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ABSTRACT. The main purpose of this note is to verify that the Hausdorff di-
mension of the set of points N* at which the Cantor function is not differ-
entiable is [In(2)/In(3)]2. It is also shown that the image of N* under the
Cantor function has Hausdorff dimension In(2)/1In(3). Similar results follow
for a standard class of Cantor sets of positive measure and their corresponding
Cantor functions.

The Hausdor(f dimension of the set of points N* at which the Cantor function
is not differentiable is [In(2)/1n(3)]?.

Chapter 1 in [5] provides a nice introduction to Hausdorff measure and di-
mension; references [5-7] pursue the topic. We begin our proof with some
notation and discussion. Let C denote the Cantor set. Let N* (N~) denote
the set of points at which the Cantor function does not have a right side (left
side) derivative, finite or infinite. Then N* = N*UN~ U {¢: ¢ is an end point
of C} denotes the nondifferentiability set of the Cantor function. Although
we will assume familiarity with [4], where Eidswick characterized N*, some
material is repeated for completeness.

A number ¢ in C has a ternary representation ¢ = (f;, ..., t;,...), where
ti=0 or2.

Let z(n) denote the position of the nth zero in the ternary representation
of ¢;

(la) If t € N*, then limsup{z(n+ 1)/z(n)} >In(3)/In(2);

(1b) If limsup{z(n+ 1)/z(n)} >In(3)/In(2), then t € N*.

Let m; denote the d-dimensional Hausdorff measure, and put r = In(2)/In(3).

We will compute the Hausdorff dimension of N* by verifying

(A) If 1 >d >r?, then myN* =0.

(B) If d < r?, then myN* > K; > 0; K, will be specified later for a
sequence of d’s increasing to r2.

Condition (A) will be verified for each d satisfying the inequalities 1 > d >

r? by constructing a set E (depending on d) which contains N* and satisfies
the equation myE = 0. To verify (B), we will consider a sequence {d,} of
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d’s increasing to r?; for each d in the sequence, we will construct a subset E*
of N* with my(E*) > 0, which implies m,(N*) > m,(E*) = oo for h < d.
(A) implies my(N*) =0 for A > r?, and (B) implies m,(N*) = oo for h < r?.
Consequently, the Hausdorff dimension of N* is equal to r2.

Verification of (A). We will use sets E; = {t:t;, =0 and ¢, =2 for k < i <
u,}, where u;, will be specified below.

Fix d > r?. We will define a positive integer n (depending on d) and uy
for k> n so

(2) N*C |J Ex, m>n: N* Climsup{E;} = E®
k>m

and

3) 2k/(34) < k=2: kIn(2) — dug In(3) < —21In(k) :

r+(2/In(3))(In(k)/k) < d(ui/k).

The required strings of 2’s in the points of E°° will be short enough to apply
(1a) to verify (2), and they will be long enough to satisfy (3). Since d > r?, put
d=r(r+t), where t >0. Then ¢ = (d —r?)/r < 1/r. Choose n >3 so that

(4) In(n)/n < t/4.

Then In(m)/m is decreasing for m > n and 1/n < t/4. Thus, for kK > n we
can choose u; so that

(5) rrl—t2<u k< r ! <t/4.
According to (4) and the first inequality in (5), for k > n,
r+(2/In(3))(In(k)/k) < r+ 2(In(k)/k) <r+1/2
=r+t—t/2<r+t-d(t/2)=d(r " —1/2) <d(uc/k),

so (3) is satisfied for k > n.

Referring to (1a) and the second inequality in (5), (2) is satisfied. To show
that my(limsup{E;}) = my(E>) = 0, it suffices to observe that since each E;
can be covered with 2/~! intervals of length 3~% | then

o0 < 3 i Uj d< 3 '—2= .
my(E )_11922/(3 ) _hlgnZz 0

i>k i>k
Consequently, my;N*t = 0. Similarly, myN~ = 0; thus, myN*=0.

Verification of (B). For d = rsv, where s = (n — 1)/n and v = rs, we will
construct asubset E = E, of N* with myE > K = PQR, where P and Q are
positive numbers that will be defined later and R is a positive constant relating
my and the equivalent d-dimensional net measure (ter),; obtained by requiring
covers to be composed of ternary intervals [a, b] = [i/3%, (i + 1)/3%] (which
we call k-intervals) according to the inequality m,; > R(ter),. The existence
of R follows from a variation on a theme of Besicovitch that is discussed in
[5, §5.1; 7, Chapter 2, §7.1]; we are using closed ternary intervals, but only
countably many end points are involved in intersections. Since m, > R(ter),,
we verify (B) by establishing the inequality (ter);E > PQ below.
Covers are required to be ternary covers in the following discussion.
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We begin by describing a generic set E of the type to be used; E corresponds
to a sequence 0 < k; < u; < ky < up < --- of positive integers as follows:
E={t=(t(1),t2),...): t(k;)=0and t(k) =2 for k; <k <u;, i > 1}.
The set E is a closed subset of C and is composed of non-end-points of C.
When k; < k <u;, k isa fixed choice (for E); otherwise, k is a free choice.
The strings of fixed choices will be long enough to make the points in E satisfy
(1b), and the strings of free choices will be long enough to assure P > 0 and
0>0.
Let F(p, q) denote the number of free choices k with p <k <gq.
Because of [4, Theorem 1] and the fact that
lim inf(37(" /27"y < lim inf(3% /2%,
E is a subset of N* if inf;(u;/k;) > In3/In2. In particular, recalling the
definition of v, E is a subset of N* if u;,=v~'k;+r;, where 0<r; < 1.
Let {[a;, b;]} be a ternary cover of E. Since E contains no end point of
C, {(a;, bj)} is an open cover of E; E is compact, so we restrict attention
to a finite subcover. We can also require b; < a;,; and that [a;, b;]N E be
nonempty. Let 3°% = min{b; — a;}. For k > w, a k-interval U = [i/3F,
(i + 1)/3] intersects at most one (a;, b;); if this intersection is nonempty,
then U C [aj, b;].
The k;’s and u;’s considered below are all > w. To prove (ter),E > PQ,
it suffices to specify positive constants P and Q satisfying
(C) mylaj, bj]> P (number of u;-intervals in [a;, b;])37%¢
(D) (number of u;-intervals which intersect E)3~%4 > Q.
Letting [i/3%, (i + 1)/3%] denote a generic [a;, b;], we rewrite (C) and (D)
as
(C) 3—kd > P2F(k,k,)/3u,»d .
(D) 2F(0,k,-)/3u,-d > Q .
Define u; by the equation u; = v~ 'k; +r;, 0 <r; < 1. Thus, the points in
E satisfy (1b).
Define k;,| by specifying F(0, k;;|) = skiz| +Siy1, where 0 <s;,1 <1 and
si+1 1s minimal. Such a choice is possible because for 1 < f < k,
flk=(f=1)/(k=1)= (k= f)/lk(k - 1)] < k™"
This definition of k;,; provides enough free choices to assure P > 0 and
0>0.
Verification of (C).
3—kd > P2F(k,ki)/3uid PN 3(u,—k)d > P2F(k,k,)
o 2(u,—k)st2F(k,k,) o1 > P2[F(k,k,-)—us(u,-—k)]‘
Put h(k,i)=F(k, ki)—sv(u;— k). If kj; <k <uj,then h(k,i)<h(u;,i);
and if u;_; <k <kj,then h(k, i) < h(u;_,, i). Thus, it suffices to show that
h(u;, i) is bounded for j < i.
F(u,- , k,) - S’U(u,' - uj)
= [(Sk,' + S,') - (Skj + Sj)] - S’U[(’U_lk,' + I‘,‘) — ('U_lkj + I‘j)]
=[s;i —s;] —sv[ri—rj] < 1 +sv.

Hence, we put P = 2—(I+sv)
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Verification of (D). F(0, k;) = sk; + s;, u;d = (v='k; + r))rsv = rs(k; + vr;),
and 3" = 2; consequently, 2F(0.k)/3ud — (si—svr) > 2-sv  Thys, putting
Q = 275, we have shown that the Hausdorff dimension of N* is r?.

Now we can get some free results about Hausdorff dimension. Denote the
Cantor function by ¢.

The Hausdorff Dimension of ¢(N*) is In(2)/In(3).

This result follows straightforwardly from our previous work because the
binary representation of ¢(¢) is obtained by replacing the 2’s in the ternary
representation of ¢ by 1’s. Consequently, since 3" = 2 and intervals of length
3-k correspond to intervals of length 2% when we go from the ternary repre-
sentation of ¢ to the binary representation of ¢(¢), we can replace r? by r and
(ter); by (bin); and modify the preceding arguments appropriately to verify
that the Hausdorff Dimension of ¢(N*) is In(2)/In(3).

Referring to [1-3], denote the standard Cantor set of measure 1 — A by
C;, 0 < A < 1; denote the corresponding Cantor functions by ¢; and the
corresponding nondifferentiability sets by N; .

The sets N; and ¢;(N;) have Hausdorff dimension In(2)/In(3), 0<Ai< 1.

This assertion follows from the descriptions of the ¢;’s given in [1], Theo-
rems 2 and 3 in [3], and the results previously established in this note. Intervals
generated in the description of C; as an intersection of finite unions of 2%
intervals of length L, have L, = (1 — 2)2=% + 137k . The binary part of L,
overwhelms the ternary component; thus, variations of the arguments used to
compute the Hausdorff dimension of ¢(N*) suffice here.
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