A GYSIN SEQUENCE FOR SEMIFREE ACTIONS OF S³

MARTIN SARALEGI

(Communicated by Frederick R. Cohen)

ABSTRACT. In this work we shall consider smooth semifree (i.e., free outside the fixed point set) actions of S^3 on a manifold M. We exhibit a Gysin sequence relating the cohomology of M with the intersection cohomology of the orbit space M/S^3 . This generalizes the usual Gysin sequence associated with a free action of S^3 .

Given a free action of the group of unit quaternions S^3 on a differentiable manifold M, there exists a long exact sequence relating the deRham cohomology of the manifold M with the deRham cohomology of the orbit space M/S^3 ; this is the Gysin sequence (see, e.g., [1, p. 179]):

$$(1) \qquad \cdots \to H^{i}(M) \xrightarrow{f^{\star}} H^{i-3}(M/\mathbb{S}^{3}) \xrightarrow{\wedge [e]} H^{i+1}(M/\mathbb{S}^{3}) \xrightarrow{\pi^{\star}} H^{i+1}(M) \to \cdots$$

where f is the integration along the fibers of the natural projection $\pi: M \to M/S^3$ and $[e] \in H^4(M/S^3)$ is the Euler class of Φ . This paper is devoted to generalizing this relationship to the case where Φ is allowed to have fixed points (semifree action).

In this context the orbit space M/S^3 is no longer a manifold but a stratified pseudomanifold, a notion introduced by Goresky and MacPherson in [7]. The Gysin sequence we get in this case is

$$(2) \qquad \cdots \to H^{i}(M) \xrightarrow{f^{*}} IH^{i-3}_{\overline{r}}(M/S^{3}) \xrightarrow{\wedge [e]} IH^{i+1}_{r+4}(M/S^{3}) \xrightarrow{\pi^{*}} H^{i+1}(M) \to \cdots$$

where \overline{r} and $\overline{r+4}$ are two perversities and $[e] \in IH^4_{\overline{4}}(M/S^3)$ is the Euler class of Φ . The exact statement is given in Theorem 4.7. A similar sequence has been already found for circle actions [8]. Finally, we show a relationship between the existence of a section of π and the vanishing of the Euler class [e]. This result generalizes the situation of the free case.

The work is organized as follows. In §1 we introduce simple stratified spaces, which are singular spaces including the orbit space M/S^3 as a special case. Section 2 is devoted to recalling the notion of intersection cohomology with the perversity introduced by MacPherson in [9]. The main tool we use to construct

Received by the editors December 13, 1991.

1991 Mathematics Subject Classification. Primary 55N33; Secondary 57S15.

Key words and phrases. Gysin sequence, intersection cohomology.

Supported by DGICYT-Spain, Proyecto PB91-0142.

the Gysin sequence is the complex of invariant forms, which is studied in §3. Finally, we construct the Gysin sequence (2) in §4.

In this paper, a manifold is supposed to be without boundary and smooth (of class C^{∞}). From now on, we fix a manifold M with dimension m and $\Phi: S^3 \times M \to M$ a smooth semifree action, that is, Φ is free out of the set M^{S^3} of fixed points (which will be different from M).

1. SIMPLE STRATIFIED SETS

We prove that the action Φ induces on M and M/S^3 a particular structure of stratified set.

- 1.1. Let E be a stratified set [10]; we shall say that E is simple if there exists a stratum R with $E = \overline{R}$ (such R is said to be regular) and that any other stratum S is closed (S is said to be singular). The second condition implies that the singular strata are disjoint. The dimension of E is, by definition, $\dim R$. We shall write $\mathcal S$ to represent the family of singular strata.
- 1.2. We know (cf. [10]) that for each stratum $S \in \mathcal{S}$ there exist a neighborhood T_S of S, a compact manifold L_S , and a fiber bundle $\tau_S \colon T_S \to S$ satisfying:
 - (a) the fiber of τ_S is the cone $cL_S = L_S \times [0, 1]/L_S \times \{0\}$;
 - (b) the restriction map $\tau_{S|S}$ is the identity;
 - (c) the restriction $\tau_S: (T_S S) \to S$ is a smooth fiber bundle with fiber $L_S \times]0$, 1[, whose structural group is Diff (L_S) , the group of diffeomorphisms of L_S ; and
 - (d) $T_S \cap T_{S'} = \emptyset$ if $S \neq S'$.

The family $\{T_S/S \in \mathcal{S}\}$ is said to be a *family of tubes*. Notice that, according to (c), there exists a smooth map $\lambda_S \colon (T_S - S) \to]0$, 1[such that the restriction $\tau_S \colon \lambda_S^{-1}(]0$, $\varepsilon[) \to S$, for $\varepsilon \in [0, 1]$, is a fiber bundle with fiber $L_S \times]0$, $\varepsilon[$. We shall write $D_S = \lambda_S^{-1}(]0$, 1/2[); in fact, D_S is the half of T_S .

1.3. The manifold M inherits from the action Φ a natural structure of stratified set where the singular strata are the connected components of M^{S^3} and the regular stratum R is $M-M^{S^3}$. This stratified set is simple because the open set $M-M^{S^3}$ is dense.

Since each singular stratum S of M is an invariant submanifold of M, we construct a tubular neighborhood $(T_S, \tau_S, S, S^{l_S})$ satisfying:

- (i) T_S is an open neighborhood of S;
- (ii) $\tau_S \colon T_S \to S$ is a smooth fiber bundle with fiber the open disk D^{l_S+1} and $O(l_S+1)$ as a structural group;
 - (iii) the restriction of τ_S to S is the identity;
 - (iv) τ_S is equivariant, that is, $\tau_S(g \cdot y) = g \cdot \tau_S(y)$;
- (v) there exists an orthogonal action $\Psi^S : \mathbf{S}^3 \times \mathbf{S}^{l_S} \to \mathbf{S}^{l_S}$ and an atlas $\mathscr{A}_S = \{(U, \varphi)\}$ such that $\varphi : \tau_S^{-1}(U) \to U \times D^{l_S+1}$ is equivariant, that is, $\varphi(\Phi(g, x)) = (\tau_S(x), [\Phi^S(g, \theta), r])$ for each $g \in \mathbf{S}^3$ and $x = \varphi^{-1}(\tau_S(x), [\theta, r]) \in \tau_S^{-1}(U)$. Here we have identified D^{l_S+1} with the cone $c\mathbf{S}^{l_S} = \mathbf{S}^{l_S} \times [0, 1]/\mathbf{S}^{l_S} \times \{0\}$ and written $[\theta, r]$ an element of $c\mathbf{S}^{l_S}$.

¹For the notions related with actions we refer to [3].

Notice that the action Φ^S is free and therefore the codimension of S is a multiple of 4. Consider, for each singular stratum S, a tubular neighborhood T_S verifying $T_S \cap T_{S'} = \emptyset$ if $S \neq S'$. Thus, the family $\{T_S\}$ is a family of tubes

Let $\pi: M \to M/S^3$ denote the canonical projection. The orbit space M/S^3 inherits naturally from M a structure of stratified set, the strata are $\pi(R) = \pi(M - M^{S^3})$, the regular stratum, with dimension m-3, and $\{\pi(S)/S \in \mathcal{S}\}$, the singular strata. The local description given by (v) shows that M/S^3 is a simple stratified set.

For each $S \in \mathcal{S}$ the image $\pi(T_S)$ is a neighborhood of $\pi(S)$. The map $\rho_S \colon \pi(T_S) \to \pi(S)$ given by $\rho_S(\pi(x)) = \pi(\tau_S(x))$ is well defined. It is easy to show that $(\pi(\tau_S), \rho_S, \pi(S), S^{l_S}/S^3)$ verify 1.2(a)-(d). Then the family $\{\pi(T_S)/S \in \mathcal{S}\}$ is a family of tubes.

1.4. Consider the following commutative diagram:

$$D_S - S \xrightarrow{\tau_S} S$$

$$\pi \downarrow \qquad \qquad \downarrow \pi$$

$$\pi(D_S - S) \xrightarrow{\rho_S} \pi(S)$$

Since the restriction of π to the fibers of τ_s is a submersion $((S^{l_s} \times]0, 1/2[) \mapsto (S^{l_s}/S^3 \times]0, 1/2[))$, we get the relation $\pi_* \{ Ker(\tau_S)_* \} = Ker(\rho_S)_*$. This will be used in 3.3.

2. Intersection cohomology

We recall the notion of intersection cohomology [4] using the notion of perversity introduced by MacPherson in [9].

2.1. Cartan's filtration. Let $\kappa: N \to C$ be a smooth submersion between two manifolds N and C. For each differential form $\omega \not\equiv 0$ on N, we define the perverse degree of ω , written $\|\omega\|_C$, as the smallest integer k verifying:

If
$$\xi_0, \ldots, \xi_k$$
 are vectorfields on N tangents to the fibers of κ , then $i_{\xi_0} \cdots i_{\xi_k} \equiv 0$.

Here, i_{ξ_j} denotes the interior product by ξ_j . We shall write $\|0\|_C = -\infty$. For each $k \ge 0$ we put $F_k\Omega_N^* = \{\omega \in \Omega^*(N)/\|\omega\|_C \le k \text{ and } \|d\omega\|_C \le k\}$. This is the *Cartan's filtration* of κ [4]. Notice that, for α , $\beta \in \Omega^*(N)$, we get the relations

- (3) $\|\alpha + \beta\|_C \le \max(\|\alpha\|_C, \|\beta\|_C)$ and $\|\alpha \wedge \beta\|_C \le \|\alpha\|_C + \|\beta\|_C$.
- 2.2. Let E be a simple stratified set. A perversity is a map $\overline{q}\colon \mathscr{S} \to \mathbb{Z}$ (see [9]). A differential form ω on R is a \overline{q} -intersection differential form if for each $S\in \mathscr{S}$ the restriction $\omega|_{D_S}$ belongs to $F_{\overline{q}(S)}\Omega_{D_S}^*$. We shall denote by $\Omega_{\overline{q}}^*(E)$ the complex of \overline{q} -intersection differential forms of E. Remark: For the case $\mathscr{S}=\varnothing$, the complex $\Omega_{\overline{q}}^*(E)$ is exactly the deRham complex $\Omega^*(E)$ of E. The cohomology of the complex $\Omega_{\overline{q}}^*(E)$ is the intersection cohomology of E, written $IH_{\overline{q}}^*(E)$. This denomination is justified by 2.5.

Locally, the stratified set E looks like $\mathbb{R}^k \times cL_S$, where L_S is a compact manifold. Here, we have the following computational result:

Proposition 2.3. For any perversity \overline{q} we obtain

$$IH_{\overline{q}}^{i}(\mathbb{R}^{k} \times cL_{S}) \cong \left\{ egin{array}{ll} H^{i}(L_{S}) & if \ i \leq \overline{q}(S) \,, \\ 0 & if \ i > \overline{q}(S) \,. \end{array} \right.$$

Proof. Since the maps $pr: \mathbb{R}^k \times cL_S \to \mathbb{R}^{k-1} \times cL_S$ and $J: \mathbb{R}^{k-1} \times cL_S \to \mathbb{R}^k \times cL_S$ defined by $pr(x_1, \ldots, x_k, [y, r]) = (x_2, \ldots, x_k, [y, r])$ and $J(x_2, \ldots, x_k, [y, r]) = (0, x_2, \ldots, x_k, [y, r])$ verify $\|pr^*\omega\|_S \leq \|\omega\|_S$ and $\|J^*\eta\|_S \leq \|\eta\|_S$ for each $\omega \in \Omega^*(\mathbb{R}^{k-1} \times L_S \times]0$, 1[) and $\eta \in \Omega^*(\mathbb{R}^k \times L_S \times]0$, 1[), the induced operators

$$pr^*: \Omega_{\overline{q}}^*(\mathbb{R}^{k-1} \times cL_S) \to \Omega_{\overline{q}}^*(\mathbb{R}^k \times cL_S),$$
$$J^*: \Omega_{\overline{q}}^*(\mathbb{R}^k \times cL_S) \to \Omega_{\overline{q}}^*(\mathbb{R}^{k-1} \times cL_S)$$

are well defined. Notice that the composition J^*pr^* is the identity. Consider the homotopy operator

$$h: \Omega^*(\mathbb{R}^k \times L_S \times]0, 1[) \to \Omega^{*-1}(\mathbb{R}^k \times L_S \times]0, 1[)$$

given by $h(\omega = \alpha + dx_1 \wedge \beta) = \int_0^- \beta \wedge dx_1$, where α , $\beta \in \Omega^*(\mathbb{R}^k \times L_S \times]0$, 1[) do not involve dx_1 . It verifies

(4)
$$dh\omega + h d\omega = \omega - pr^*J^*\omega.$$

Now, the relation $\|h\omega\|_S \leq \|\omega\|_S$ implies that h is a homotopy between pr^*J^* and the identity on $\Omega^*_{\overline{q}}(\mathbb{R}^k \times cL_S)$. We have proved $IH^*_{\overline{q}}(\mathbb{R}^k \times cL_S) \cong IH^*_{\overline{q}}(cL_S)$. Moreover, by the equalities $\Omega^i_{\overline{q}}(cL_S) = \Omega^i(L_S \times]0$, 1[), if $i < \overline{q}(S)$, $\Omega^{\overline{q}(S)}_{\overline{q}}(cL_S) \cap d^{-1}(0) = \Omega^{\overline{q}(S)}(L_S \times]0$, 1[) $\cap d^{-1}(0)$, and by previous calculation we get $IH^i_{\overline{q}}(\mathbb{R}^k \times cL_S) \cong H^i(L_S)$ for $i \leq \overline{q}(S)$.

It remains to prove that, given a cycle $\omega \in \Omega^i_{\overline{q}}(cL_S)$ with $i > \overline{q}(S)$, there exists $\eta \in \Omega^{i-1}_{\overline{q}}(cL_S)$ with $d\eta = \omega$. Write $\omega = \alpha + dr \wedge \beta$, where α , β do not involve dr (r variable of]0, 1[); observe that $\alpha \equiv \beta \equiv 0$ on $L_S \times]0, \frac{1}{2}[$. Then, since $\omega = d\int_0^- \beta \wedge dr$, it suffices to take $\eta = \int_0^- \beta \wedge dr$. \square

The intersection cohomology satisfies the Mayer-Vietoris property as it is stated in [1, p. 94].

Proposition 2.4. Given an open covering $\mathscr{U} = \{U\}$ of E, there exists a subordinated partition of the unity $\{f_U\}$ verifying $\omega \in \Omega^*_{\overline{a}}(U) \Rightarrow f_U \omega \in \Omega^*_{\overline{a}}(E)$.

Proof. A controlled map $f: E \to \mathbb{R}$ is defined to be a continuous map, differentiable on each stratum, such that the restriction to the fibers of each $\tau_S \colon D_S \to S$ is a constant map [11]. Notice that we have the equality $\max(\|f\|_S, \|df\|_S) = 0$. Then the result follows from the fact that \mathscr{U} possesses a subordinated partition of unity made up of controlled functions [11, p. 8]. \square

Two perversities \overline{p} and \overline{q} are dual if $\overline{p}(S) + \overline{q}(S) = \dim L_S - 1$ for each $S \in \mathcal{S}$. For example, the zero perversity $\overline{0}$, defined by $\overline{0}(S) = 0$, and the top perversity \overline{t} , defined by $\overline{t}(S) = \dim L_S - 1$, are dual. The relationship between the intersection homology $IH^{\overline{p}}_*(E)$ of [6] and the intersection cohomology is given by

Proposition 2.5. $IH_{\overline{q}}^*(E) \cong IH_*^{\overline{p}}(E)$.

Proof. Consider the first case $E = \mathbb{R}^k \times cL_S$ as in 2.3. Following [6, 9] we get

$$IH_i^{\overline{p}}(\mathbb{R}^k \times cL_S) \cong \left\{ \begin{array}{ll} H_i(L_S) & \text{if } i \leq \dim L_S - 1 - \overline{p}(S) \,, \\ 0 & \text{if } i \geq \dim L_S - \overline{p}(S) \,, \end{array} \right.$$

which is isomorphic to $IH_{\overline{q}}^{i}(E)$ (see 2.3).

This shows that the intersection cohomology and the intersection homology are locally isomorphic. The passage from the local case to the global case cannot be made as in [7] because the axiomatic presentation of the intersection homology has not yet been extended to the new perversities, but we can proceed as in [2] by showing that the usual integration of differential forms over simplices induces a morphism between $IH_{\overline{q}}^*(E)$ and $Hom(IH_*^{\overline{p}}(E), \mathbb{R})$; such a morphism turns out to be an isomorphism because of Mayer-Vietoris and previous local calculation. Since the proof is similar to that of [2], we leave this work to the reader. \square

The following result has also been proved in [9].

Corollary 2.6. Suppose that each link L_S is connected (that is, E is normal). Then $IH_{\overline{0}}^*(E) \cong H^*(E)$.

Proof. It suffices to consider the isomorphism $IH_{*}^{\bar{t}}(E) \cong H_{*}(E)$ proved in [9]. \square

Corollary 2.7. If E is a manifold then $IH^*_{\overline{q}}(E) \cong H^*(E)$, for each perversity $\overline{0} \leq \overline{q} \leq \overline{t}$.

Proof. Since E is normal, Corollary 2.6 reduces the problem to prove that the inclusion $\Omega^*_{\overline{q}}(E) \hookrightarrow \Omega^*_{\overline{q}}(E)$ induces an isomorphism in cohomology. Applying 2.4 and 2.3 and taking into account the inequalities $0 \le \overline{q}(S) \le \dim L_S - 1$ we transform the problem to showing $H^i(L_S) = 0$ for $0 < i \le \overline{q}(S)$. But this is exactly the same as showing that L_S is a cohomology sphere, which follows from the fact that M is a manifold. \square

3. Invariant forms

A good simplification in the construction of the Gysin sequence is the use of invariant forms.

3.1. The fundamental vectorfields X_1 , X_2 , X_3 of Φ are the vectorfields of M defined by $X_i(x) = T_e \Phi_X(l_i)$, i = 1, 2, 3, where $\{l_1, l_2, l_3\}$ is a basis of the Lie algebra of S^3 . These vectorfields can be chosen to verify $[X_1, X_2] = X_3$, $[X_2, X_3] = X_1$, and $[X_3, X_1] = X_2$. The zero-set for each of them is exactly M^{S^3} .

It is well known that the subcomplex of invariant forms

$$I\Omega^*(M) = \{ \omega \in \Omega^*(M)/g^*\omega = \omega \text{ for each } g \in \mathbf{S}^3 \}$$

= \{ \omega \in \Omega^*(M)/L_{X_i}\omega = 0, \ i = 1, 2, 3 \}

computes the cohomology of M (see, e.g., [5]). We prove now a similar result for

$$I\Omega_{\overline{q}}^{*}(M) = \{ \omega \in \Omega_{\overline{q}}^{*}(M)/L_{X_{i}}\omega = 0, \ i = 1, 2, 3 \}.$$

Proposition 3.2. For each perversity $\overline{0} \leq \overline{q} \leq \overline{t}$ we have $H^*(I\Omega_{\overline{q}}(M)) \cong H^*(M)$. Proof. We first apply 2.4 (with $\mathscr U$ made up of invariant sets and $\{f_U\}$ to be invariant controlled maps) and reduce the problem to $M = \mathbb R^k \times c\mathbf S^{l_S}$. Here, the action of $\mathbf S^3$ is given by

(5)
$$(g, (x_1, \ldots, x_k, [y, r])) \mapsto (x_1, \ldots, x_k, [\Phi^S(g, y), r]).$$

Consider $\mathbb{R}^k \times c\mathbf{S}^{l_S}$ as the product $\mathbb{R} \times (\mathbb{R}^{k-1} \times c\mathbf{S}^{l_S})$. Notice that the fundamental vectorfields of $\mathbb{R}^k \times c\mathbf{S}^{l_S}$ (resp. $\mathbb{R}^{k-1} \times c\mathbf{S}^{l_S}$) are

$$X_i = (\underbrace{0, \dots, 0}_{k}, Y_i, 0)$$
 (resp. $Z_i = (\underbrace{0, \dots, 0}_{k-1}, Y_i, 0)$)

where Y_i are the fundamental vectorfields of \mathbf{S}^{l_S} , i=1,2,3. Write pr,J, and h as the operators given by 2.3 for this decomposition. The equalities $pr_*X_i=Z_i$, $J_*Z_i=X_i$, and $i_{X_i}h=hi_{X_i}$ show that these operators are equivariant. Proceeding as in 2.3, we first reduce the problem to the case $M=\mathbb{R}^{k-1}\times c\mathbf{S}^{l_S}$ and finally to the case $M=c\mathbf{S}^{l_S}$. Again, the operators used in 2.3 to reduce the problem to \mathbf{S}^{l_S} are equivariant. Here, the inclusion $I\Omega^*(\mathbf{S}^{l_S})\hookrightarrow \Omega^*(\mathbf{S}^{l_S})$ induces an isomorphism in cohomology because Φ^S is free. \square

3.3. For any differential form $\alpha \in \Omega^*(\pi(M-M^{S^3}))$ the pull-back $\pi^*\alpha$ is an invariant form. According to 1.4 it satisfies

(6)
$$\|\pi^*\alpha\|_S = \|\alpha\|_{\pi(S)}$$

for each $S \in \mathcal{S}$.

Let μ be a Riemannian metric on $R=M-M^{S^3}$ invariant by the action of Φ and satisfying $\chi_i(X_j)=\delta_{i,j}$ for $i,j\in\{1,2,3\}$. The fundamental forms of Φ are the differential forms on $M-M^{S^3}$ defined by $\chi_i=\mu(X_i,-)$, i=1,2,3. They satisfy

$$\|\chi_i\|_S=1.$$

Let $e \in \Omega^4(\pi(R))$ be a closed form representing the Euler class of the action $\Phi: \mathbf{S}^3 \times R \to R$. Then we can choose $\eta \in \Omega^3(R)$ so that $i_{X_3}i_{X_2}i_{X_1}\eta = 0$ and $d\eta = d(\chi_1 \wedge \chi_2 \wedge \chi_3) - \pi^*e$ (cf. [5, p. 322]). Notice that the relation $||e||_{\pi(S)} \le 4$ holds for each $S \in \mathcal{S}$. The class $[e] \in IH_4^4(M/\mathbf{S}^3)$ is called the *Euler class* of Φ . It coincides with the usual one when the action Φ is free.

4. Gysin sequence

The Gysin sequence is constructed by using the integration along the fibers of π ; this operator is very simple when we are dealing with invariant differential forms.

4.1. Consider ω to be an invariant differential form. The differential form $i_{X_3}i_{X_2}i_{X_1}\omega$ is also invariant $(L_{X_i}i_{X_j}=i_{X_j}L_{X_i}+i_{[X_i,X_j]})$; moreover, $i_{X_i}i_{X_3}i_{X_2}i_{X_1}\omega=0$ for i=1,2,3 and therefore $i_{X_3}i_{X_2}i_{X_1}\omega$ is a basic form. That is, there exists $\eta\in\Omega^*(\pi(R))$ with $i_{X_3}i_{X_2}i_{X_1}\omega=(-1)^{|\omega|}\pi^*\eta$ where $|\omega|=$ degree of ω . Notice that $i_{X_3}i_{X_1}i_{X_1}d\omega=-di_{X_3}i_{X_1}i_{X_1}\omega$.

The integration along the fibers of π is defined to be the operator $f: I\Omega^*(R) \to \Omega^{*-1}(\pi(R))$, where $f\omega = \eta$; it is a differential operator. Notice that $f\pi^*\alpha = 0$ and $f(-1)^{|\alpha|}\chi_1 \wedge \chi_2 \wedge \chi_3 \wedge \pi^*\alpha = \alpha$ for any $\alpha \in \Omega^*(\pi(R))$.

4.2. If the action is free, the short exact sequence

$$0 \to \Omega^*(M/\mathbb{S}^3) \xrightarrow{\pi^*} I\Omega^*(M) \xrightarrow{f} \Omega^{*-3}(M/\mathbb{S}^3) \to 0$$

induces the long exact sequence

$$\cdots \to H^i(M) \xrightarrow{f^*} H^{i-3}(M/\mathbf{S}^3) \xrightarrow{\wedge [e]} H^{i+1}(M/\mathbf{S}^3) \xrightarrow{\pi^*} H^{i+1}(M) \to \cdots,$$

where $[e] \in H^4(M/\mathbb{S}^3)$ is the Euler class of Φ .

If the action Φ is not free, the previous section is no longer an exact one (see 4.9). But, we are going to show that by considering the intersection differential forms of M instead of the differential forms, we also get a Gysin sequence relating in this case the intersection cohomology of M/S^3 with the cohomology of M. This sequence arises from the study of the short exact sequence

$$0 \to \operatorname{Ker} f \xrightarrow{\iota} I\Omega_{\overline{a}}^{*}(M) \xrightarrow{f} \operatorname{Im} f \to 0$$
,

and more precisely, from the comparison of Ker f and Im f with $\Omega_{\bar{\tau}}^*(M/S^3)$.

There will come out a shift on the perversities involved, due to the perverse degree of e. For this reason we fix three perversities: \overline{q} (of M), and \overline{r} and $\overline{r}+\overline{4}$ (of M/S^3) satisfying $\overline{r}(\pi(S))=\overline{q}(S)-4$, $\overline{r+4}(\pi(S))=\overline{q}(S)$, and $\overline{0}<\overline{q}<\overline{t}$.

4.3. **Kernel of** f. By construction we have $\operatorname{Ker} f = \{\omega \in I\Omega^*_{\overline{q}}(M)/i_{X_3}i_{X_2}i_{X_1}\omega = 0\}$. For each $\alpha \in \Omega^*(\pi(R))$ we have $\|\pi^*\alpha\|_S = \|\alpha\|_{\pi(S)}$ (cf. 3.3) and $f \pi^*\alpha = 0$. Thus, the operator $\pi^* \colon \Omega^*_{\overline{r+4}}(M/S^3) \to \operatorname{Ker} f$ is well defined. In fact, we have:

Proposition 4.4. The operator $\pi^*: \Omega^*_{r+4}(M/S^3) \to \text{Ker } f$ induces an isomorphism in cohomology.

Proof. We first apply 2.4 (with \mathscr{U} made up of invariant sets and $\{f_U\}$ invariant controlled maps) and reduce the problem to $M = \mathbb{R}^k \times c\mathbf{S}^{l_S}$. Consider $pr' : \mathbb{R}^k \times c\mathbf{S}^{l_S}/\mathbf{S}^3 \to \mathbb{R}^{k-1} \times c\mathbf{S}^{l_S}/\mathbf{S}^3$ the natural projection as in 2.3. Set $\pi : \mathbb{R}^k \times c\mathbf{S}^{l_S} \to \mathbb{R}^k \times c\mathbf{S}^{l_S}/\mathbf{S}^3$ and $\pi' : \mathbb{R}^{k-1} \times c\mathbf{S}^{l_S} \to \mathbb{R}^{k-1} \times c\mathbf{S}^{l_S}/\mathbf{S}^3$ the natural projections. With the notation of 3.2, we have $pr'\pi = \pi'pr$. The relations $pr_*X_i = Z_i$, $J_*Z_i = X_i$, and $i_{X_i}h = hi_{X_i}$ imply

(8)
$$\int pr^* = pr^* \int', \qquad \int' J^* = J^* \int, \qquad \int h = h \int,$$

where f (resp. f') is the integration along the fibers of π (resp. π'). We conclude that the diagram

$$\Omega_{r+4}^{\star}(\mathbb{R}^{k-1}\times c\mathbf{S}^{l_S}/\mathbf{S}^3) \xrightarrow{-(\pi')^{\star}} \operatorname{Ker}\left\{f': I\Omega_{r+4}^{\star}(\mathbb{R}^{k-1}\times c\mathbf{S}^{l_S}) \to \Omega^{\star-3}(\mathbb{R}^{k-1}\times \mathbf{S}^{l_S}/\mathbf{S}^3\times]0, 1[)\right\}$$

is well defined and commutative. The vertical rows are quasi isomorphisms (same procedure as 2.3). This first reduces the problem to $M = \mathbb{R}^{k-1} \times c\mathbf{S}^{l_s}$ and finally to $M = c\mathbf{S}^{l_s}$.

In order to prove that

$$\pi^* \colon IH^{\underline{i}}_{r+4}(c\mathbf{S}^{l_S}/\mathbf{S}^3) \to H^i\left(\operatorname{Ker}\left\{ f \colon I\Omega^*_{\overline{q}}(c\mathbf{S}^{l_S}) \to \Omega^*(\mathbf{S}^{l_S}/\mathbf{S}^3 \times]0\,,\,1[)\right\}\right)$$

is an isomorphism in cohomology, we distinguish three cases.

• $i < \overline{r}(\pi(S)) + 4$. Here, we have $\Omega_{r+4}^i(cS^{l_S}/S^3) = \Omega^i(S^{l_S}/S^3 \times]0$, 1[) and

$$(\text{Ker } f)^i = \{ \omega \in I\Omega^i(\mathbf{S}^{l_S} \times]0, 1[)/i_{(Y_1,0)}i_{(Y_1,0)}i_{(Y_1,0)}\omega = 0 \}.$$

Contracting the second factor to a point and proceeding as before, we reduce the problem to prove that

$$\pi^* \colon H^i(\mathbf{S}^{l_S}/\mathbf{S}^3) \to H^i(\{\omega \in I\Omega^*(\mathbf{S}^{l_S})/i_{Y_3}i_{Y_2}i_{Y_1}\omega = 0\})$$

is an isomorphism. But, since the action Φ^S is free, we already know that the map

$$\pi^* \colon \Omega^*(\mathbf{S}^{l_S}/\mathbf{S}^3) \to \operatorname{Ker} \left\{ f \colon I\Omega^*(\mathbf{S}^{l_S}) \to \Omega^{*-3}(\mathbf{S}^{l_S}/\mathbf{S}^3) \right\}$$

induces an isomorphism in cohomology.

• $i = \overline{r}(\pi(S)) + 4$. We can proceed in the same way because

$$\Omega_{r+4}^{i}(c\mathbf{S}^{l_{S}}/\mathbf{S}^{3}) \cap d^{-1}(0) = \Omega^{i}(\mathbf{S}^{l_{S}}/\mathbf{S}^{3}\times]0, 1[) \cap d^{-1}(0)$$

and

$$(\text{Ker }\mathfrak{f})^i \cap d^{-1}(0) = \{\omega \in I\Omega^i(\mathbf{S}^{l_S} \times]0, 1[)/i_{(Y_3,0)}i_{(Y_2,0)}i_{(Y_1,0)}\omega = 0\} \cap d^{-1}(0).$$

- $i > \overline{r}(\pi(S)) + 4$. Since $IH^i_{r+4}(cS^{l_S}/S^3) = 0$, it suffices to prove that for any $\omega \in I\Omega^i(S^{l_S} \times]0, 1[)$ satisfying (1) $\omega = 0$ on $S^{l_S} \times]0, \frac{1}{2}[$, (2) $i_{(Y_3,0)}i_{(Y_2,0)}i_{(Y_1,0)}\omega = 0$, and (3) $d\omega = 0$, there exists $\eta \in I\Omega^{i-1}(S^{l_S} \times]0, 1[)$ verifying (1) and (2) with $d\eta = \omega$. Write $\omega = \alpha + dr \wedge \beta$ where $\alpha, \beta \in I\Omega^*(S^{l_S} \times]0, 1[)$ do not involve dr. We define $\eta = \int_0^- \beta \wedge dr$, which clearly satisfies (1) and $d\eta = \omega$. Since Y_1, Y_2, Y_3 do not involve $\partial/\partial r$, we also have (2). \square
- 4.5. Image of f. For each differential form $\alpha \in \Omega^*(\pi(R))$ we get $\max(\|\chi_1 \wedge \chi_2 \wedge \chi_3 \wedge \pi^* \alpha\|_S, \|d(\chi_1 \wedge \chi_2 \wedge \chi_3 \wedge \pi^* \alpha\|_S) \le 4 + \|\alpha\|_{\pi(S)}$

(cf. (3) and (7)) . Since $f(-1)^{|\alpha|}\chi_1 \wedge \chi_2 \wedge \chi_3 \wedge \pi^*\alpha = \alpha$, we conclude that $\Omega_{\overline{r}}^*(M/S^3)$ is a subcomplex of Im f.

Proposition 4.6. The inclusion $\Omega_{\overline{r}}^*(M/S^3) \hookrightarrow \operatorname{Im} f$ induces an isomorphism in cohomology.

Proof. Given an invariant function $f = \pi^* f_0 \colon M \to \mathbb{R}$ and an invariant differential form $\omega \in I\Omega^*(M)$, we get $f \circ f\omega = f_0 \circ f\omega$. We can therefore apply 2.4 and reduce the problem to the case $M = \mathbb{R}^k \times c\mathbf{S}^{l_S}$, where the action is given by (5).

Proceeding as in 4.4 we arrive at the case $M = cS^{l_S}$. Here, in order to prove that the induced map

$$IH^{i}_{\overline{r}}(c\mathbf{S}^{l_{S}}/\mathbf{S}^{3}) \to H^{i}\left(\operatorname{Im}\left\{\mathfrak{f}: I\Omega^{*}_{\overline{q}}(c\mathbf{S}^{l_{S}}/\mathbf{S}^{3}) \to \Omega^{*-3}(\mathbf{S}^{l_{S}}/\mathbf{S}^{3} \times]0, 1[)\right\}\right)$$

is an isomorphism for $i \ge 0$, we distinguish four cases:

• $i < \overline{r}(\pi(S))$. In this case we have $I\Omega^i_{\overline{r}}(c\mathbf{S}^{l_S}/\mathbf{S}^3) = \Omega^i(\mathbf{S}^{l_S}/\mathbf{S}^3 \times]0, 1[)$ and $(\operatorname{Im} f)^i = \{ f \omega/\omega \in I\Omega^{i+3}(\mathbf{S}^{l_S} \times]0, 1[) \}$, which is exactly $\Omega^i(\mathbf{S}^{l_S}/\mathbf{S}^3 \times]0, 1[)$.

• $i = \overline{r}(\pi(S))$. We can proceed in the same way because

$$I\Omega_{\overline{r}}^{i}(c\mathbf{S}^{l_{S}}/\mathbf{S}^{3}) \cap d^{-1}(0) = \Omega^{i}(\mathbf{S}^{l_{S}}/\mathbf{S}^{3}\times]0, 1[) \cap d^{-1}(0)$$

and

$$(\operatorname{Im} f)^i \cap d^{-1}(0) = \left\{ \int \omega/\omega \in I\Omega^{i+3}(\mathbf{S}^{l_S} \times]0, 1[) \right\} \cap d^{-1}(0).$$

- $i=\overline{r}(\pi(S))+1$. Since $IH^i_{\overline{r}}(c\mathbf{S}^{l_S}/\mathbf{S}^3)=0$ and $i+3=\overline{q}(S)$, we need to prove that for any $\omega\in I\Omega^{i+3}(\mathbf{S}^{l_S}\times]0$, 1[) verifying (1) $d\omega=0$ on $\mathbf{S}^{l_S}\times]0$, $\frac{1}{2}[$ and (2) $d\int\omega=0$, there exists $\eta\in I\Omega^{i+2}(\mathbf{S}^{l_S}\times]0$, 1[) with $d\int\eta=\int\omega$. We project $\mathbf{S}^{l_S}\times]0$, 1[onto $\mathbf{S}^{l_S}\times \{1/4\}\equiv \mathbf{S}^{l_S}$. Relations (4) and (8) give $\int\omega=\int pr^*J^*\omega+d\int h\omega-hd\int\omega=\int pr^*J^*\omega+d\int h\omega$, where $pr^*J^*\omega$, $h\omega\in I\Omega^{i+3}(\mathbf{S}^{l_S}\times]0$, 1[). By construction, the differential form $J^*\omega$ is a cycle of $I\Omega^{i+3}(\mathbf{S}^{l_S})$. Since $0< i+3=\overline{q}(S)\leq l_S-1$, we find $\gamma\in I\Omega^{i+2}(\mathbf{S}^{l_S})$ with $d\gamma=J^*\omega$. Now, we can choose $\eta=pr^*\gamma+h\omega$.
- $i > \overline{r}(\pi(S)) + 1$. Since $IH^i_{\overline{r}}(cS^{l_S}/S^3) = 0$ and $i + 3 > \overline{q}(S)$, we need to prove that for any $\omega \in I\Omega^{i+3}(S^{l_S} \times]0$, 1[) verifying (1) $\omega = 0$ on $S^{l_S} \times]0$, $\frac{1}{2}$ [, and (2) $d \oint \omega = 0$, there exists $\eta \in I\Omega^{i+2}(S^{l_S} \times]0$, 1[) satisfying (1) with $d \oint \eta = \oint \omega$. It suffices to choose $\eta = (-1)^i \chi_1 \wedge \chi_2 \wedge \chi_3 \wedge \pi^* \int_0^- \beta \wedge dr$, where $\oint \omega = \alpha + dr \wedge \beta$ as in 4.4. \square

We arrive at the main result of this work.

Theorem 4.7. Let $\Phi: \mathbf{S}^3 \times M \to M$ be a semifree action. Then there exists a long exact sequence (9)

$$\cdots \to H^{i}(M) \xrightarrow{f^{*}} IH^{i-3}_{\overline{r}}(M/S^{3}) \xrightarrow{\wedge [e]} IH^{i+1}_{r+4}(M/S^{3}) \xrightarrow{\pi^{*}} H^{i+1}(M) \to \cdots,$$

where

- (a) f is the integration along the fibers of the natural projection $\pi: M \to M/S^3$,
- (b) \overline{r} is a perversity of M/S^3 verifying $-4 \le \overline{r}(\pi(S)) \le l_S 5$,
- (c) $\overline{r+4}$ is the perversity of M/S^3 defined by $\overline{r+4}(\pi(S)) = \overline{r}(\pi(S)) + 4$, and
- (d) $[e] \in IH^4_{\overline{A}}(M/S^3)$ is the Euler class of Φ .

Proof. Consider \overline{q} the perversity of M defined by $\overline{q}(S) = \overline{r}(\pi(S)) + 4$. The short exact sequence $0 \to \operatorname{Ker} f \stackrel{\iota}{\to} I\Omega^*(M) \stackrel{f^*}{\to} \operatorname{Im} f \to 0$ induces the long exact sequence (cf. 2.7)

$$\cdots \longrightarrow H^{i}(M) \xrightarrow{f^{*}} H^{i-3}\left(\operatorname{Im} f\right) \xrightarrow{\delta} H^{i+1}\left(\operatorname{Ker} f\right) \xrightarrow{\pi^{*}} H^{i+1}(M) \longrightarrow \cdots$$

The connecting homomorphism is defined by $\delta[\alpha] = [(-1)^{|\alpha|} d(\chi_1 \wedge \chi_2 \wedge \chi_3) \wedge \pi^* \alpha]$, which is $[(-1)^{|\alpha|} \pi^* (e \wedge \alpha)]$ on $H^*(\text{Ker } f)$ (cf. 3.3). It suffices now to apply 4.4 and 4.6. \square

Corollary 4.8. Let $\Phi: \mathbb{S}^3 \times M \to M$ be a semifree action. The long exact sequences

$$\cdots \to H^{i}(M) \xrightarrow{f^{*}} H^{i-3}(M/\mathbb{S}^{3}, M^{\mathbb{S}^{3}}/\mathbb{S}^{3})$$
$$\xrightarrow{\wedge [e]} H^{i+1}(M/\mathbb{S}^{3}) \xrightarrow{\pi^{*}} H^{i+1}(M) \to \cdots$$

and

$$\cdots \longrightarrow H^i(M) \xrightarrow{\begin{subarray}{c} f^* \\ \hline \end{subarray}} H^{i-3}(M/{\bf S}^3) \xrightarrow{\begin{subarray}{c} \land [e] \\ \hline \end{subarray}} IH^{i+1}_{\overline{4}}(M/{\bf S}^3) \xrightarrow{\pi^*} H^{i+1}(M) \longrightarrow \cdots$$

are exact, where for the second sequence we have assumed M/S^3 to be without boundary.

Proof. In both cases we apply the previous theorem taking into account Corollary 2.6. For the first one we consider the perversity \bar{r} defined by $\bar{r}(\pi(S)) = -4$. By definition, $IH_{\bar{r}}^*(M/S^3)$ is the cohomology of the complex made up of differential forms on $M - M^{S^3}/S^3$ vanishing on a neighborhood of M^{S^3}/S^3 ; therefore,

$$IH_{\overline{r}}^*(M/S^3) \cong H^*(M/S^3, M^{S^3}/S^3).$$

For the second case, we consider the perversity $\overline{r} = \overline{0}$. This perversity satisfies condition (c) of the previous theorem because if M/S^3 has no boundary then $l_S > 5$ for each $S \in \mathcal{S}$. \square

4.9. The sequence (1) does not become necessarily (9). Let us give an example. Consider the unit sphere \mathbf{S}^{4l+3} of \mathbb{HP}^{l+1} , where \mathbb{HP} are the quaternions. The product by quaternions induce the action $\Psi\colon \mathbf{S}^3\times\mathbf{S}^{4l+3}\to\mathbf{S}^{4l+3}$. Identify \mathbf{S}^{4l+4} with the suspension $\Sigma\mathbf{S}^{4l+3}=\mathbf{S}^{4l+3}\times[-1,1]/\{\mathbf{S}^{4l+3}\times\{1\},\mathbf{S}^{4l+3}\times\{-1\}\}$. Consider the action $\Phi\colon \mathbf{S}^3\times\mathbf{S}^{4l+4}\to\mathbf{S}^{4l+4}$ defined by $\Phi(\theta,[x,t])=[\Psi(\theta,x),t]$. The sequence (1) becomes

$$\cdots \longrightarrow H^{i}(\mathbf{S}^{4l+4}) \longrightarrow H^{i-3}(\Sigma \mathbb{HP}^{l}) \longrightarrow H^{i+1}(\Sigma \mathbb{HP}^{l}) \longrightarrow H^{i+1}(\mathbf{S}^{4l+4}) \longrightarrow \cdots,$$

which cannot be exact because $\chi(S^{4l+4}) \neq 0$.

We finish the work with a geometrical interpretation of the vanishing of the Euler class, generalizing [5, p. 321].

Proposition 4.9. If the principal fibration $\pi: (M - M^{S^3}) \to (M - M^{S^3})/S^3$ has a section, then [e] = 0.

The existence of a section of $\pi: (M-M^{S^3}) \to (M-M^{S^3})/S^3$ implies the vanishing of the Euler class [e'] of the action $\Phi': S^3 \times (M-M^{S^3}) \to (M-M^{S^3})$. Thus, the singular strata must have at most codimension four and, therefore, $F_4\Omega_{D_S}^* = \Omega^*(D_S - S)$ for each $S \in \mathcal{S}$. This implies $IH_{\frac{\pi}{4}}^*(M/S^3) = H^*((M-M^{S^3})/S^3)$. We have finished the proof because [e] = [e'].

ACKNOWLEDGMENT

The author would like to thank the Department of Mathematics of Purdue University for the hospitality provided during the elaboration of this work.

REFERENCES

- 1. R. Bott and L. Tu, Differential forms in algebraic topology, Graduate Texts in Math., vol. 82, Springer-Verlag, New York, 1982.
- 2. J. P. Brasselet, G. Hector, and M. Saralegi, *Théorème de De Rham pour les variétés stratifiées*, Ann. Global Anal. Geom 9 (1991), 211-243.
- 3. G. Bredon, Introduction to compact transformation groups, Pure Appl. Math., vol. 46, Academic Press, New York and London, 1972.
- 4. J. L. Brylinsky, Equivariant intersection cohomology, preprint, I.H.E.S., June, 1986.
- 5. W. Greub, S. Halperin, and R. Vanstone, *Connections, curvature, and cohomology*, Pure Appl. Math., vol. 47, Academic Press, New York and London, 1972.
- 6. M. Goresky and R. MacPherson, *Intersection homology theory*, Topology 19 (1980), 135-162.
- 7. _____, Intersection homology. II, Invent. Math. 71 (1983), 77–129.
- 8. G. Hector and M. Saralegi, *Intersection homology of S¹-actions*, Trans. Amer. Math. Soc. (to appear).
- 9. R. MacPherson, *Intersection homology and perverse sheaves*, Colloquium Lectures, Annual Meeting of the AMS, San Francisco, June 1991.
- 10. R. Thom, Ensembles et morphismes stratifiés, Bull. Amer. Math. Soc. 75 (1969), 240-284.
- 11. A. Verona, Stratified mappings—structure and triangulability, Lecture Notes in Math., vol. 1102, Springer-Verlag, New York, 1984.

Instituto de Matemáticas y Física Fundamental, Consejo Superior de Investigaciones Científicas, Serrano 123, 28006 Madrid, Spain

E-mail address: saralegi@cc.csic.es

Current address: Université des Sciences et Technologies de Lille, Laboratoire de Géométrie-

Analyse-Topologie, UFR de Mathématiques, 59655 Villeneuve d'Ascq Cedex, France

E-mail address: saralegi@gat.citilille.fr