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BOUNDEDNESS OF THE RIESZ POTENTIAL
ON A COMPLETE MANIFOLD

WITH NONNEGATIVE RICCI CURVATURE

LI JIAYU

(Communicated by J. Marshall Ash)

Abstract. In this paper we obtain a necessary and sufficient condition for the

boundedness of the Riesz potential on a complete manifold with nonnegative

Ricci curvature.

In this paper, we consider the boundedness of the Riesz potential (-A)~Q/2

(0 < a < n) on a complete Riemannian manifold with nonnegative Ricci curva-

ture. The author [1] proved that: (1) if Vx(r) < C„r^ (B < n) then (-A)~a/2

(0 < a < n) is never of type (p, q) for any p, q > 1, and (2) if Vx(r) > C„r"

then (-A)-"/2 (0 < a < n) is of type (p, q) where 1 < p < q < oo if and

only if \/q = 1/p - a/n . In this paper we improve this result and prove the

following result.

Theorem. Suppose M is a complete Riemannian manifold with nonnegative

Ricci curvature. Then (-A)~a/2   (0 < a < n) is of type (p, q)   (1 < p, q < oo)

if and only if Vx(r) > C„rn for all x £ M and 1/q = 1/p- a/n . The condition

is also necessary when 1 < p, q < oc.

Proof. We only need to prove that the condition is necessary.
Assume that (-A)_a/2 is of type (p, q) where 1 < p, q < oo . Then

(i) ii(-Aro/2/iL<c„,a,p,,ii/iiP

for all f£L>>(M).
We set f(y) = H(x, y, s) where 77(j>c, y, s) is the heat kernel of M, x is

a fixed point in M, and 5 is a fixed positive constant.

-)      /    ta'2~x      H(z,y,t)H(x,y,s)dydt
n^ l'       JO JM

.    . _1    /-oo

= r(-J      /    ta/2~xH(x,z,t + s)dt.

Using the estimate of the heat kernel [2]

(3) H(x,y,t)>Cn-^-~e-^x'^',
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one has

(-A)-«/2/(z) > r(f)_1 Cn rtf2-*fL—.e-**->V«»»dt.
V2/ 70 Vx(y/t + s)

By the Bishop comparison theorem we have

Vx(Vs) > ( vat y

r*(>/JT7) - \VT+s-J   '
so

(-A)-/2/(z) > C„,Q—L=- /V2"1 (-^) V**.*)/***)*,
/4v Vx(y/S) Jq \Vt + Sj

(5)

||(-A)-«/2/(2)||, > Cn,a,qw^rq ^J^^dz)119 .

We choose the geodesic spherical coordinates about x in M.   Since the

measure of Cut(x) = 0, we may ignore it and assume dV = y/g(p, 9)dd dp .

ir x       r°°
(6)   wr)Le-l"'"-'msd^Kml -M"'"^w

Using the Bishop comparison theorem we have

1 ' vx(P) -   + \p )  '       vx(s) ~ i + (yTslpY '

Substituting (7) into (6) yields

(8)

vAVS)Jm dz-iqh   i + iVt/P)" sdp-^,q.

Substituting (8) into (5) yields

(9) IK-A)-W2/WB^c«-.f(Kx(^»-»/f

On the other hand, clearly one obtains [2]

(10) W*S6.(1^hs.

Substituting (9) and (10) into (1) we have

(11) W2(Kf(v^))1/<?-|<C„,p,,,a(Ff(v^))1/"-1.

So

(12) (Kx(VS))I/'-,/«>CII,J,.,.^n/2.
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If 1/p - \/q < 0, inequality (12) could not hold for s sufficiently large;
therefore, we may assume 1/p - \/q > 0. So

(13) (V~s)n{xlp-llq)>Cn,P,q,asal2   for all 5 >0;

so 1/p - 1/q = a/n, that is, 1/q = 1/p - a/n.

Substituting (13) into (12) yields

(14) Vx(yfs)>Cn,p,q,a(^fs)n

for all x £ M. Equations (13) and (14) imply that the condition is necessary.
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