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ON STRONGLY DISCRETE SUBSETS OF ow*

MARIUSZ RABUS

(Communicated by Franklin D. Tall)

ABSTRACT. We prove that it is consistent with Martin’s Axiom and —CH that
there is a strongly discrete subspace 4 C w* of cardinality X; such that the
closure of 4 is not homeomorphic with Bw,. We also prove that MA and
-CH imply that there is no convergent strongly discrete subset of w* .

1. INTRODUCTION

We consider closures of strongly discrete subsets of w*, the remainder of
Cech-Stone compactification of w. A set D C w* is strongly discrete if for
every p € D there is an open neighbourhood p € U, such that U, N U, = @
for p#gq.

It is well known that the closure of any countable, discrete subspace of w*
is homeomorphic with Sw. Moreover, the cardinality assumption is essential.
By a result of [2] there exists a discrete subspace D C w* of cardinality X,
which is convergent, i.e., there is p € w* such that every neighbourhood of p
contains all but countably many elements of D. The closure of such a D is not
homeomorphic with fw; .

However, it is consistent with Martin’s Axiom (MA) and, in fact, follows
from the Proper Forcing Axiom that the closure of every strongly discrete sub-
space of w* of cardinality R, is homeomorphic with Bw; (see [6, 5, 3]). In
this paper we show that this result does not follow from MA itself. To prove
this one might try to show the consistency of MA with ‘There exists a strongly
discrete, convergent subspace of w* of cardinality X,”. We prove below that
this is not possible because MA implies that there are no such subsets.

Throughout the paper we use Boolean-algebraic terminology. We consider
w* to be the space of nonprincipal ultrafilters on @ with the Stone topology.
In particular, D = {p, : @ € w,} is strongly discrete if there exists an almost
disjoint family {a, : @ € |} C P(w) such that a, € p, forevery a € w,. The
set-theoretical translation of the problem we consider is given by the following
theorem (see [4]): The closure of a strongly discrete subspace D = {p, : a € w,}
is homeomorphic with Bw, if for every E C w, there is ¢ C w such that
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a € E ifand only if ¢ € p,. We say that ¢ separates {p, : « € E} and
{pa:a€(w - E)}.

Most of our notation is standard. We say that F C 9(w) has the finite
intersection property if the intersection of any finitely many elements of F is
infinite. If F has the finite intersection property, then we write (F) to denote
the filter generated by F and the cofinite subsets of w. For a C w we write
(a) instead of ({a}).

Theorem 1 (MA+ ~CH). There is no convergent strongly discrete subspace of w*
of cardinality ¥, .
Proof. Suppose that 4 = {p, : @ € w;} is strongly discrete and converges to
p € w*. Let {a, : « € w;} be an almost disjoint family such that a, € p,
for every a € w,, and let w, = Ey U E; U E; be a partition of w; into
three uncountable sets. We define a forcing Q. A condition in Q is a triple
(S0, 81, 52) of finite partial functions such that dom(s;) C E; and ran(s;) C w
for all i and such that the intersection Sy N S; NS, is empty, where S; =
U{ae — si(€) : & € dom(s;)}. A condition ¢ = (fo, 1, t;) is an extension of
(S0, 81,8) if t;Cs; for i<3.

Note that for every i < 3 and a € E; the set D} = {(so,51,%) : @ €
dom(s;)} is dense in Q. Let G be a generic set with respect to {D. : i <
3and a € E;}. For i < 3 define

C;= U{aa —si(a): (s, 81, 52) € G and « € E;}.

Note that C; € p, for every o € E;. Since each E; is uncountable and A4
converges to p, we have Cy, C;, C; € p. Onthe otherhand CoNnCiNCy =2,
a contradiction.

To finish the proof it is enough to show that Q is c.c.c. Let {(s5, s7, 55) :
a € w,} be an uncountable subset of Q. By thinning out we can assume that
for every i < 3 the collection {dom(s?®):a € w;} forms a A-system with root
A; and 5% [p=sP 1, for a, f € w; . Let I, = (S§NS*, S§NSy, SeNSY).
Since 1, is a triple of finite subsets of w, we can assume that I, = Iz for
a, B € w;. Now we show that any two conditions are compatible. Let «,
B €ew;,andlet t = (t, t;, t;) be defined by #; = s¢ Usf for i < 3. Note that

TonTiNT; C(S§NSENSs)U(SEnsPns?).
Hence (f, 1, ;) € Q and it is a common extension of (s§, s, s5) and
(sg s s{’ , sf ). This proves that Q is c.c.c. O
2. THE MAIN RESULT

Let F ={F,:a€w} and & = {G, : @ € w,} be families of filters on w.
The following is the key property we will deal with.

Definition. We say that (¥ , %) is good if for every ¢ C w the set A, = {£ €
w;:c € F; and (w —c) € G¢} is countable.

If F, and G, have the finite intersection property, then we say that (¥ , &)
is good if the families of filters {(F,) : « € w;} and {(G,):a € w;} form a
good pair. In particular if 4 = {a,:a € w,} and B = {b,: a € w,} are such
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that 4 U B is an almost disjoint family in & (w), then (4, B) is good if for
every ¢ C w the set 4. = {{ € w1 a; C* c and by Nc =* @} is countable. Let
F ={F,:acw} and Z ={G, : a € w;}. We say that (¥ , Z) extends
(F,%) if F,CcF, and G, C G, for a € w;. The goal of this section is to
prove the following

Theorem 2. It is consistent with M A+ —~CH that there is a strongly discrete
subset of w* of cardinality X, whose closure is not homeomorphic with Bw, .

Proof. As pointed out in the introduction it is enough to construct a model of
MA with subsets & = {p,:a € w;} and ¥ = {¢, : @ € w;} of w* such that
F UZ is a strongly discrete subspace and there is no ¢ C w which separates
F and Z.

We start with a model V satisfying 29 = w; and 2“' = w; and define a
finite support iteration (P, : a € w,) of c.c.c. posets in order to get Martin’s
Axiom, i.e., by suitable bookkeeping we make sure that every potential c.c.c.
poset is considered at some intermediate stage. We iterate only posets of car-
dinality X;, thus intermediate models, V, = V™, also satisfy 2¢ = w,; and
29 = @, .

The idea of the proof is as follows. First, we construct 4 = {a; : { € w,}
and B = {b; : £ € w} such that AU B is an almost disjoint family and
(4, B) is good. Next we find a pair (F°, £°) of families of ultrafilters which
is good and extends (A, B). Then we proceed by induction. Along with the
iteration we define (¥ *, £*) to be a P,-name for a pair of families of filters
Fo = {pél ¢ € w} and T = {gg : ¢ € w;} such that for all o € w, the
following hold.

(1) If B <a,then (¥, %) extends (¥ P, ZF).

(2) (F,Z) is good.

(3) If a € w, is odd, then pg = (x¢) and g¢ = (y), where x; C* f for

all fep;~" and y;C* g forall ge g

(4) If o is even, then F°® and £° are families of ultrafilters.
Note that (¥ %2, &“?) is as required in V,,. Indeed, 4 U B witnesses that
F 9 yZ is a strongly discrete subspace and, since (¥ “2, £2) is good, no
¢ C w can separate it.

Now let us prove that the construction can be carried out. Using CH in the
ground model it is not difficult to construct 4 = {a; : { € w;} and B = {b; :
¢ € w;} such that 4 U B is an almost disjoint family and (4, B) is good. We
use the following lemma to find suitable #° and £°.

Lemma 1 (CH). Let & = (F; : ¢ € w)) and & = (G : & € w,) be families of

filters such that (¥, &) is good. Then there is an extension (F.%) of (7,9)
such that (¥ ,%) is good and F and % are families of ultrafilters.

Suppose now that P, and (¥*, &) have been defined for all o < y such
that (1)-(4) hold. We have to define P, and (#7, &7).

Assume first that y = o + 1 is a successor. Working in ¥, we define a c.c.c.
poset Q and put P, = P, * Q. Then in V¥ we define (#7, £7) and show
that the inductive conditions are satisfied.
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Case 1. « is even. We have to make sure that condition (3) is satisfied
in V,, i.e., we have to diagonalize the ultrafilters appearing in < and £°.
First let us define a well-known forcing and list some of its basic properties.
Let U be a set with the finite intersection property. Define Q(U) = {(s, K) :
sCw, KCF, ands, K finite} and order it by (s, K) < (r, L) if r Cs,
LCK,and s—rC (L. Q(U) is a standard poset for diagonalizing U , i.e.,
if G(U) is Q(U)-generic and xy = J{s : 3K (s, K) € G(U)}, then xy C* f
for every f € F. Recall the following facts about Q(U).

e Q(U) has the c.c.c.; moreover, if W is another set with the finite
intersection property, then Q(U) x Q(W) has the c.c.c. In this case
we denote by xy and yw generic reals given by Q(U) and Q(W)
respectively.

o If e C w issuch that U U {e} has the finite intersection property, then
the set xy Ne is infinite.

o If (R;:¢ € wy) is a finite support iteration such that for every & € w,
Rgy1 = Re x S¢, where S¢ is (a name for) Q(Uz) x Q(W;) for some
Ue, W, then R, isc.c.c. Moreover, forall a < w; R, is g-centered,;
in particular, it remains c.c.c. in every c.c.c. extension of the universe.

We work in V,. Define Q = R, , where (R: : & € w;) is as above with
Us = pg and W; = g - Note that Q is c.c.c. and has size R; as required.
To simplify the notation let x; = Xpy and y; = Vo for & € w,. Working
in ¥, = V2 we define p} = (x¢) and g} = (y¢) for ¢ € w;. We claim that
(F7,27) is good in V, . This follows from the following results.

Lemma 2 (CH). Let F = {x; : { € w1} and G = {y: : £ € w\} be such that
F UG is an almost disjoint family and (F , G) is good. Suppose that R is a
c.c.c. forcing such that \Wg‘(F, G) is not good’. Then there is a c.c.c. forcing
Q such that in VQ R is not c.c.c. and (F, G) is good.

Corollary (CH). Let & = {F; : { € w,} and & = {G; : £ € w,} be families
of filters such that (¥ ,%) is good. Suppose that R is a forcing such that
kg “(F, &) is not good’. Then there is a c.c.c. forcing Q which adds an
uncountable antichain to R.

First, note that, since R;s is c.c.c. indestructible, it follows by the corollary
that (¥ *, £*) isgood in V® for é € w,, in particular, in ¥, . Nowlet e C w
be an element of ¥, . Since Q = R,,, is a finite support iteration of c.c.c. posets,
e is in some intermediate model VX for some J € w,. Now we claim that
(A} — 8) C A2, where A2 is defined in V,. If £ € A} —J, then x; C* e and
yeNe =*@. If there was no c € pg such that ¢ C e, then pg U{w — e} would
have the finite intersection property and the set x; N (w —e) would be infinite.
Similarly we prove that there is d € qg such that d Ne = @. Hence & € A%

and it follows that A is countable. This proves that (¥7, £7) is good.

Case 2. « is odd. In this case we take care of all potential c.c.c. forcings.
Suppose that R is a P,-name for a c.c.c. poset given by some bookkeeping
function. If kg (%, Z°)is good’ , then we put Q = R. Assume that
Fr (F,Z) is good’ . Since a is odd the elements of .#* and Z* are

a—1

of the form pg = (x;) and g¢¢ = (y;), where x; C* S forall f € p;
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and y; C* g forall g € q?" . Therefore, (#°, Z%) is good if and only if
({xs: £ €}, {ye : &£ € w}) is good. Hence by Lemma 1 there is a c.c.c. forc-
ing Q such that, in VQ, R is not c.c.c. and (¥ *, £°) is good. We force with
Q in this case. Finally, working in V,, we define (¥, &"). Since (¥, £°)
is good, by Lemma 1 there is a good pair (¥, £?) that extends (¥ 2, £°)
and such that ¥ and &7 are families of ultrafilters.

Assume now that y is a limit. We have to define in ¥} a good pair (¥, &7)
which extends all previous pairs. Let F; = U{Fé’ ta €y} and Gr = J{GF:
a€y},andput F ={F::{ew} and ¥ ={G;:{ € w}. For d C w let
Ay be the set corresponding to (¥ , ¥). We will show that (¥ , &) is good in
V,. Note that this is enough since again by Lemma 1 we can extend (¥ , %)
to a good pair (¥, Z7?) such that #? and £7 consist of ultrafilters.

Case 1. cf(y) = w;. Let d C w. Then there is an even a € y such that
d €V,. Since F* and &* consist of ultrafilters, we have A3 = 4, and by
the induction hypothesis 4§ is countable.

Case 2. cf(y) = w. Let d C w and suppose that 4, is uncountable. Let
{an : n € w} be a cofinal sequence in y. Let A% = {{ € w, : Ja € Fg’" ELRS
Gy (aCdandbnd = 2)}. Note that 4; = {4]:n € w}. Let m € w be
such that A7 is uncountable, and for each { € A7 let a; € F{""" and b; € Gg'"
be such that a; C d and b; Nd = @. Note that E = {(ag, by) : £ € AT} C
V¥Pem . Recall now the following well-known result.

Lemma 3. Let (R, : n < w) be a finite support iteration of c.c.c. posets. Suppose
that in VR» we have an uncountable set E such that E C V. Then there is a
k € w and an uncountable set F € V® such that F CE .

It follows that there is kK > m and an uncountable set F € VP« such that
F CE. Nowlet ¢ = U{c:3d(c,d) € F}. Obviously ¢ € V"« . Since
F is uncountable, it follows that A% is uncountable, a contradiction. This
completes the proof of Theorem 2.

2.1. Proof of Lemma 1. Let {cs : 6 € w;} be an enumeration of #(w). By
induction on o € w; we construct ¢ = {Fg’ €€ w} and T° = {Gg fe
w;} such that the following conditions are satisfied.

(1) F°=F and g°=%. A

(2) For { € wy, Fg and Gf are filters containing no finite sets.

(3) If a < B, then (F#, ZF) extends (F*, Z°).

(4) Either ¢, or (w—c¢,) isin Fg‘“ for £ € w; and similarly for Gg“ .

(5) (F2,Z°) is good.

We denote by A2 the set 4, defined for (¥, £°). Note that if o <
and e C w, then A2 C Af . Suppose that ¥ and £* have been defined for
a<y.

Case 1. y is a limit. Define Fg =U{F¢a <7} and Gg =U{Gf ra <y}
for all £ € w;. We have to show that (¥7,Z7) is good. Let e C w. Note
that A4} = {J,., 42. Since A4Z is countable for a € y, it follows that A7 is
countable and so (¥, £7) is good.
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Case 2. y = a+ 1. For every & € w; we decide whether ¢, € Fg or
(w—cq) € F/ and define F] = (Fg U{c.}) or F] = (F2 U{w —c,}) respec-
tively. Similarly for Gg. To simplify the notation let F; = F¢ and Gy = Gg for
¢ € w, and let ¢ = ¢,. We have several cases to consider: w; = |J{B;:i < 8}
where

By={¢:ce€ F;and c € G¢},

By ={{:c€eF;and (w—c)€ G},

By ={¢:(w—c) € Frand c € G},
By={{:(w—-c)€F;and (w—-c) € G},
{:ceF, c¢Gy, and (w - ) € G},
{¢:(w~c) € Fand c € G; and (w - ¢) € G},

Bs={,:c¢ F;and (w—c) € F; and ¢ € G;},

Bi={l:c¢Fand (w—-c)¢gF:, (w—-c)€ G},

By={:c,(w—-c)¢Fandc, (w—c)¢&Gs}.

In the first four cases we have nothing to do; we put Fg = F; and Gg = G
forall £ € U{B;:i<3}. If £€ By, weput F/ = F; and G} = (Gg U {c}).
If ¢ € Bs, we put Fg = F; and Gg = (G:U{w -c}). If & € B, we put
F = (F;u{c}) and G} = G¢. If { € By, we put F] = (F; U{w —c})
and Gg = Gy. For £ € By we extend F; and G; such that ¢ € Fg if
and only if ¢ € Gg; i.e., we shall find a function # : Bg — {0, 1} and put
F] = (F;U{c"@}) and G} = (G: U {c"®}), where ¢® = ¢ and ¢' = w ~c.
For é € w; we consider sets Eg and E(} , where for / <1

El={¢€Bg:3ac F;3be Gy (anc' Ccsand (bNc')Nes = @)}

Claim. For every &, p € w, the intersection EJ N E) is countable.

Proof. For ¢ € E)JNE, we have af € F; and b} € G, af € F; and b{ € G;
as in the definition. Let a; = @ Naf and b; = b Nb?. Then a; € F; and
bs € Gy. Let e =(cNecs)U((w—c)Ncy). Note that a; Ce and by Cw—e.
Therefore, EJ N E} C A . Since A7 is countable, we are done.

Now we define the function 4 : Bg — {0, 1} by induction. Suppose we have
defined A(&) forall & € J{EJUE,:p<d}. For € E)—U{EJUE}: p <6}
we put h(¢) = 1, and for & € Ej — (EJ UU{EJUE) : p < d}) we put
h(&)=0. For £ ¢ U{EB UE,‘, 1 p < wy} define h(&) arbitrarily. Thus £ is
everywhere defined and so are Fg and Gg for all ¢ € Bg. Note that by simple
induction on ¢ € w,, using the Claim, we have

(6) EjNnh~!(i) is countable for i < 1.
We have to show now that (#7,%7) is good. Let 6 € w,. To show that
|AL| < R, it is enough to show that |AZ, N B;| < X, for i < 8. This is easy for
i < 8, so we only show that |47, N Bs| < X;. Note that by (6) it is enough to
show that

Al nh'(i) CEjnhT! (i)
for i < 1. Recall that 47, = {¢:3a € F/ 3beG;acc, bne; = @}.

Let & € A% Nh~'(i). Then there are a € F/ and b € G} as in the definition
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of A!,. Moreover, a=anc’ and b=bnc' forsome a € F; and b € G;.
Hence anc' Ccs and (bNc)Nes; =2 andso &€ EXnh~1(i).

Finally define ¥ = and & = £ . It follows from (2)-(4) that .#¥ and
Z are families of ultrafilters. Let ¢ C w and let y € w; be such that ¢ = Cy .
Thus ¢ has been considered at the stage y + 1. Since (¥ 7!, £7*1) is good, it
follows that A!*' is countable. Moreover, (4) implies that 4! = 4%' . Hence
A?' is countable and (¥ , &) is good. This completes the proof of Lemma 1.

2.2. Proof of Lemma 2. We use the method developed in [1] to construct Q. Fix
{ra : @ € w,} to be an enumeration of the reals. Let [x;] = {a C w:a =" x;}
and [yl ={bCw:b="y:},andlet {(a:, bs) : £ € w;} be an enumeration
of the set U{[xo] X [Va] : @ € w}.

Fix an increasing and continuous sequence of elementary submodels {N, <
H(ws3) : a € w1} such that {r, : a € w1}, {(a;, b:) : & € w1} € Ny, and
{N,Nw; : a € w} is a closed unbounded subset of w;. Let C = {a € w, :
a=N,Nw;}. Then C is also a club in w, . Note that for every real, r there
is y € C such that r € N,. Let 6 € w, and {t, : @ € §} be any sequence
of finite subsets of w;. Since it can be coded as a real, it follows that there is
y € C such that {t,:a€d} e N,.

Since (F, G) is not good in V'R there must be a p € R and an R-name d
such that p I+ |44 = ®,. By induction on a € w; we define (p,, ag, @) €
R x w; x w; such that

(1) there are ¢y, ¢; € C such that ¢g < ap < c¢) < ay,
(2) if a< B, then a; <c < By for some c € C, and
(3) PalF “(@ayUas,) Cd and (by,Uby,)Nd =2,

Suppose that (p,, ag, a;) have been defined for all o < . Let ¢ € C
be such that ¢ > sup{a; : « € B}. Since p IF |44] = R,, there are pg <p
and By > ¢ such that pg IF “(ag, C d) and (bg, Nd = @)’. By repeating the
construction we can find pg < pg and B, > c > By for some ¢ € C such that
(1)-(3) are satisfied for all a < #. This finishes the induction step. Now we

define Q to be a set of finite approximations to an antichain in {p, :a € w,}:
the set of finite sets s that satisfy: if a« # f in s, then

(@ag Nbg,) U (ag, Nby,) # @ or (a,, Nbg)U(ag Nb,,) # 2.

Q is ordered by reverse inclusion. Note that if a, f € s for some s € Q, then
Po and pg are incompatible. Therefore, if G is Q-generic, then {p,:a € |JG}
is an antichain in R.

Sublemma. Let k € w, and let {t, : « € w,} be a sequence of disjoint k-

tuples t, = {a', ... ,a*} C w, such that o' <c) < --- < cx_; <ok for some

Cly... ,Ck—y € C. Then there are o, B € w, such that
(aa,ﬂbﬁ,)u(aﬂ,ﬂb,,,);ée for i<k.

Proof. Let d € w; be such that for every sequence (n;, m;, ..., n;, my)
of elements of w U {—1}, if there is an a € w;, such that n; € a4, and
m; € b, for i < k, then there is f < & such that n; € a5 and m; ¢
bg: for i < k, where we assume —1 € a to be always true. (We use —1
to simplify the notation. Sometimes we will consider incomplete sequences,
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e.g., (m,my,...,n_y, N, my), but we can always write it as a 2k-tuple
(n,, vee s iy —1, ny, mk))

Let y € C be such that {#; : { < 6} € N, and pick a € w; such that
y<a' <e¢ < <y <ok with ¢,... ,c_, € C. For x € w, we

consider the following statement:

@ (x): Forevery (ny, my, ..., ng, mg) €* (wU{-1}) such that
(1) nj€ea, and m;€ b, for i<k—-1 and
ni € ay and my € by
there is T <0 such that n; € a,, and m; € b, for i <k.

Note that ®;(a*) holds by the definition of 6. Moreover, since all param-
eters of @, are in N,_, and o* > ¢;_;, it follows that the set W, = {x €
w; : Dr(x)} is uncountable. We claim that there are &, n, € W such that
ag, N by, # @. Indeed, recall that [x¢] x [yg] is countable for ¢ € w;. There-
fore, if we had (U{a; : & € Wi}) N (U{b: : & € Wi}) = @, then 4, would
be uncountable, where e = (J{a; : £ € Wi}. Since (F, G) is good, this is
impossible.

Let z; € ag, N by, . By downward induction on 1 < i < k we define formulas
®;(x) together with z; € w and &; and #; in w; such that z; € a;, Nb,, and
®;(af), Dr(&), and D;(n;) hold. Suppose that @;, z;, &, and 7;, have been
already defined for / < i < k. Define ®;(x) by

®;(x):  Forevery (nj,my,...,n,m) €(wuU{-1}) such that

(1) niea, and m; e b, for 1 <i<l and

n; € a, and m; € by
there are ©, 0 < such that

(2) njea, and m; € b, for 1 <i <l and
zj€ay for l < j<k,and

(3) ni€ea, and m; € b, for 1 <i <l and
Zijaj fOI’[(jSk.

We show that ®;(a/) holds. Let (n;, my, ..., n;, m) € (wu{-1}) be
any sequence which satisfies condition (1) of the statement ®;(a'). Note that
(ny,...,my, z;,, —1) satisfies condition (1) of the statement ®; (&, ).
Therefore, there are 7,,0) <0 (1< d if [ =1)asin @, (&,,). Similarly
(ny,...,my, -1, z,,) satisfies condition (1) of @, (). Let 75,02, <
(6 < d if [ = 1) be as in the conclusion of ®,,(7;,,). Now define 7 = 1,
and o = g,. It is easy to see that 7 and o satisfy conditions (2) and (3) of
the statement ®;(c/). Since all parameters of ®; are in N,,_, and a >ey,
it follows that the set W, = {x € w, : ®;(x)} is uncountable. Therefore, there
are {;, m € w; and z; € w such that z; € a;, N b, and ®;(¢;) and Dy(n)
hold. This finishes the induction step.

Finally using the sequence (z,, —1) and the statement ®,(&,) we can obtain
7, and o; < and similarly (-1, z,) together with ®,(7;) gives 1, and a;.
Let « = 7; and B = o,. It follows from the definition of ®; that a and S
satisfy the requirements of the sublemma, i.e., z; € a, Nbg for i=1<k.
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We are ready to prove that Q satisfies the c.c.c. Let {s, : @ € w;} be an
uncountable subset of Q. Thinning out if necessary we can assume that

(4) there is k € w such that |s,| =k and s, = {a!, ..., "},
(5) saNsg =2 for a# f,and
(6) if a, B € w;, then a(,4ﬂb,,5=aﬂ/ﬂb,;; for [,r<k and i, j<1.

Let t, ={a}, ..., a’g} . Note that {t, : « € w,} satisfies the assumptions of the
sublemma. Therefore, there are o, f € w; such that (aa{) n b/fé) U (aﬂé N b{yg ) #
@ for | < k. This together with (6) implies that s, and sz are compatible
and hence Q is c.c.c.

To show that (F, G) is good in ¥? we modify the proof of the fact that Q
is c.c.c. Suppose that (F, G) is not good in V@, Then there is a Q-name e
and a sequence {(S,, @) :a € w;} such that s, I ‘(a; Ce)and (bzNe = @)
and such that @ > B for a > B. As before we can assume that (4)—(6) are
satisfied. Recall that for every o € w; there are {c; € C : 1 < j < 2k + 1}
such that ¢,y < o) < cy,; for [ <k and j<1,1ie., o) and o} are in
disjoint intervals with endpoints in C. For each / let h(/) € {0, 1} be such

that aﬁl(,) and a are not in the same interval.

Define (k + 1)-tuples Z, = {a, .- , @, > a}. Without loss of generality
we can assume that {z, : @ € w;} form a A-system and the root is empty.
Moreover, we can assume that the place of a in the sequence f, does not
depend on «, e.g., a is the last element of #,. Now {7, :a € w;} satisfy the
assumptions of the sublemma; hence, there are «, f € w; such that

(7) (aanNbg)U(agnbs) # @ and
(8) (aaim N bﬂ,’,(,)) U (aﬂ;'m N b"i( y#£ @ for [ <k.

h
Note that (8) and (6) imply that 5, and sg are compatible. Let s <, , sg;
then s IF ‘(asUag) C e and (by Ubg) Ne = @’. This contradicts (7).
To finish the proof note that, since Q isa c.c.c. poset, we can find a condition
s € Q which forces that the generic G is uncountable. Hence s forces that
{po : @ € UG} is an uncountable antichain in R. This completes the proof.

2.3. Proof of the corollary. This is very similar to the proof of Lemma 1. We
point out only the main differences. Note that we do not claim now that (¥ , &)
is good in the extension by Q. Let {{p,, a): a € w;} and an R-name d be
such that for every o thereare y(a) < w;, as € Fy,),and b; € G,(,) satisfying

(1) y(a) <y(B) for a < B and
(2) p,€R and p, F‘a; Cdand byNd =2°.

Let {M, : a« € w,} be an increasing, continuous sequence of elementary
submodels of H(ws3) such that {(a;, bs) : @ € w;} and {a: o € w;} are in
M. Let C € w; be aclubin w; given by {M, :a € w;}. Define Q to be
the set of those finite subsets of {@:«a € w,} that are separated by C and that
satisfy if a # B then (aaNbj)U(az Nbs) # @. Order Q by reverse inclusion.
A suitable form of the sublemma implies that Q is c.c.c. If G is a Q-generic
set, then {p, : @ € |JG} is an antichain in R. As before we can assume that
this is an uncountable antichain. This completes the proof.
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