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ON THE SHAPE OF THE UNIT SPHERE IN Q(A)

LISA R. GOLDBERG

(Communicated by Charles Pugh)

Abstract. We show that the unit sphere in the Banach space of L1 holo-

morphic quadratic differentials on the disk is weakly uniformly convex with

exponent 1/2 at certain points.

0. Introduction

Recall that a holomorphic quadratic differential <j> on a Riemann surface T?

is an assignment of a holomorphic function 0,(z,) to each local coordinate z,

on R, subject to the transformation law

dz1
4>i(Zi) • j£ = <l>j{Zj)

on overlapping coordinate neighborhoods. It follows that the area element

\(j)(z)\ \dz\2 is globally defined on R, and the Lx norm of <f> is

M,= f \<f>(z)\\dz\2.
Jr

With this norm, the Lx holomorphic quadratic differentials on any Riemann

surface T? form a Banach space which we denote Q(R), and the unit sphere in

Q(R) is denoted S(R). When R is a Riemann surface of finite type, the space
Q(R) is the cotangent space to the Teichmuller space of marked conformal

structures on R [Ga].

We will focus on the special case when R is equal to the open unit disk A.

Since A is contractible, Q(A) can be identified with the Banach space Lxa(A)

of holomorphic L' -functions on A. It is nevertheless advantageous to think of

the elements of (2(A) as quadratic differentials. Specifically, there is an action

on Q(A) by the Mobius group Jf of hyperbolic isometries of the disk defined

by

M*(cf>) = (f)oM-(M')2

which preserves the Lx norm.
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Definition. A Banach space X is smooth if its unit sphere S is a smooth sub-

manifold in the following weak sense: at every x £ S, the limit

hjx±tyizjx\
t->o t

exists for all directions y £ S. This limit is the Gateaux derivative of the norm

at x in the direction y, and it is written x*(y). In fact, x» extends to the

unique linear functional on X for which x*(x) = 1 [D].

Consider the (nonsymmetric) pairing (•, •): S(A) x 5(A) -» R defined by

<0'V/) = Re//(Z)|^)Il"Z|2-

A straightforward calculation shows that

(0, y/) = <f>t{v)

is the Gateaux derivative of </> in the direction \p . Note that for M £ J£ ,

(M*<p,M*xp) = (</>,xp).

Translating into local coordinates, the quantity (</>, \p) is equal to the cosine

of the difference arg(</>) - ar%(\p) averaged over T? with respect to the area

measure \<j>(z)\ \dz\2. Consequently, if 0 is Lx close to \p then (<f>,ip) is

nearly 1. Indeed,

e = \Vf-4>\i> / \v{z) - <l>(z)\cos(arg(y/(z) - qb(z)) - arg(y/(z))) \dz\2
Ja

= (<p -<p, \p)= 1 -((j), \/f).

The converse, however, does not hold.

Definition. A smooth Banach space X is weakly uniformly convex at a point x

in the unit sphere 5 if, for all directions y £ 5, x»(y) = 1 - e implies that

\x - y\x =8 where (5—>0 as e —» 0. If 8 can be chosen to be 0(£a), then X

is weakly uniformly convex at x £ 5 with exponent a .

It is known that there are points in 5(A) at which (2(A) is not uniformly

convex. See [Mc, §5] or §3 of this article. By contrast McMullen proves that

Q(A) is weakly uniformly convex at the constant differential y/(z) = (l/n)-dz2

with exponent a < 1/6. Here, we improve his estimate:

Theorem. The Banach space Q(A) is weakly uniformly convex at ip = 1/n-dz2

with exponent 1/2.

Definition. A Banach space X is uniformly convex at a point x in the unit

sphere if, for all e > 0, there exists 8 > 0 such that

\y + x\ = 2 - e =>• \y - x\ < 8.

If 8 can be chosen to be 0(Ea), then X is uniformly convex at x with expo-

nent a.

A Hilbert space is uniformly convex with exponent 1/2 at every point. By

contrast, Q(A) is nowhere uniformly convex, as is illustrated by the following

example due to McMullen.
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Example. Fix  \p £ 5(A),  e > 0, and choose <p £ 5(A)  with the following

property: there exist disjoint subsets A, B c A such that

f |0| \dz\2 > 1 - e   and     f \ip\\dz\2 > 1 - s.
Ja Jb

This can be achieved by taking a sequence Mn  of Mobius transformations

which tend to oc in ^# and setting </> = M* ip for n sufficiently large. Then

\4>±<p\x>   f \<p(z) + ip(z)\ \dz\2 + f \cp(z) ± y/(z)\ \dz\2
J A J B

>   / \<f>(z)\ \dz\2 - [ \ip(z)\ \dz\2 + f \ip(z)\ \dz\2 - [ \<(>(z)\ \dz\2
Ja Ja Jb Jb

= 2 - 4e.

This article is organized as follows: § 1 recalls the construction of a particular

bounded linear projection from LX(A) to Lxa(A). This projection is used in §2

to prove the theorem. The concluding §3 describes connections between (2(A)

and the Bloch space and mentions several open problems.

1. A reproducing kernel

The material in this section is standard; references are [A, Ga, FR].

Recall that the density function of the Poincare metric on the disk A is given

by the formula

p(z) = 1/(1-\z\2).

Let Tv : A x A —> C be defined by

K(z,w) = 1/(1 -zw)\

For each z e A,

supp(w)~2\K(z, w)\ < oo.
toGA

Therefore,

Tf(z) = -- f p(w)-2K(z,w)f(w)\dw\2
n   Ja

is a holomorphic function on the disk whenever f £ LX(A).

For any w and any Mobius transformation M ,

f \K(z, w)\ \dz\2 = \M'(w)\2 ■ f \K(z,M(w))\ \dz\2.
Ja Ja

Since /A|Tv"(z, 0)| \dz\2 = n , it follows that /A \K(z, w)\ \dz\2 = p(w)2. This

fact, together with Fubini's theorem, implies that Tf £ LX(A) whenever / is

j \Tf(z)\ \dz\2 = \-\{j \p(w)-2K(z, w)f(w)\ \dz\2^j \dw\2

<3- j\f(w)\\dw\2.
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We will need the following

Proposition [FR]. The transformation T: LX(A) -* Lxa(A) is a bounded linear

projection with norm at most 3 that maps antiholomorphlc functions to con-

stants. More precisely, when 0 £ Lxa(A),

(1) 70 = 0,
(2) 70 = 0(0).

Proof. It remains to prove statements (1) and (2). Since holomorphic functions

satisfy the mean value property, we have

0(0) = — • (     <t>(re2Kie) dd = -- f p(w)~2K(0, w)<f>[w) \dw\2 = 70(0).
2n   7|z|=r n   Ja

Let A £ ^ be a Mobius transformation that takes 0 to z and set

_ A'(z)2<p(A(z))
{  ' ~        A>(0)2       ■

Then,

0(z) = 0(0) = - • / p(w)~2K(z, w)<p(w) \dw\2 = Tqb(z),
n   Ja

proving (1).

A second application of the mean value property (to antiholomorphic func-

tions) yields

<j>(0)A'(0)2 = -• I p(w)~2(j)(w)A'(w)2 \dw\2
n   Ja

= Jr(Qf • f p(w)-2K(z,w)J{w)\dw\2
Ja

-2      -2
since A'(w)  = A'(0)  -K(z,w). This shows (2).   D

Corollary. If 0 £ Lxa(A) is normalized so that 0(0) = 0, then

j |Re0(z)| \dz\2 < 6 • / |Im0(z)| \dz\2.
Ja Ja

Proof.

r(im0) = ^.r(0-0) = ^-0.

Therefore, |Re0|i < |0|i = 2 • |r(lm0)|, < 6 • |Im0(z)|,.    D

2. The exponent of weak uniform convexity is 1/2

Proof of Theorem. We are given xp = 1/n-dz2 and 0 in 5(A) satisfying

(ip,(f))= [ Re<p(z)\dz\2= 1 -s.
Ja

This mean value theorem yields Re0(0) = (1 -e)/n. Since JA |0(z)| \dz\2 = 1,

the Cauchy-Schwarz inequality implies

/ |Im0(z)| \dz\2 = /(|0(z)|2 - |Re0(z)|2)'/Vz|2
7a Ja

< (| |0(z)| - |Re0(z)| |c7z|2)     • \^J |0(2)| + |Re0(z)| \dz\2^j

<gl/2.2l/2.
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Finally,

I0-V|i= l\^-<t>{z)  \dz\2

< [\--Re(j>(0)  \dz\2+ [ \Re(p(0)-Re(j)(z)\\dz\2+ [ |Im0(z)| \dz\2
JaI71 Ja Ja

< - + 6 • / |Im0(O) - Im0(z)| \dz\2 + ex'2 • 21/2
n Ja

= 0(EX'2)

where the second inequality depends on the Corollary in § 1. This completes the

proof of the theorem.   □

Remark. The proof given above can be used to show that (2(A) is weakly uni-

formly convex with exponent 1/2 at:

(1) all constant differentials (e'e/%) • dz2, and
(2) all differentials M* \p where M e „# and \p is a constant differential.

3. Open questions

Below we list a few of the open questions that arise in this discussion.

Problem 1. Is Q(A) weakly uniformly convex at differentials 0 = ((n + 2)/2n) •

z" dz21 at differentials 0^0 which have holomorphic nonzero extensions to

a neighborhood of the closed disk?

Problem 2. Characterize the flat points in 5(A) where (2(A) is not weakly

uniformly convex.

For completeness, we include McMullen's construction of a flat point in Q(A)

[Mc, §5].

Example. Select a sequence of points z„ £ A which are the centers of a family

of disjoint hyperbolic disks whose radii tend to oo . Let M„ be a sequence of

Mobius transformations such that Mn(zn) = 0. Let \p = 1/n-dz2, y/„ = M*ip ,

and

0 = c.£2-"-M„>
n

where the constant is chosen so that 0 £ 5(A). Then (ip„ , 0) —> 1 ; however,

\y/n-<f>\x does not tend to 0.

Problem 3. Let Tv be a finite type Riemann surface. Discuss the weak uniform

convexity of Q(R).

Recall from §0 that, for every <p £ Q(A), the value (0, tp) is the Gateaux

or weak derivative of the Lx norm, in the sense that it is equal to

limly + ̂ li -\w\i
t^o t

A stronger concept of differentiability is the following:
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Definition. The L1 norm is Frechet differentiable at tp £ 5(A) if the limit

(0,^) = lim^±MLzWl
/—o t

exists uniformly for all directions 0 £ 5(A).

Problem 4. Is the norm on (2(A) Frechet differentiable at tp = 1/n • dz2!

The differentiability of the Lx norm on Q(R) has been used to show that

the Teichmuller metric of a finite type Riemann surface is C1 [R].

Problem 5. Is the Teichmuller metric on universal Teichmuller space a  C

metric?

Let 38 denote the Bloch space of holomorphic functions 0: A —> C whose

Bloch norm

101,3? =SUP/9(Z)-2|0(Z)|
z€A

is finite. There is a pairing ((•,•)): L\(A) x ^ —> C defined by

<<0,/?>) = limi. / </>(z)J(z)\dz\2.

For each yS e ^, the map /?,: Lj(A) -► C, defined by /i.(0) = ((0, /?)), is
linear, and the transformation fS i-> /?, is an isomorphism from ^ onto the

dual space Li (A)' [A].
There is a bounded operator P that projects the space L°°(A) onto 38 ,

defined by

Pf(z) = - ■ [ f(w)(l -wz)~2\dw\2.
n   Ja

Then P: L^A) —► 38 is analogous to T: L'(A) -> L^(A) defined in §1; in
particular, P(<p) = 0 if 0 is holomorphic. Identifying L^(A) with 2(A), we

obtain a composite map from 5(A) to L°°(A) to 38 given by

v- v/kl — ̂(v/lvl)-

This composition maps 5(A) to the Bloch space.

Problem 6. Which Bloch maps (or equivalently, which elements of L](A)*)

arise by this construction?

A straightforward calculation with Taylor series shows that

which is just our original pairing (0, tp) before taking the real part. Thus, the

issue in Problem 6 is to analyze the operator P: Loc(A) -* 38 .
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