A CONSTRUCTION OF A SUBSPACE IN EUCLIDEAN SPACE WITH DESIGNATED VALUES OF DIMENSION AND METRIC DIMENSION

TATSUO GOTO

(Communicated by James West)

Dedicated to Professor Ryosuke Nakagawa on his 60th birthday

ABSTRACT. For every integer m, k, and n such that $0 \le m \le n-1$ and $m \le k \le \min\{2m, n-1\}$, we construct a subspace $S^n_{m,k}$ in Euclidean n-space \mathbb{R}^n satisfying the conditions that $\mu \dim S^n_{m,k} = m$ and $\dim S^n_{m,k} = k$, where $\mu \dim$ denotes the metric dimension.

1. Introduction

Let X be a subspace in Euclidean n-space \mathbb{R}^n with $\mu \dim X = m$, $0 \le m \le n-1$, where $\mu \dim$ denotes the metric dimension. Then we have $m \le \dim X \le \min\{2m, n-1\}$ by Katětov's inequality $\dim X \le 2\mu \dim X$ [3].

In a previous paper [2] we constructed a subspace $S_{n,m}$ in \mathbb{R}^n such that $\mu \dim S_{n,m} = m$ and $\dim S_{n,m} = \min\{2m, n-1\}$. Thus the space $S_{n,m}$ is a subspace in \mathbb{R}^n of metric dimension m which has the maximal discrepancy with its covering dimension.

The purpose of this note is to prove the following theorem.

Theorem. Let m, k, and n be arbitrary integers such that $0 \le m \le n-1$ and $m \le k \le \min\{2m, n-1\}$. Then there exists a subspace $S_{m,k}^n$ in \mathbb{R}^n such that $\mu \dim S_{m-k}^n = m$ and $\dim S_{m-k}^n = k$.

The space $S_{m,k}^n$ given below can be expressed as $S_{m,k}^n = S_m^n \cap N_k^n$, where S_m^n denotes a space which is a slight modification of $S_{n,m}$ and N_k^n denotes Nöbeling's k-dimensional space in \mathbb{R}^n .

2. NOTATION AND DEFINITIONS

We denote by \mathbf{Q} , \mathbf{Z} , and \mathbf{N} the set of rational numbers, integers, and positive integers, respectively. For a point $x=(x_i)$ in \mathbf{R}^n we let $r(x)=\operatorname{card}\{i\colon x_i\in\mathbf{Q}\}$. Then Nöbeling's k-dimensional space N_k^n in \mathbf{R}^n can be expressed as $N_k^n=\{x\in\mathbf{R}^n\colon r(x)\leq k\}$ (cf. [1]).

Received by the editors December 3, 1991.

¹⁹⁹¹ Mathematics Subject Classification. Primary 55M10.

Key words and phrases. Dimension, metric dimension, Euclidean space, Nöbeling's space.

For a metric space X the metric dimension μ dim X is defined as follows; μ dim $X \le m$ iff for every $\varepsilon > 0$ there exists an open cover \mathscr{U} of X such that mesh $\mathscr{U} < \varepsilon$ and ord $\mathscr{U} \le n+1$ (cf. [1]).

The construction of the space $S_{n,m}$ in [2] is as follows. Let $T_i = \{t_{i,j} : j \in \mathbb{Z}\}$, $i \in \mathbb{N}$, be a set of real numbers such that:

(1)
$$t_{i,j+1} - t_{i,j} = 1/i \quad \text{for every } j$$

and

$$(2) T_i \cap T_{i'} = \emptyset if i \neq i'.$$

For every $x \in \mathbb{R}^n$, we set $r_i(x) = \text{card}\{j: x_j \in T_i\}$, $i \in \mathbb{N}$. Then the space $S_{n,m}$ in [2] can be written as

$$S_{n,m} = \{x \in \mathbb{R}^n : r_i(x) \le m \text{ for every } i \in \mathbb{N}\}.$$

In this construction we can assume that each T_i is contained in \mathbb{Q} , and we denote by S_m^n the space $S_{n,m}$ obtained by this modification.

3. Proof of the Theorem

We need a lemma due to Wilkinson [4].

Lemma. Suppose that A_1, A_2, \ldots are closed proper subsets in \mathbb{R}^n such that $\dim(A_i \cap A_j) \leq m$ whenever $i \neq j$. Then we have $\dim(\mathbb{R}^n - \bigcup_{i=1}^{\infty} A_i) \geq n - m - 2$. Proof of the Theorem. By the definition

(3)
$$S_m^n = \{ x \in \mathbf{R}^n : r_i(x) \le m \text{ for every } i \in \mathbf{N} \}.$$

Since $T_i \subset \mathbf{Q}$ for every i, it follows that $r_i(x) \leq r(x)$ for $x \in \mathbf{R}^n$, and hence $N_m^n \subset S_m^n$. Thus we have $N_m^n = S_{m,m}^n \subset S_{m,k}^n \subset S_m^n$, which implies that $m = \mu \dim N_m^n \leq \mu \dim S_{m,k}^n \leq \mu \dim S_m^n = m$ by [2, Lemma 4]. Thus we obtain

(4)
$$\mu \dim S_{m,k}^n = m \text{ for every } k, \ m \le k \le \min\{2m, n-1\}.$$

Moreover, we have $\dim(S^n_{m,k+1}-S^n_{m,k})\leq 0$ because $S^n_{m,k+1}-S^n_{m,k}=S^n_m\cap(N^n_{k+1}-N^n_k)$ and $\dim(N^n_{k+1}-N^n_k)=0$. Thus we obtain

(5)
$$\dim S_{m,k+1}^n \le \dim S_{m,k}^n + 1$$
 for every k , $m \le k \le \min\{2m, n-1\}$.

We let $A_i = \{x \in \mathbf{R}^n : r_i(x) \ge m+1\}$, $i \in \mathbf{N}$. Condition (1) implies that each A_i is the union of a countable locally finite family of (n-m-1)-dimensional planes. Hence, A_i is closed in \mathbf{R}^n and dim $A_i = n-m-1$. From (3) it follows that $\mathbf{R}^n - S_m^n = \bigcup \{A_i : i \in \mathbf{N}\}$.

Case 1. $2m \ge n-1$. In this case we have a sequence

$$N_m^n = S_{m,m}^n \subset S_{m,m+1}^n \subset \cdots \subset S_{m,n-1}^n$$

In view of (5), to prove that $\dim S_{m,k}^n = k$ for every k it suffices to show

$$\dim S_{m-n-1}^n \ge n-1.$$

From (2) and the assumption that $2m \ge n-1$, it follows that $A_i \cap A_j = \emptyset$ if $i \ne j$. Since $\mathbb{R}^n - N_{n-1}^n$ consists of a countable number of points and since

$$\mathbf{R}^{n} - S_{m-n-1}^{n} = (\mathbf{R}^{n} - S_{m}^{n}) \cup (\mathbf{R}^{n} - N_{n-1}^{n}) = \left\{ J\{A_{i} : i \in \mathbf{N}\} \cup (\mathbf{R}^{n} - N_{n-1}^{n}), \right.$$

we obtain (6) by the Lemma.

Case 2. 2m < n - 1. In this case we have a sequence

$$N_m^n = S_{m,m}^n \subset S_{m,m+1}^n \subset \cdots \subset S_{m,2m}^n$$

It follows from (2) that $\dim(A_i \cap A_j) \le n-2m-2$ if $i \ne j$, because 2m < n-1. On the other hand, $\mathbb{R}^n - N_{2m}^n$ is the countable union of (n-2m-1)-dimensional planes B_j , $j \in \mathbb{N}$. Hence we have

$$\mathbf{R}^n - S_{m-k}^n = \bigcup \{A_i \colon i \in \mathbf{N}\} \cup \{B_j \colon j \in \mathbf{N}\}.$$

It is clear that, for every i and j, $B_j \subset A_i$ or $\dim(A_i \cap B_j) \leq n - 2m - 2$ and that $\dim(B_j \cap B_{j'}) \leq n - 2m - 2$ whenever $j \neq j'$. Thus it follows from the Lemma that

$$\dim S_{m,2m}^n \ge n - (n - 2m - 2) - 2 = 2m.$$

This implies that $S_{m,k}^n = k$ for every k, $m \le k \le 2m$, by virtue of (5). This completes the proof.

REFERENCES

- 1. R. Engelking, Dimension theory, PWN, Warszawa, 1978.
- T. Goto, Metric dimension of bounded subspaces of Euclidean spaces. I, Topology Proc. (to appear).
- M. Katětov, On the relation between the metric and topological dimensions, Czechoslovak. Math. J. 8 (1958), 163-166. (Russian)
- 4. J. W. Wilkinson, A lower bound for the dimension of certain G_{δ} sets in completely normal spaces, Proc. Amer. Math. Soc. 20 (1969), 175–178.

DEPARTMENT OF MATHEMATICS, FACULTY OF EDUCATION, SAITAMA UNIVERSITY, URAWA, JAPAN