SOME DEFORMATIONS OF THE HOPF FOLIATION ARE ALSO KÄHLER

PAUL D. SCOFIELD

(Communicated by Jonathan M. Rosenberg)

ABSTRACT. Fix $\alpha=(\alpha_0,\ldots,\alpha_n)\in \overset{\circ}{\mathbf{R}}{}^{n+1}$. The trajectories of the flow on $\mathbf{S}^{2n+1}\subset \mathbf{C}^{n+1}$ given by

$$\phi_t: (z_0, \ldots, z_n) \mapsto (z_0 e^{i\alpha_0 t}, \ldots, z_n e^{i\alpha_n t})$$

constitute the leaves of a 2n-codimensional (nonsingular) foliation of S^{2n+1} . We use (locally defined) branches of the logarithm to give this foliation a (global) transverse Kähler structure.

Introduction

Fix $\alpha = (\alpha_0, \ldots, \alpha_n) \in \overset{\circ}{\mathbf{R}}^{n+1} \equiv \mathbf{R}^{n+1} - \{0\}$. The trajectories of the flow on $\mathbf{S}^{2n+1} \subset \mathbf{C}^{n+1}$ given by

$$\phi_t: (z_0, \ldots, z_n) \mapsto (z_0 e^{i\alpha_0 t}, \ldots, z_n e^{i\alpha_n t})$$

constitute the 1-dimensional leaves (the flow has no fixed points) of a codimension 2n foliation \mathcal{F}_{α} of S^{2n+1} . Aside from the n+1 great circles (degenerate tori) determined by $|z_j|=1$, the leaves are skew lines on the tori determined by $|z_0|=\rho_0,\ldots,|z_n|=\rho_n$, where each ρ_j is constant (and of course $\rho_0^2+\cdots+\rho_n^2=1$).

We use (locally defined) branches of the logarithm to give this foliation a transverse Kähler structure (cf. [D, NT, S]). The difficulty here is showing that this Kähler structure is globally well defined.

Except when $\alpha = (\alpha_0, \dots, \alpha_0)$ (the Hopf fibration), the winding lines on the nondegenerate tori are not geodesics. Thus \mathscr{F}_{α} is a nonharmonic Kähler foliation (cf. [NT, 5.3]). Knowing that arbitrarily near a fixed Hopf foliation,

there exist \mathcal{F}_{α} parametrized by \mathbf{R}^{n+1} , the (real) dimension of the space of (transverse) Kähler foliations near the Hopf foliation is at least n+1. The (complex) dimension of the space of (transverse) holomorphic foliations near the Hopf foliation is $(n+1)^2 - 1$ [DK, 2.16].

Received by the editors October 14, 1991 and, in revised form, January 14, 1992.

¹⁹⁹¹ Mathematics Subject Classification. Primary 53C12, 53C55.

Key words and phrases. Hopf foliation, transverse Kähler foliation.

Reasearch supported by a Trjintzinsky Fellowship in Mathematics at the University of Illinois at Urbana-Champaign.

This construction was presented in [S, §4.8]. I want to thank Philippe Tondeur for encouragement and assistance.

THE TRANSVERSE KÄHLER STRUCTURE

When $\alpha = (1, ..., 1)$, \mathscr{F}_{α} is the Hopf fibration $S^{2n+1} \to \mathbb{CP}^n$ induced by the map

$$(z_0,\ldots,z_n)\mapsto [z_0,\ldots,z_n].$$

The generalization of this fibration map for other values of α is a "root map" that is *only locally defined* but may be designated by

$$(z_0,\ldots,z_n)\mapsto [z_0^{\alpha_1\cdots\alpha_n},\ldots,z_j^{\alpha_0\cdots\hat{\alpha}_j\cdots\alpha_n},\ldots,z_n^{\alpha_0\cdots\alpha_{n-1}}],$$

so that (locally) the leaf $(z_0e^{i\alpha_0t}, \ldots, z_ne^{i\alpha_nt})$ gets mapped to a single point since

$$\frac{(z_j e^{i\alpha_j t})^{\alpha_0 \cdots \hat{\alpha}_j \cdots \alpha_n}}{(z_k e^{i\alpha_k t})^{\alpha_0 \cdots \hat{\alpha}_k \cdots \alpha_n}} = \frac{z_j^{\alpha_0 \cdots \hat{\alpha}_j \cdots \alpha_n}}{z_k^{\alpha_0 \cdots \hat{\alpha}_k \cdots \alpha_n}}, \qquad j, k \in \{0, \ldots, n\}.$$

To define transversely holomorphic coordinate charts (see, for example, [S, §3.3]), fix $(z_0, \ldots, z_n) \in \mathbf{S}^{2n+1}$ with $z_k \neq 0$ and choose a branch for the $(\alpha_0 \cdots \hat{\alpha}_j \cdots \alpha_n)$ th power of each z_j . Then the "root map" is locally well defined and images of the leaves are points. Moreover, the image under the root map of a neighborhood U in its domain may be identified with a neighborhood $V \subset \mathbf{CP}^n$ that (locally) can be given holomorphic coordinates $V \hookrightarrow \mathbf{C}^n$, and these induce transversely holomorphic coordinates on U:

$$U \longrightarrow \mathbf{R} \times V \longrightarrow \mathbf{R} \times \mathbf{C}^{n}$$

$$\downarrow \qquad \qquad \downarrow$$

$$V \longrightarrow \mathbf{C}^{n}$$

One can also pull back the Fubini-Study metric on \mathbb{CP}^n along these root maps to obtain a globally well-defined transverse Hermitian metric compatible with this "canonical" transverse almost complex structure. In particular, the imaginary part of the Fubini-Study metric is a closed 2-form $\Omega_{\mathbb{CP}^n}$, so the pulled-back 2-form Ω_{α} is also closed. The structure induced by the (locally defined) root maps forces Ω_{α} to have rank 2n and to be smooth and closed. We will now see that Ω_{α} is globally well defined.

To be more concrete, with respect to local coordinates in a particular homogeneous coordinate system on \mathbb{CP}^n , e.g.,

$$\zeta_j = u_j/u_0, \qquad j = 1, \ldots, n,$$

the Kähler form from the Fubini-Study metric is given by

$$\Omega_{\mathbf{CP}^n}(\zeta) = \frac{i}{2} \frac{(1+|\zeta|^2) \sum_{\mu=1}^n d\zeta_\mu \wedge d\overline{\zeta}_\mu - \sum_{\mu,\nu=1}^n \overline{\zeta}_\mu \zeta_\nu d\zeta_\mu \wedge d\overline{\zeta}_\nu}{(1+|\zeta|^2)^2}$$

[W, p. 190]. Denote $\alpha_{\widehat{j}} = \alpha_0 \cdots \widehat{\alpha_j} \cdots \alpha_n$, a product of n real numbers that we will encounter repeatedly. $\Omega_{\mathbb{CP}^n}$ can be pulled back using

$$\zeta_j = \frac{z_j^{\alpha_j}}{z_0^{\alpha_j}}, \qquad j = 1, \ldots, n,$$

$$1 + |\zeta|^2 = 1 + \sum_{i=1}^{n} \frac{|z_j|^{2\alpha_j^2}}{|z_0|^{2\alpha_0^2}} = \frac{\sum_{j=0}^{n} |z_j|^{2\alpha_j^2}}{|z_0|^{2\alpha_0^2}},$$

and

$$d\zeta_j = \frac{z_j^{\alpha_{\widehat{j}}-1}}{z_0^{\alpha_{\widehat{j}}+1}} (\alpha_{\widehat{j}} z_0 dz_j - \alpha_{\widehat{0}} z_j dz_0)$$

to obtain

$$\begin{split} \Omega_{\alpha}(z) &= \frac{i}{2(1+|\zeta|^2)^2} \bigg\{ (1+|\zeta|^2) \sum_{\mu=1}^n \frac{|z_{\mu}|^{2(\alpha_{\widehat{\mu}}-1)}}{|z_0|^{2(\alpha_{\widehat{0}}+1)}} \\ & \times \bigg(\alpha_{\widehat{\mu}}^2 |z_0|^2 dz_{\mu} \wedge d\overline{z}_{\mu} - \alpha_{\widehat{\mu}} \alpha_{\widehat{0}} z_0 \overline{z}_{\mu} dz_{\mu} \wedge d\overline{z}_0 \\ & - \alpha_{\widehat{0}} \alpha_{\widehat{\mu}} z_{\mu} \overline{z}_0 dz_0 \wedge d\overline{z}_{\mu} + \alpha_{\widehat{0}}^2 |z_{\mu}|^2 dz_0 \wedge d\overline{z}_0 \bigg) \\ & - \sum_{\mu, \nu=1}^n \frac{z_{\nu} \overline{z}_{\mu} |z_{\mu}|^{2(\alpha_{\widehat{\mu}}-1)} |z_{\nu}|^{2(\alpha_{\widehat{\nu}}-1)}}{|z_0|^{2(2\alpha_{\widehat{0}}+1)}} \\ & \times \bigg(\alpha_{\widehat{\mu}} \alpha_{\widehat{\nu}} |z_0|^2 dz_{\mu} \wedge d\overline{z}_{\nu} - \alpha_{\widehat{\mu}} \alpha_{\widehat{0}} z_0 \overline{z}_{\nu} dz_{\mu} \wedge d\overline{z}_0 \\ & - \alpha_{\widehat{0}} \alpha_{\widehat{\nu}} z_{\mu} \overline{z}_0 dz_0 \wedge d\overline{z}_{\nu} + \alpha_{\widehat{0}}^2 z_{\mu} \overline{z}_{\nu} dz_0 \wedge d\overline{z}_0 \bigg) \bigg\}. \end{split}$$

This 2-form is globally well defined since the only roots that occur are roots of real functions. Similarly, the associated (transverse) tensor

$$h_{\alpha} = \left(\sum h_{\alpha\mu\nu}(z) dz_{\mu} \otimes d\overline{z}_{\nu}\right) (1 + |z|^{2})^{-2}$$

is globally well defined. It is obviously compatible with its own natural transverse complex structure. We thus have a transverse Kähler structure on \mathcal{F}_{α} , the 1-dimensional foliation of \mathbf{S}^{2n+1} .

REFERENCES

- [D] T. Duchamp, Characteristic Invariants of G-foliations, Ph.D. thesis, Univ. of Illinois, Urbana, IL, 1976.
- [DK] T. Duchamp and M. Kalka, Holomorphic foliations and deformations of the Hopf foliation, Pacific J. Math. 112 (1984), 69-81.
- [NT] S. Nishikawa and Ph. Tondeur, Transversal infinitesimal automorphisms for harmonic Kähler foliations, Tôhoku Math. J. 40 (1988), 599-611.
- [S] P. D. Scofield, Symplectic and complex foliations, Ph.D. thesis, Univ. of Illinois, Urbana, IL,
- [W] R. O. Wells, Differential analysis on complex manifolds, Graduate Texts in Math., vol. 65, Springer, New York, 1980.

DEPARTMENT OF MATHEMATICS, WASHINGTON & LEE UNIVERSITY, LEXINGTON, VIRGINIA 24450

E-mail address: scofield.p.d@p9955.wlu.edu