . To show that

\AyCs\ < N] it is enough to show that \Ay3 n 7?,| < K| for ;' < 8 . This is easy for

/ < 8, so we only show that \AyCs n 7?8| < ^, . Note that by (6) it is enough to

show that

AyCsnh~x(i)c Tsjn/,-'(,■)

for i < 1. Recall that AyCi = {£ : 3a £ Fy 3b £ G\ a c cs, b n cd = 0}.

Let £ £ AyCi n /7~'(/). Then there are a £ Fj and b £ Gl as in the definition
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of AyCs. Moreover, a = a n c' and ft = ft n c' for some a £ F% and ft e G<*.

Hence aflc'c q and (ft n c') ncs = 0 and so £ £ Ej n/?"'(/).

_ Finally define F = ^Wl and F = 5?Wl . It follows from (2)-(4) that F and

2* are families of ultrafilters. Let c Ceo and let y 6 cox be such that c = cy.

Thus c has been considered at the stage y + 1. Since (y+1, 2?y+x) is good, it

follows that Ac+{ is countable. Moreover, (4) implies that Ac+l = A?' . Hence

A"1 is countable and (fF, 2?) is good. This completes the proof of Lemma 1.

2.2. Proof of Lemma 2. We use the method developed in [1] to construct Q. Fix

{ra : a £ o)X} to be an enumeration of the reals. Let [x$] = {a C co : a =* x^}

and lV^] = {ft C co : ft =* y$}, and let {(a%, b^) : £ £ cox} be an enumeration

of the set U{[xa] x [ya]: a £ cox} .

Fix an increasing and continuous sequence of elementary submodels {Nn -<

H(coi) : a £ cox} such that {ra : a £ cox}, {<a4, ftA : £ £ cox} £ A0, and

{Na ncox : a £ (Ox} is a closed unbounded subset of tox . Let C = {a £ cox :

a = Na n (ox} . Then C is also a club in cox . Note that for every real, r there

is y £ C such that r £ Ny. Let 8 £ cox and {ta : a £ 8} be any sequence

of finite subsets of Wi. Since it can be coded as a real, it follows that there is

y e C such that {ta : a £ 8} £ Ny.

Since (F, G) is not good in VR, there must be a p £ R and an R-name d

such that p Ih \Ad\ = Nj. By induction on a £ cox we define (pa, a0, nf £

R x cox x cox such that

(1) there are Co, cx £ C such that c0 < a0 < cx < ax ,

(2) if a < p , then ax < c < Po for some c £ C, and

(3) pa\\- l(aaouaafcd and(bnoubafnd = 0\

Suppose that (pa, c*o. a i ) have been defined for all a < P . Let c £ C

be such that c > sup{c*i : a £ P}. Since p Ih |/^| = Ki , there are P^ < p

and Po > c such that /?» Ih '(fly?0 - ^0 an(^ (fyso n ^ = 0)'- By repeating the

construction we can find pp < p^j and px > c > Po for some c £ C such that

(l)-(3) are satisfied for all a < P. This finishes the induction step. Now we

define Q to be a set of finite approximations to an antichain in {pn : a £ cox}:

the set of finite sets 5 that satisfy: if a / P in s, then

(aao nbpju (aPo nbao)^0   or   (aQ| n bPi) u (afix n ft,,,) / 0.

Q is ordered by reverse inclusion. Note that if a, P £ s for some s £<Q, then

pa and pp are incompatible. Therefore, if G is Q-generic, then {pn : a £ IJ G}

is an antichain in R.

Sublemma. Let k £ co, and let {/,» : a £ cox} be a sequence of disjoint k-

tuples ta = {ax, ... , ak} C cox such that ax < cx < ■■■ < c\_| < ak for some

cx, ... , ck-X £ C. Then there are a, P £ cox such that

(aa,nbfi,)\j(al,,nbnl)?0    fori<k.

Proof. Let 8 £ cox be such that for every sequence (nx , mx, ... , nk , mk)

of elements of wU{-l}, if there is an a £ cox such that «, e a„, and

w, £ ba, for i < k, then there is P < 8 such that «, e aB, and mt £

bB, for i < k, where we assume -1 e a to be always true. (We use -1

to simplify the notation.   Sometimes we will consider incomplete sequences.
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e.g.,  (ni,mi,... , nk-\ ,nk,mk), but we can always write it as a 2k -tuple

(«i, ... , nk_x, -l,nk, mk).)

Let y £ C be such that {tr : £ < 8} £ Ny and pick a £ cox such that

y < ax < cx < ••• < ck_x < of with cx,... , ck_x £ C. For x £ cox we

consider the following statement:

<&k(x):     For every (nx, mx, ... ,nk, mk) £2k (coll {-1}) such that

(1) Hi £ aai and w, e ftQ* for i < k - 1 and

nk £ ax and mk £ bx

there is x < 8 such that nj £ ax, and mi £ bv for i < k .

Note that <&k(ah) holds by the definition of 8 . Moreover, since all param-

eters of O/t are in NCk_, and of > ck_x , it follows that the set Wk = {x £

cox : Q>k(x)} is uncountable. We claim that there are £k, nk £ Wk such that

aik n -V ¥= 0 ■ Indeed, recall that [x^] x [y^] is countable for £ £ cox . There-

fore, if we had (IJ{a{ : £ £ Wk}) n (IJiA : £ £ Wk}) = 0, then Ae would
be uncountable, where e = \J{a^ : £ £ Wk}. Since (F, G) is good, this is

impossible.
Let zk £ a^k n b„k. By downward induction on 1 < /' < k we define formulas

<J),(x) together with z, £ co and £t and ??, in cox such that z, 6 ait n b„t and

0,-(a'), Q>k(£f» and <P,(w,) hold. Suppose that O,, z,, i;,, and n,, have been
already defined for I < i <k . Define 0/(x) by

0/(x):     Tbr every (nx, mx, ... , «/, m/) e2/(w u {-1}) such that

(1) nl £ aat and w, £ ba, for 1 < i < I and

ni £ ax and ra/ £ bx

there are r, a < 8 such that

(2) «, £ aT, and ra, £ bT, for 1 < i < I and

zj £ arJ for I < j < k , and

(3) «, £ aai and ra, 6 ftCT, for 1 < i < I and

zj £ bai for I <j <k.

We show that <D/(a/) holds. Let (nx,mx,... ,«/, mf £v (co \J{-1}) be

any sequence which satisfies condition (1) of the statement 0/(a'). Note that

(nx,... , mi, z/+x, -1) satisfies condition (1) of the statement 0/+((c;/+i).

Therefore, there are rx, ox < 8 (x < 8 if /= 1) as in <P/+i(cj/+i). Similarly

(«i, ... , ra/, -1, z/+1) satisfies condition (1) of Q>i+x(ni+x) ■ Let x2, o2 < 8

(a < 8 if /= 1) be as in the conclusion of 0/+1(*7/+1). Now define x = xx

and a = o2. It is easy to see that x and a satisfy conditions (2) and (3) of

the statement <P/(a/). Since all parameters of O/ are in NCl_, and a1 > q_i ,

it follows that the set Wl = {x £ co\ : 0/(x)} is uncountable. Therefore, there

are £i, n/ £ cox and z/ e co such that z/ £ a^ nbni and <!>i(£f and 0/(n/)
hold. This finishes the induction step.

Finally using the sequence (zx, -1) and the statement <&x(£x) we can obtain

Ti and ax < 8 and similarly (- 1, zf together with ^^^O gives x2 and o2.

Let a = T[ and P = o2. It follows from the definition of Q>x that a and p

satisfy the requirements of the sublemma, i.e., z, £ aa, n bB, for i = 1 < k .
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We are ready to prove that <Q> satisfies the c.c.c. Let {sa : a £ cox} be an

uncountable subset of Q. Thinning out if necessary we can assume that

(4) there is k £ co such that \sa\ = k and sa = {ax, ... , cxk},

(5) sa n sp = 0 for a / p , and

(6) if q, P £ cox , then aai n ba' = aBi nbBr for I, r < k and i, j < 1 .

Let ta = {a0, ... , Qq} . Note that {ta '■ a £ cox} satisfies the assumptions of the

sublemma. Therefore, there are a, p £ cox such that (aai nbpfu (aBi n bai) /

0 for / < k. This together with (6) implies that sa and sB are compatible

and hence Q is c.c.c.

To show that (F, G) is good in KQ we modify the proof of the fact that Q
is c.c.c. Suppose that (F, G) is not good in J70. Then there is a Q-name e

and a sequence {(sa, a) : a £ cox} such that sa Ih '(aa C e) and (ba n e = 0)'

and such that a > ft for a > p. As before we can assume that (4)-(6) are

satisfied. Recall that for every a £ cox there are {c} £ C : 1 < j < 2k + 1}

such that c2/+y_i < a' < c2/+j for I < k and j < 1, i.e., o0 and a[ are in

disjoint intervals with endpoints in C. For each / let h(l) 6 {0, 1} be such

that a^(/) and a are not in the same interval.

Define (k + l)-tuples ta = {a^(1), ... , akh(k), a}. Without loss of generality

we can assume that {ta : a £ cox} form a A-system and the root is empty.

Moreover, we can assume that the place of a in the sequence ta does not

depend on a, e.g., a is the last element of ta . Now {ta : a £ cox} satisfy the

assumptions of the sublemma; hence, there are a, p £ cox such that

(7) (aa n ft^) U (ap n ba) ^ 0 and

8    (aa,   nb8i ) u (a8,   nba,  ) ^ 0 for I < k .

Note that (8) and (6) imply that sa and sB are compatible. Let s < sa, Sp ;

then s Ih '(aa Ua$) Ce and (ba U bg) n e = 0'. This contradicts (7).

To finish the proof note that, since Q is a c.c.c. poset, we can find a condition

s £ Q which forces that the generic G is uncountable. Hence 5 forces that

{pa : a £ |J G} is an uncountable antichain in R. This completes the proof.

2.3. Proof of the corollary. This is very similar to the proof of Lemma 1. We

point out only the main differences. Note that we do not claim now that (&, 2?)

is good in the extension by Q. Let {(pa, a) : a £ cox} and an M-name d be

such that for every a there are y(a) < cox , an £ Fy(a), and bn £ Grta) satisfying

(1) y(a) < y(P) for a < P and

(2) pa £ R and pa Ih 'as C d and ba n d = 0'.

Let {Ma : a £ cox} be an increasing, continuous sequence of elementary

submodels of H(cof) such that {(aa, ba) : a £ cox} and {a : a £ cox} are in

A7o. Let C £ cox be a club in cox given by {Ma : a £ cox}. Define Q to be

the set of those finite subsets of {a : a £ cox} that are separated by C and that

satisfy if a ^ /? then (aa n bp) U (a-B n ba) ^ 0 . Order Q by reverse inclusion.

A suitable form of the sublemma implies that <Q> is c.c.c. If G is a Q-generic

set, then {pa : a £ IJ G} is an antichain in R. As before we can assume that

this is an uncountable antichain. This completes the proof.
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