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LOCAL ISOGENY THEOREM FOR DRINFELD
MODULES WITH NONINTEGRAL INVARIANTS
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(Communicated by William W. Adams)

Abstract. An isogeny theorem for the Drinfeld modules of rank 2 over a local

field analogous to that of elliptic curves is proved.

0. Introduction

Let /c be a global function field over a finite constant field Fq. Drinfeld

introduced the notion of elliptic modules, which are now known as Drinfeld

modules, on k in analogy with classical elliptic curves. Hayes also studied this

independently to generate certain class fields of k .

Drinfeld modules of rank 2 have many interesting properties analogous to

those of elliptic curves. We fix k to be the rational function field Fq(T).

In [ 1 ] we introduced the Tate parametrization of Drinfeld modules of rank 2

with nonintegral invariants over a complete field. In this article we use the

description of division points of Tate-Drinfeld modules and the methods in [6,

7] to get an isomorphism theorem for Drinfeld modules over a field with some

restrictions on t and /'. In other words, there exist a and b in A = Fq[T]

such that pa(t~]) - Pb(t'~l) is integral. This restriction does not appear in the

classical case because a/fi is a unit if the valuations of a and /? are equal.

From now on Drinfeld modules always mean Drinfeld modules of rank 2

defined on A = Fq[T].

1. Tate-Drinfeld modules

In this section we give a quick review of Tate-Drinfeld modules, which are

the function field analogues of Tate elliptic curves [1]. Let k = Fq(T) and

koo = Fq((T)), and let C be the completion of the algebraic closure of k^ .

Let n be an element of C associated to the Carlitz module

pT = TX + Xq.

Any rank 2 Drinfeld module cp over C on A = Fq[T] is completely determined

by
cpT = TX + nx-qgXq + nx-q2AXqI.
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Then g and A are modular forms on Q, = C - K^ for GL2(^4) of weight

q - 1 and q2 - 1, respectively. Let

t = t(z) = e~x(nz)

where

'(*>=*iro-5r)-
a€A

Then g and A have /-expansions with coefficients in A [3].

Now let K be a complete field containing k and 8 > 0 a real number so

that #(r) and A(t) converge for \t\ < d. For t e K with |r| < 8, we define

the Tate-Drinfeld module associated to / by

<$ = TX + g(t)Xq+A(t)Xq\

The Tate-Drinfeld map e^ is defined to be

^w^n'O-^i))-
Remark 1.1. If one views K as an ^-module via p (i.e., a • x = pa(x) for

a e A, x e K), then ett) has exactly the same form as the exponential map

e^(z) associated to the lattice A • t~x.

The following is given in [1].

Proposition 1.2. (i) The set Dt of zeros of e^ is D, = {pa(t~l) : a e A}.

(ii)   e(t)(u + v) = e{t)(u) + e{l)(v).

(iii)   cpat)(e{t)(u)) = e(t)(pa(u)).

Remark 1.3. In the classical case, the Tate map is a homomorphism from the
multiplicative group K* to the elliptic curve. Proposition^ .2 says that the

Tate-Drinfeld map is an ^4-module homomorphism from K with ^4-module

structure given by the Carlitz module to K with ^-module structure given by

the Tate-Drinfeld module tp^ .

Proposition 1.4. For a e A, let ta — l/pa(t~x). Then tp^ and cp^'^ are

isogenous.

Proposition 1.5. Let

D\la = {u eK : Pa(u) e Dt},

where K is the algebraic closure of K. Then e^ induces a Galois isomorphism

ofD\la/Dt with Ker4r>.

2.   p-ADIC REPRESENTATION AND KUMMER THEORY

Let p = (p(T)) be a prime ideal of A — Fq[T], where p(T) is a monic

irreducible polynomial in A. Let cp be a Drinfeld module of rank 2. Then

Ker (pP(T)n has a natural structure of an ^/p"-module. Hence

Tv(<p) = lim Ker<pp{Tr

is an Ap-module, where

Ap = lim A/pn.
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Let

Vv(cP) = Tp(cP) ®Af kp.

Now let K be a finite extension of kp and cp^ be a Tate-Drinfeld module

of rank 2 over K associated to t with \t\ < 1. We use 1 instead of 8 because

A is contained in the ring of integers of K and the coefficients of g and A

are in ^4.
If z e D]'P^T' , then pp^n(z) lies in Dt. Hence there is an element a e

A such that pP(T)"{z) = Pa(t~x) ■ The association z i-> a mod p" defines a

homomorphism of A.P(Ty = Ker (pp')T)„ onto A/pn . Hence the Tate-Drinfeld

map gives rise to an exact sequence

(1) 0 - Rn - Ap(Tr ^ A/pn - 0

of A[G]-modules, where G = Gal(^/A:) and Rn is the set of p(T)nth roots

of p (i.e., Ker/?P(7-)-). By taking the limits, we obtain an exact sequence of

y4p[Cr]-modules

(2) o^Tf(R)^Tp(cpM)-^Ap-*0

and tensoring with kp, we get an exact sequence

(3) o^Vp(R)^Vp(<pU)-+kp->0

where G acts on Ap and kp trivially.

We will show that the sequence (3) does not split. To do this we introduce

an invariant x, which belongs to the ^-module lim HX(G, R„). Let d he the

coboundary map
d:H°(G,A/pn)^Hl(G,Rn)

with respect to the sequence (1), and let x„ = d(l). Let x he an element of

lim HX(G, R„) defined by the family {xn}, n > 1 .

From the exact sequence of /l[C7]-modules

iJ-*Rn-*KPp$"K^0,

we have an isomorphism 8 : K/pp(T)^K) -> HX(G, Rn), since HX(G, K) = 0

by Hilbert's Theorem 90.

Proposition 2.1. (a) The isomorphism 8 : K/pP(T)»(K) —> Hl(G, R„) transforms

the class of t~x mod pP(Ty(K) into x„.

(h) The element x is A-torsion free.

Proof, (a) follows easily from the definition of x„ and 8 . To prove (b), sup-

pose that a • x = pa(x) = 0 for some a e A . Then

a-rx = pa(rx) e ppiT)n(K)

for every n by (a). Let v be the discrete valuation on K. Then

v(pa(rx)) = v(t-x)q^a,

v(pp(TY(an)) = v(an)qni^T\

But pa(t~l) - PP(T)»{an) implies that

(4) v(a„) = U(r1)<?de8a~"degpm-
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But for sufficiently large n, (4) implies that v(a„) is not an integer, which is

impossible.

Corollary 2.2. The exact sequence (3) does not split.

Proof. Exactly the same proof as in [6, 7], replacing Zp by Ap and p by p(T)

would give the result.

3. Local isogeny theorem

In this section, we will prove the following local isogeny theorem.

Theorem 3.1. Let K be a finite extension of kp and cf the ring of integers in K.

Let v be the discrete valuation on K and t, t' e K* with v(t) and v(t') > 0.

Let cp — <p^' and tp' = cpv I be the corresponding Tate-Drinfeld modules over K.

Suppose that there exist a, b e A- {0} such that pa(t~x) - Pb{?~x) lies in cf.

Then cp and cp' are isogenous if and only if Vp(tp) and Vp(<p') are isomorphic

as kp[G]-modules.

Proof. The 'only if part is trivial. To show the other direction, it suffices to

show that there exist elements a, B e A such that pa(t) — pp(t') by Propo-

sition 1.2. Let cp : Vp(cp) —> Vp(cp') be a C7-isomorphism. By Corollary 2.2, cp

maps Vp (R) into itself. After multiplying cp by some element of Ap, we may

assume that cp maps Tp(cp) into Tp(cp'). Then we have a commutative diagram

0 -y TP(R) -►   Tp(cP)  -► Ap -► 0

(5) r v A
-L -L 4-

0 -► TP(R) -► Tp(cP') -> Ap -► 0

where r, s e Ap. Let x and x' be the invariants in lim HX(G, R„) as-

sociated to cp and cp', respectively, given in the previous section. Then the

commutativity of (5) shows that r • x = s • x', that is, writing r = (r„) and

5 = (s„), with degr„ < degp(T)" and degs„ < degp(T)n ,

Prn{Xn) = Psn{x'n)

in Hx(G,Rn). Therefore pr(rx) = ps(t'~x) in lim K/pp(TY(K) by Proposi-

tion 2.1. Let
z = pa(rx)-Pb(t'-x)etf.

Then

Psa-rbir1) = Psa(rl) - Prb{t~l) = Psipbit'^) + z) - prb(rX)

= pb(ps(t'-])-pr(rx)) + ps(z).

Write u — sa - rb = (u„), with de%un < degp(T)n . Since ps(t'~x) -

pr(t~x) = 0 in lim K/ppiTy,(K) and paPb = PbPa , there exists an e K such

that
PuK{t~l) = Pp(T)*{*n) + pSn(z), v(a„) < 0.

Suppose that u = (un) ^ 0. Then for all sufficiently large n ,

gcd(un,p(T)")=p(T)k
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for some fixed k < n . Then there are c„ , d„ e A such that

c„un + dnp(T)"=p(T)k.

Hence

Pp(T)Ar  ) = Pc„u„+d„p(T)"{t~  )

= PP(T)»{pc„(an) + PdM~X)) + integral

= Pp{T)-(Bn) + integral,      fin e K.

Then pp{T)k(rx - pp{T)n-k(B„)) is integral, and so rx - pp{T)„-k(B„) is integral

for all large n, which is impossible. Therefore u = 0. Hence sa = rb and

ps(z) = 0 in  lim K/pp(TY(K).

Then

(6) Psn{z) = pp(T)n(Pn).

Let ac = v(s), the valuation of s in kp. Then gcd(s„, p(T)n) = p(T)k for

n>k. Hence there exist a„ and bn in /I such that ansn + bnp(T)n = /?(r)fc .

From (6) we have

Pp(T)"{z) = Pans„+bnp(T)>-(z) = PaSPsni2)) + Pp(T)»(Pb„{Z))

= PaSPpiTAPn)) + Pp(T)»{Pb„(z))

= Pp(T)»{paAPn) + Pb„(z))-

Therefore u = pP(T)k(z) = 0 in lim K/pP(Ty(K). The proof is complete if we

show that u is a root of pc for some c e A. Let *p be the maximal ideal of

cf and the residual class degree of cf /*p be m . Since p(T) e ^3 and

/>P(r)«(*) = *«'"',"(r>    (mod(p(r))),

we have

ppiT)m_x(u) = 0   mod<p.

Let u' = /AP(7-)m_i(M). Then v(u') > 0. Since w' = 0 in lim K/pp{TY(K),

there is a sequence {<J„} in K with w' = pP(T)"(^n) ■ Since i>(w') > 0, we have

v(8„) > 0. In this case it is easy to see that

v(Pp{T)n(8n)) —* oo    as n —y oo.

Hence «' = lim/9P(7-)n(f5„) = 0, and we are done.

Remark 3.2. The ./'-invariant ;', of cp^ is defined to be ;', = g(t)q+x/A(t). It

is shown in [3] that

jt — —^y + power series in tq~x .

Hence jt is nonintegral iff v(t) > 0.

Remark 3.3. (a) The proof of Theorem 3.1 is quite similar to that of the classical

case except the use of the assumption that pa(t~l) - Pb{t'~x) lies in & • The

comparison is shown in the following table:
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Elliptic curve case    Drinfeld module case

q,q'_r1, t'~x

v(q), v(q') e Z a,beA

a = q»lrt/q'M<i)      z = pa(rx) - pb(t~x)

root of unity torsion points of p

In the elliptic curve case, for each element q e K*, there is a naturally

associated integer v(q), the valuation of q . The fact that a — qv(ql)/q'v(q) is

a unit in cf is used in the proof. In our case, there is no natural element of A

associated to an element t e K, however, we need some elements a and b in

A, which make z = pa(t~{) - Pbit''1) to be integral in order to prove that

(i)  sa = rb ,
(ii)   z is a torsion point of p .

(h) The condition that pa(t~l) - Pb{t'~x) lies tn cf is not necessary if 0 <

v(t), v(t') < q . Indeed, in the proof we showed that

Ps„(rx) - ps„(t'-x) = pP(T)*(a„)

for some a„ e K with degr„ , degs„ < degp(T)" . Then

v(prn(rx)) = v(rl) -c7degr" > -t7l+degf" > -c?ndegp(r)'

and

v(ps„(t'~1)) = v(t'~x)qdeils"   > -qx+de&s" > -q«to*p(T)^

Thus

v(an)q"d^^ = V(prn(rl) - ps„(t'-1)) > -q»**Pm

since v(an) is an integer, v(a„) > 0. Then pP(T)«{<Xn) lies in cf, as does

pr„(t~X) ~ Ps„if'~X) • Hence one may take a — rn, b — s„ for any n .

(c) The existence of the condition prevents one from getting the global isogeny

theorem. Thus one may ask: "Do there exist a and b so that pa(t~x)-pb(t'~x)

lies in cf only assuming that v(t), v(t') > 0 and V9(cp) and Vp(tp') are G-

isomorphic ?"

Remark 3.4. One might be able to replace A by a more general function ring B

to get the similar result. But there are some problems to be resolved primarily

because B is not a principal ideal domain. For example,

(i) One should consider a family of Tate-Drinfeld modules </>(b) for each

ideal class (b) of B .
(ii) To each </>(b) one must replace the Carlitz module by the sign normalized

rank 1 Drinfeld module /?(b), which is defined over the Hilbert class field of B .
Hence we need more restrictions on the complete field K to make p(b) Galois

invariant.
(iii) One must define invariants of Drinfeld modules of rank 2 on B to get

the analogue of Proposition 1.4.
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