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A GYSIN SEQUENCE FOR SEMIFREE ACTIONS OF S3

MARTIN SARALEGI

(Communicated by Frederick R. Cohen)

Abstract. In this work we shall consider smooth semifree (i.e., free outside the

fixed point set) actions of S3 on a manifold M . We exhibit a Gysin sequence

relating the cohomology of M with the intersection cohomology of the orbit

space M/S3 . This generalizes the usual Gysin sequence associated with a free

action of S3 .

Given a free action of the group of unit quaternions S3 on a differentiable

manifold M, there exists a long exact sequence relating the deRham cohomol-

ogy of the manifold M with the deRham cohomology of the orbit space M/S3;

this is the Gysin sequence (see, e.g., [1, p. 179]):

(1)        -yW(M) t Hi-3(M/S3)A^]Hi+x(M/S3)^Hi+x(M)^---

where / is the integration along the fibers of the natural projection n: M ->

M/S3 and [e] e H4(M/S3) is the Euler class of 0. This paper is devoted
to generalizing this relationship to the case where <P is allowed to have fixed

points (semifree action).

In this context the orbit space M/S3 is no longer a manifold but a stratified

pseudomanifold, a notion introduced by Goresky and MacPherson in [7]. The

Gysin sequence we get in this case is

(2)      -► Hl(M) t IHi-3(M/S3) A-^] 777i±i(M/S3) £ Hi+X (M) - • • ■

where r and r + A are two perversities and [e] e IHMMIS3) is the Euler

class of <I>. The exact statement is given in Theorem 4.7. A similar sequence

has been already found for circle actions [8]. Finally, we show a relationship

between the existence of a section of n and the vanishing of the Euler class

[e]. This result generalizes the situation of the free case.

The work is organized as follows. In § 1 we introduce simple stratified spaces,

which are singular spaces including the orbit space M/S3 as a special case.

Section 2 is devoted to recalling the notion of intersection cohomology with the

perversity introduced by MacPherson in [9]. The main tool we use to construct
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the Gysin sequence is the complex of invariant forms, which is studied in §3.

Finally, we construct the Gysin sequence (2) in §4.

In this paper, a manifold is supposed to be without boundary and smooth

(of class C°°). From now on, we fix a manifold M with dimension m and

O: S3 x M —y M a smooth semifree action, that is, O is free out of the set

A7S   of fixed points (which will be different from M).

1. Simple stratified sets

We prove that the action <1> induces on M and A7/S3 a particular structure

of stratified set.

1.1. Let E be a stratified set [10]; we shall say that E is simple if there exists

a stratum 7? with E = R (such 7? is said to be regular) and that any other

stratum S is closed (S is said to be singular). The second condition implies

that the singular strata are disjoint. The dimension of E is, by definition,

dim R. We shall write 5? to represent the family of singular strata.

1.2. We know (cf. [10]) that for each stratum S e 5? there exist a neigh-

borhood Ts of S, a compact manifold Ls, and a fiber bundle rs: Ts —> S

satisfying:

(a) the fiber of T5 is the cone cLs = Ls x [0, 1[/LS x {0};

(b) the restriction map rS\s is the identity;
(c) the restriction is'. (Ts - S) —> S is a smooth fiber bundle with fiber

L$x]0, 1[, whose structural group is Diff(Ls), the group of diffeomor-

phisms of Ls; and

(d) TsnTs, = 0 if S ± S'.

The family {Ts/S e S?} is said to be a family of tubes. Notice that, according

to (c), there exists a smooth map Xs: (Ts-S) ->]0, 1[ such that the restriction

zs:A.sl(]0,e[)-*S,foT ee[0, 1], is a fiber bundle with fiber Lsx]0,e[. We

shall write Ds = Aj'QO, l/2[); in fact, Ds is the half of Ts .

1.3. The manifold M inherits from the action1   O a natural structure of

stratified set where the singular strata are the connected components of Ms

and the regular stratum R is M - Ms . This stratified set is simple because

the open set M - Ms   is dense.

Since each singular stratum S of M is an invariant submanifold of M, we

construct a tubular neighborhood (Ts, rs, S, Sls) satisfying:

(i) T$ is an open neighborhood of S;

(ii) T5: Ts —y S is a smooth fiber bundle with fiber the open disk Dls+X and

0(ls + 1) as a structural group;

(iii) the restriction of ts to S is the identity;

(iv) Ts is equivariant, that is, rs(g-y) = g ■ rs(y);

(v) there exists an orthogonal action T5: S3 x S^ -» Sls and an atlas sfs =

{(U, tp)} such that tp: t^'([7) -> U x Dls+X is equivariant, that is, <p(Q>(g, x))

= (rs(x),[<^(g,d),r]) for each g e S3 and x = cp~x(TS(x) ,[6, r]) e

tgl(U). Here we have identified 7>+l with the cone cSls = S's x [0, l[/S/s x

{0} and written [9, r] an element of cSls .

1 For the notions related with actions we refer to [3].
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Notice that the action O5 is free and therefore the codimension of S is a

multiple of 4. Consider, for each singular stratum S, a tubular neighborhood

Ts verifying Ts D TS' = 0 if S ^ S'. Thus, the family {Ts} is a family of
tubes.

Let n: M -> M/S3 denote the canonical projection. The orbit space M/S3

inherits naturally from M a structure of stratified set, the strata are n(R) -

n(M - A/s ), the regular stratum, with dimension m - 3, and {n(S)/S e S*},

the singular strata. The local description given by (v) shows that M/S3 is a

simple stratified set.

For each S e 5? the image n(Ts) is a neighborhood of n(S). The map

ps'. n(Ts) -y n(S) given by ps(n(x)) = n(r$(x)) is well defined. It is easy

to show that (n(rs), ps, n(S),Sls/S3) verify 1.2(a)-(d). Then the family

{n(Ts)/S e<¥} is a family of tubes.

1.4.   Consider the following commutative diagram:

Ds-S    —^->    S

•1 I-
n(Ds - S) -^ n(S)

Since the restriction of 7i to the fibers of ts is a submersion ((S/sx]0, l/2[) h^

(SVS3x]0, l/2[)), we get the relation ^,{Ker(T5)*} = Ker(p5),. This will be
used in 3.3.

2. Intersection cohomology

We recall the notion of intersection cohomology [4] using the notion of per-

versity introduced by MacPherson in [9].

2.1. Cartan's filtration. Let k: TV —> C be a smooth submersion between two

manifolds TV and C. For each differential form co ̂  0 on TV, we define the

perverse degree of co, written ||<y||c , as the smallest integer k verifying:

If £n, ... , & are vectorfields on N tangents to the fibers of k ,

then iio •i(k=0.

Here, if denotes the interior product by ^ . We shall write ||0||c = -co . For

each k > 0 we put FkClN = {co e Q*(N)/\\co\\c < k and \\dco\\c < k}. This
is the Cartan's filtration of k [4]. Notice that, for a, ji e Q*(N), we get the
relations

(3)        ||a + plc<max(|H|c,||plc)    and    \\a A B\\c < \\a\\c + \\B\\C .

2.2. Let E be a simple stratified set. A perversity is a map q: S? -y Z (see

[9]). A differential form co on R is a q-intersection differentialfiorm if for each

S e 5? the restriction co\ds belongs to F^Syilps. We shall denote by il^(E)

the complex of ^-intersection differential forms of E. Remark: For the case

SP = 0, the complex Q£(E) is exactly the deRham complex £l*(E) of E.

The cohomology of the complex Ci^(E) is the intersection cohomology of E,

written IH±(E). This denomination is justified by 2.5.

Locally, the stratified set E looks like Rk x cLs, where Ls is a compact

manifold. Here, we have the following computational result:
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Proposition 2.3. For any perversity q we obtain

ih^xcls)^{h'{Ls) if;-~q(S):
qK S>      10 ifii>q(S).

Proof. Since the maps pr:Rk x cLs -* Rk~x x cLs and J: Rk~x x cLs -»

Rk x cLs defined by pr(xi, ... , xk , [y, r]) - (xi, ... , xk , [y, r]) and

J(x2, ... ,xk, \y,r]) = (0,x2,... ,xk, [y,r]) verify \\pr*co\\s < \\co\\s and
\\J*tj\\s< Ms for each coeQ.*(Rk-x xLsx]0, 1[) and neQ*(Rk xLsx]0, 1[),
the induced operators

pr*: Cil(Rk~x x cLs) - fli(R* x cLs),

J*:Ci±(Rk x cLs) -» ^(R*-1 x cL5)

are well defined. Notice that the composition J*pr* is the identity.

Consider the homotopy operator

h: Q*(Rk x Lsx]0, 1[) -* ft—•(R* x Lsx]0, 1[)

given by A(cd = a + dxi Ajff) = J~ 0 Adxx , where a, /? e Q*(R* x L5x]0, 1[)

do not involve tixi . It verifies

(4) dhco + hdco = co - pr*J*co.

Now, the relation ||/zw||s < \\co\\s implies that h is a homotopy between

pr*J* and the identity on Qi(R* x cLs). We have proved IH±(Rk x cLs) =

IH±(cLs). Moreover, by the equalities ty(cLs) = Q'(L5x]0, 1[), if i < q(S),

c£{S)(cLs) n </_,(0) = r2^»(Lsx]0, 1[) n flM(O), and by previous calculation

we get 777|(R* x cLs) = Hl(Ls) for i < q(S).

It remains to prove that, given a cycle co e Q.UcLs) with i > q(S), there

exists n e Q!-~x(cLs) with dn — co. Write co = a + dr A /J , where a, /? do

not involve dr (r variable of ]0, 1[); observe that a = fi = 0 on Lsx]0, j[.

Then, since co = dj0~/JAdr, it suffices to take n = J0~ B /\dr.   D

The intersection cohomology satisfies the Mayer-Vietoris property as it is

stated in [1, p. 94].

Proposition 2.4. Given an open covering %f = {U} of E, there exists a subordi-

nated partition of the unity {fiv} verifying co e fl|(CT) => fvco e ii^(E).

Proof. A controlled map f:E^R is defined to be a continuous map, differen-

tiable on each stratum, such that the restriction to the fibers of each Ts: Ds —> S

is a constant map [11]. Notice that we have the equality max(||/||s, ||rf/"||s) =

0. Then the result follows from the fact that %f possesses a subordinated

partition of unity made up of controlled functions [11, p. 8].   □

Two perversities p and q are dual if p(S) + q(S) = dim Ls - 1 for each

S eS?. For example, the zero perversity 0, defined by 0(5) = 0, and the top

perversity 1, defined by 7(5) = dim Ls - 1 , are dual. The relationship between

the intersection homology IHl(E) of [6] and the intersection cohomology is

given by
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Proposition 2.5.  IH1(E) = IH?(E).

Proof. Consider the first case E = Rk x cLs as in 2.3. Following [6, 9] we get

,v i;     I 0 if i> dimLs-p(S),

which is isomorphic to IHHE) (see 2.3).

This shows that the intersection cohomology and the intersection homology

are locally isomorphic. The passage from the local case to the global case cannot

be made as in [7] because the axiomatic presentation of the intersection homol-

ogy has not yet been extended to the new perversities, but we can proceed as in

[2] by showing that the usual integration of differential forms over simplices in-

duces a morphism between IH^(E) and Hom(777f(7s), R); such a morphism

turns out to be an isomorphism because of Mayer-Vietoris and previous local

calculation. Since the proof is similar to that of [2], we leave this work to the

reader.   □

The following result has also been proved in [9].

Corollary 2.6. Suppose that each link Ls is connected (that is, E is normal).

Then IH$(E)* H*(E).

Proof. It suffices to consider the isomorphism IH[(E) = 77,(E) proved in

[9].   □

Corollary 2.7. 7/ 7s is a manifold then IH±(E) = 77*(7s), for each perversity

0<<7<7.

Proof. Since E is normal, Corollary 2.6 reduces the problem to prove that the

inclusion Qk(E) '-* QUE) induces an isomorphism in cohomology. Applying

2.4 and 2.3 and taking into account the inequalities 0 < q(S) < dimLs - 1

we transform the problem to showing H'(LS) = 0 for 0 < / < q(S). But this

is exactly the same as showing that Ls is a cohomology sphere, which follows

from the fact that M is a manifold.   □

3. Invariant forms

A good simplification in the construction of the Gysin sequence is the use of

invariant forms.

3.1. The fundamental vectorfields Xx, X2, A^ of O are the vectorfields of M

defined by Xt(x) = TeQ>x(lj), i — 1, 2, 3 , where {/,, l2, h} is a basis of the
Lie algebra of S3. These vectorfields can be chosen to verify [Xx, X2] = Xt, ,

[X2, Xt,] = Xx , and [Xt, , Xx] = X2. The zero-set for each of them is exactly
Ms\

It is well known that the subcomplex of invariant forms

IQ*(M) = {coe Q*(M)/g*co = co for each g e S3}

= {coea*(M)/LXico = 0, i= 1,2,3}

computes the cohomology of M (see, e.g., [5]). We prove now a similar result

for

in%(M) = {coe n^(M)/LXico = 0,  i=l,2,3}.
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Proposition 3.2. For each perversity 0 < q < 1 we have H*(IQ^(M)) = H*(M).

Proof. We first apply 2.4 (with ^ made up of invariant sets and {fu} to be

invariant controlled maps) and reduce the problem to M = Rk x cSls. Here,

the action of S3 is given by

(5) (g, (xi,..., xk, [y, /•])) >-*{xi,...,xk, [^(g, y), r]).

Consider R* x cSls as the product K x (M^1 x cSls). Notice that the funda-

mental vectorfields of R^ x cSls (resp. Rk~x x cSls) are

Xi = (0,...,0,Yi,0)    (resp. Z, = (0, ... , 0 , 7,, 0))
x-v-' »-v-'

k k-X

where 7, are the fundamental vectorfields of S'5, i = 1, 2, 3 . Write pr, J ,

and h as the operators given by 2.3 for this decomposition. The equalities

pr*Xi = Zi, J*Zj = Xi, and ix,h = hix, show that these operators are

equivariant. Proceeding as in 2.3, we first reduce the problem to the case
M — Rk~x x cSls and finally to the case M = cS's. Again, the operators

used in 2.3 to reduce the problem to S/s are equivariant. Here, the inclusion

I£l*(Sls) <-> fi*(S/s) induces an isomorphism in cohomology because O^ is

free.   □

3.3. For any differential form a e £l*(n(M - Ms )) the pull-back n*a is an

invariant form. According to 1.4 it satisfies

(6) ll**«lls = IMU(S)
for each 5 e S?.

Let p be a Riemannian metric on R = M - Ms invariant by the action

of O and satisfying Xi{Xj) = $i,j f°r «'»i € {1,2,3}. The fundamental

forms of O are the differential forms on M - Ms defined by Xi — P(Xi > ~).

/ = 1, 2, 3 . They satisfy

(7) \\X,\\s = l.

Let e e Q4(n(R)) be a closed form representing the Euler class of the action

<t>: S3 x 7? —y R. Then we can choose n e fi3(7?) so that ixilx1ixi'l — 0 and

dn = d(xi A,£2 A/3)-7i*e (cf. [5, p. 322]). Notice that the relation ||e||„(5) < 4

holds for each 5 e &. The class [e] e IH±(M/S3) is called the Euler class of

<J>. It coincides with the usual one when the action <I> is free.

4. Gysin sequence

The Gysin sequence is constructed by using the integration along the fibers of

n ; this operator is very simple when we are dealing with invariant differential

forms.

4.1. Consider co to be an invariant differential form. The differential form

ix)ix2ixl(o is also invariant (Lx,ix, = ixjLXl + i(x, ,x,]); moreover, iXiixjx2ixxo>
= 0 for / = 1, 2, 3 and therefore iXiix2ix,o} is a basic form. That is, there

exists n e Q*(n(R)) with ixJXlix,w = (— 1 )|ct,|?r*?/ where |eu| = degree of co.

Notice that iX}iXlix, dco = -diXiixJXlco.

The integration along the fibers of n is defined to be the operator /: IQ*(R)

—► Q*_1(tz(7?)) , where jco = n; it is a differential operator. Notice that

/7t*a = 0 and j(-l)MXx ^Xi ^ Xi A n*a = a for any aeQ*(n(R)).
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4.2. If the action is free, the short exact sequence

0 -> Q*(M/S3) ^+ IQ*(M) i Q*"3(M/S3) -» 0

induces the long exact sequence

r*

-► 77'(M) -£-► H'-3(M/S3) -^ H,+X(M/S3) -£+ H,+x (M) -»• • • ,

where h?] e H4(M/S3) is the Euler class of <D.

If the action <P is not free, the previous section is no longer an exact one (see

4.9). But, we are going to show that by considering the intersection differential

forms of M instead of the differential forms, we also get a Gysin sequence

relating in this case the intersection cohomology of M/S3 with the cohomology

of M. This sequence arises from the study of the short exact sequence

-f.
0 -» Ker / -U IQ%(M) -^ Im / -> 0,

and more precisely, from the comparison of Kerf and Imf with Q.UM/S3).

There will come out a shift on the perversities involved, due to the perverse

degree of e. For this reason we fix three perversities:  q (of M), and f and

7+4 (of M/S3) satisfying T(n(S)) = q(S) -4, 7T4(tt(5)) = q(S), and
0<q <1.

4.3. Kernel of j . By construction we have Ker/ = {co e Ifi^(M)/iXiiXliXlco

= 0} . For each a e il*(n(R)) we have ||7r*a||s = ||o;|U(s) (cf. 3.3) and j-n*a =

0. Thus, the operator n*: CV—(M/S3) —> Kerf is well defined. In fact, we

have:

Proposition 4.4. The operator n*: CV—(M/S3) —> Kerf induces an isomor-

phism in cohomology.

Proof. We first apply 2.4 (with % made up of invariant sets and {fiu} invariant

controlled maps) and reduce the problem to M = Rk x cSls. Consider pr': Rk x

cS/s/S3 -y Rk~x x cSls/S3 the natural projection as in 2.3. Set n:Rk x cS1* -y

Rk x cSls/S3 and n':Rk~x x cSls -► Rk~x x cSls/S3 the natural projections.

With the notation of 3.2, we have pr'n = n'pr. The relations pr*X, = Z,,

J*Zj — Xj, and ix,h = hiXi imply

,8) jp'--pr--f.      {r-rf.     JH = hj,
where j (resp. /') is the integration along the fibers of n (resp. n'). We

conclude that the diagram

Q*_(R* x cS'-s/S3)    —-—>    Kerjf: /J2*-j(R* x cS's)   ->   fr-3(R* x S's/S3x]0, 1[)}

(pr1)' pr'

QZ—(Rk-[ xcS'^/S3)     ("')*  > Kerjf:/O^fR*-1 x cS's) -. n—3(R*-' xS's/S3x]0, 1[)}

is well defined and commutative. The vertical rows are quasi isomorphisms

(same procedure as 2.3). This first reduces the problem to M = Rk~x x cSls

and finally to M - cS's .
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In order to prove that

n*:IH±^(cSis/S3) - 77' (Kerjf: /Q|(cS'*) - Q*(S/VS3x]0, 1[)})

is an isomorphism in cohomology, we distinguish three cases.

.   i < ?(n(S)) + 4. Here, we have Qi^cS7*/S3) = Q'(S^/S3x]0, 1[) and

(Kerf)' = {coe 7Q'(S'*x]0, l[)/ily3t0)ily2,0)irYl,o)co = 0}.

Contracting the second factor to a point and proceeding as before, we reduce

the problem to prove that

n*:Hl(Sls/S3) - H'({co e m*(Sls)/iYliy2ihco = 0})

is an isomorphism. But, since the action O5 is free, we already know that the

map

n*: Cl*(Sls/S3) -♦ Kerjf: 7Q*(S/s) -» Q-3(S/s/S3)}

induces an isomorphism in cohomology.

• / = r(n(S)) + 4. We can proceed in the same way because

Qi_(cs/VS3)n(i-1(0) = r2'(S/VS3x]0, l[)n<r'(0)

and

(Ker/)/nflf-1(0) = {a;e7Q'(S^x]0, l[)/i(r„o)i(r2.o)i(r,.o)0» = 0}nrf-|(0).

• i > r(n(S)) + 4. Since IHL-(cS's/S3) = 0, it suffices to prove that for any

we/Q'(S^x]0, 1[) satisfying(l) co = 0 on S^xJO, ±[, (2) i(yJ>o)i'(y2,o)i(r,.0)0> =

0, and (3) dco = 0, there exists n e IQi-x(Sl"x]0, 1[) verifying (1) and (2)

with dn = co. Write co = a + dr A fi where a, fS e 7Q*(S/xx]0, 1[) do not

involve dr. We define n = J0~ fi /\dr, which clearly satisfies (1) and dn = co.

Since Yi, Y2, T? do not involve d/dr, we also have (2).   □

4.5.    Image of j .   For each differential form a e Q.*(n(R)) we get

max(||;o A xi A Xi A n*a\\s,  \\d(xi A xi A Xi A n*a)\\s) < 4 + \\a\\n{S)

(cf. (3) and (7)) . Since f(-l)'a'zi A xi A Xi A 7i*a = a, we conclude that

r2£(Af/S3) is a subcomplex of Imf .

Proposition 4.6. The inclusion Q,y(M/S3) <-» Imf induces an isomorphism in

cohomology.

Proof. Given an invariant function / = n*fi: M —> R and an invariant differ-

ential form co e Iil*(M), we get / fico = fojco. We can therefore apply 2.4

and reduce the problem to the case M = Rk x cS/s, where the action is given

by (5).
Proceeding as in 4.4 we arrive at the case M = cSls. Here, in order to prove

that the induced map

IH}(cS's/S3) -► 77' (lm{/: IQ^(cSls/S3) -* Q*"3(S/s/S3x]0, 1[)})

is an isomorphism for / > 0, we distinguish four cases:

• i < r(n(S)). In this case we have 7Qf(cS/s/S3) = Q'(S/VS3x]0, 1[) and

(lmjy = {jco/coemi+3(Slsx]0, 1[)}, which is exactly n''(Sfe/S3x]0, 1[).
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• i = r(n(S)). We can proceed in the same way because

7Qf(cS/VS3)rW-1(0) = r2'(SVS3x]0, l[)nflM(0)

and

{lmfYnd-x(0) = f-lco/o)emi+3(Slsx]0, l[)jrW-'(0).

• i = r(n(S)) + 1 . Since IHl(cS<s/S3) = 0 and i + 3 = q(S), we need to

prove that for any co e 7Q'+3(S/*x]0, 1[) verifying (1) dco = 0 on S'*x]0, {[

and (2) djco = 0, there exists n e 7Q'+2(S/xx]0, 1[) with djn = jco.

We project S'*x]0, 1[ onto S/s x {1/4} = S'^. Relations (4) and (8) give

jco = jpr*J*co + d jhco-hd jco = jpr*J*co + d jhco, where pr*J*co, hco e

7Q'+3(S'5x]0, 1[). By construction, the differential form J*co is a cycle of

7Q'+3(S'*). Since 0 < i + 3 = q(S) < ls - 1, we find ye 7Q'+2(S/*) with
dy = J*co. Now, we can choose n — pr*y + hco.

• i > r(n(S)) + 1 . Since IHi(cSls/S3) = 0 and / + 3 > q(S), we need to

prove that for any co e 7fi'+3(S/*x]0, 1[) verifying (1) co = 0 on S^x]0, ±[,

and (2) djco = 0, there exists n e ICli+2(Slsx]0, 1[) satisfying (1) with

d jn = jco. It suffices to choose n = (-l)'Xx A Xi A Xi A n* j0~ fl /\dr, where

jco = a + drAfi as in 4.4.   □

We arrive at the main result of this work.

Theorem 4.7. Let <P: S3 x M —y M be a semifree action. Then there exists a

long exact sequence

(9)

-► H\M) — IHi~3(M/S3) -^^ IH^(M/S3) ^-y Hi+X(M) -»••-,

where

(a) / is the integration along the fibers of the natural projection n: M —>

M/S3,
(h) r is a perversity of M/S3 verifying -4 <r(n(S)) < Is - 5,

(c) r + 4 is the perversity of M/S3 defined by r + 4(n(S)) = r(n(S)) + 4,
and

(d) [e]eIH±(M/S3) is the Euler class of <D.

Proof. Consider q the perversity of M defined by q(S) = r(n(S)) + 4. The

f
short exact sequence 0 -» Kerf —► IQ*(M) —y lmj —y 0 induces the long exact

sequence (cf. 2.7)

-► H\M) -f-» Tf'"3 (Imf) -^ HM (Kerf) -C Hi+X(M) -* •• • .

The connecting homomorphism is defined by S[a] = [(-l)^d(xi A Xi A Xi) A

7t*a], which is [(-l)Wjt*(eAa)] on 77*(Kerf) (cf. 3.3). It suffices now to
apply 4.4 and 4.6.   □
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Corollary 4.8. Let <J>: S3 x M —> M be a semifree action. The long exact

sequences

r

-► H\M) +-+ H'-3(M/S3, Ms'/S3)

■^fl 77'+' (M/S3) ■£♦ Hi+X (M) -»• • •

and

r*

-► 77'(M) -^ T7'-3(Ai"/S3) -^+ 7771+'(Af/S3) -^-> Hi+X(M) -* ■■ ■

are exact, where for the second sequence we have assumed M/S3 to be without
boundary.

Proof. In both cases we apply the previous theorem taking into account Corol-

lary 2.6. For the first one we consider the perversity r defined by r(n(S)) - -4.

By definition, IHj(M/S3) is the cohomology of the complex made up of dif-

ferential forms on M - Ms /S3 vanishing on a neighborhood of Ms /S3;

therefore,

7777*(M/S3) = H*(M/S3 , Ms'/S3).

For the second case, we consider the perversity r = 0. This perversity sat-

isfies condition (c) of the previous theorem because if M/S3 has no boundary

then ls > 5 for each 5 e £7.   □

4.9. The sequence (1) does hot become necessarily (9). Let us give an example.

Consider the unit sphere S4/+3 of HP/+1 , where HP are the quaternions. The

product by quaternions induce the action 4*: S3 x S4/+3 —> S4/+3. Identify S4/+4

with the suspension IS4/+3 = S4/+3 x [-1, 1]/{S4/+3 x {1}, S4/+3 x {-1}}. Con-

sider the action <D: S3 x S4/+4 -* S4/+4 defined by <$>(6, [x, t]) = \y(d ,x),t].

The sequence (1) becomes

-y 77'(S4/+4) -» 77'-3(IHP/) -» Hi+X(IEF') -» 77'+1(S4/+4) -+■■•,

which cannot be exact because #(S4/+4) / 0.

We finish the work with a geometrical interpretation of the vanishing of the

Euler class, generalizing [5, p. 321].

Proposition 4.9. If the principal fibration n: (M - Ms ) -► (M - Ms )/S3 has
a section, then [e] = 0.

The existence of a section of n: (M - Ms) -* (M - Ms')/S3 implies

the vanishing of the Euler class [e'] of the action <P': S3 x (M - Ms ) ->

(M - Ms ). Thus, the singular strata must have at most codimension four and,

therefore, T^Q^ = "*(^5 - 5) for each 5 e SP. This implies 777-*(A//S3) =

H*((M - A7s3)/S3). We have finished the proof because [e] = [e1].
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