LOCAL ISOGENY THEOREM FOR DRINFELD MODULES WITH NONINTEGRAL INVARIANTS

SUNGHAN BAE AND PYUNG-LYUN KANG

(Communicated by William W. Adams)

ABSTRACT. An isogeny theorem for the Drinfeld modules of rank 2 over a local field analogous to that of elliptic curves is proved.

0. Introduction

Let k be a global function field over a finite constant field \mathbf{F}_q . Drinfeld introduced the notion of elliptic modules, which are now known as Drinfeld modules, on k in analogy with classical elliptic curves. Hayes also studied this independently to generate certain class fields of k.

Drinfeld modules of rank 2 have many interesting properties analogous to those of elliptic curves. We fix k to be the rational function field $\mathbf{F}_q(T)$. In [1] we introduced the Tate parametrization of Drinfeld modules of rank 2 with nonintegral invariants over a complete field. In this article we use the description of division points of Tate-Drinfeld modules and the methods in [6, 7] to get an isomorphism theorem for Drinfeld modules over a field with some restrictions on t and t'. In other words, there exist a and b in $A = \mathbf{F}_q[T]$ such that $\rho_a(t^{-1}) - \rho_b(t'^{-1})$ is integral. This restriction does not appear in the classical case because α/β is a unit if the valuations of α and β are equal.

From now on Drinfeld modules always mean Drinfeld modules of rank 2 defined on $A = \mathbf{F}_a[T]$.

1. TATE-DRINFELD MODULES

In this section we give a quick review of Tate-Drinfeld modules, which are the function field analogues of Tate elliptic curves [1]. Let $k = \mathbf{F}_q(T)$ and $k_{\infty} = \mathbf{F}_q(T)$, and let C be the completion of the algebraic closure of k_{∞} . Let $\bar{\pi}$ be an element of C associated to the Carlitz module

$$\rho_T = TX + X^q$$
.

Any rank 2 Drinfeld module ϕ over C on $A = \mathbf{F}_q[T]$ is completely determined by

$$\phi_T = TX + \bar{\pi}^{1-q} g X^q + \bar{\pi}^{1-q^2} \Delta X^{q^2}.$$

Received by the editors April 29, 1991 and, in revised form, January 16, 1992. 1991 *Mathematics Subject Classification*. Primary 11G09, 11R58. Partially supported by KOSEF Research Grant 91-08-00-07.

Then g and Δ are modular forms on $\Omega = C - K_{\infty}$ for $GL_2(A)$ of weight q-1 and q^2-1 , respectively. Let

$$t = t(z) = e^{-1}(\bar{\pi}z)$$

where

$$e(z) = z \prod_{\alpha \in A}' \left(1 - \frac{z}{a\bar{\pi}} \right).$$

Then g and Δ have t-expansions with coefficients in A [3].

Now let K be a complete field containing k and $\delta > 0$ a real number so that g(t) and $\Delta(t)$ converge for $|t| < \delta$. For $t \in K$ with $|t| < \delta$, we define the *Tate-Drinfeld module* associated to t by

$$\phi_T^{\langle t \rangle} = TX + g(t)X^q + \Delta(t)X^{q^2}.$$

The Tate-Drinfeld map $e_{\langle t \rangle}$ is defined to be

$$e_{\langle t \rangle}(u) = u \prod_{a \in A}' \left(1 - \frac{u}{\rho_a(t^{-1})} \right).$$

Remark 1.1. If one views K as an A-module via ρ (i.e., $a \cdot x = \rho_a(x)$ for $a \in A$, $x \in K$), then $e_{\langle t \rangle}$ has exactly the same form as the exponential map $e_{\Lambda}(z)$ associated to the lattice $A \cdot t^{-1}$.

The following is given in [1].

Proposition 1.2. (i) The set D_t of zeros of $e_{(t)}$ is $D_t = \{\rho_a(t^{-1}) : a \in A\}$.

- (ii) $e_{\langle t \rangle}(u+v) = e_{\langle t \rangle}(u) + e_{\langle t \rangle}(v)$.
- (iii) $\phi_a^{\langle t \rangle}(e_{\langle t \rangle}(u)) = e_{\langle t \rangle}(\rho_a(u))$.

Remark 1.3. In the classical case, the Tate map is a homomorphism from the multiplicative group K^* to the elliptic curve. Proposition 1.2 says that the Tate-Drinfeld map is an A-module homomorphism from \overline{K} with A-module structure given by the Carlitz module to \overline{K} with A-module structure given by the Tate-Drinfeld module $\phi^{(t)}$.

Proposition 1.4. For $a \in A$, let $t_a = 1/\rho_a(t^{-1})$. Then $\phi^{(t)}$ and $\phi^{(t_a)}$ are isogenous.

Proposition 1.5. Let

$$D_t^{1/a} = \{ u \in \overline{K} : \rho_a(u) \in D_t \},\,$$

where \overline{K} is the algebraic closure of K. Then $e_{\langle t \rangle}$ induces a Galois isomorphism of $D_t^{1/a}/D_t$ with $\operatorname{Ker} \phi_a^{\langle t \rangle}$.

2. p-adic representation and Kummer theory

Let $\mathfrak{p}=(p(T))$ be a prime ideal of $A=\mathbf{F}_q[T]$, where p(T) is a monic irreducible polynomial in A. Let ϕ be a Drinfeld module of rank 2. Then $\ker \phi_{p(T)^n}$ has a natural structure of an A/\mathfrak{p}^n -module. Hence

$$T_{\mathfrak{p}}(\phi) = \underline{\lim} \operatorname{Ker} \phi_{p(T)^n}$$

is an A_p -module, where

$$A_{\mathfrak{p}} = \lim_{n \to \infty} A/\mathfrak{p}^n.$$

Let

$$V_{\mathfrak{p}}(\phi) = T_{\mathfrak{p}}(\phi) \otimes_{A_{\mathfrak{p}}} k_{\mathfrak{p}}.$$

Now let K be a finite extension of $k_{\mathfrak{p}}$ and $\phi^{(t)}$ be a Tate-Drinfeld module of rank 2 over K associated to t with |t| < 1. We use 1 instead of δ because A is contained in the ring of integers of K and the coefficients of g and Δ are in A.

If $z \in D_t^{1/p(T)^n}$, then $\rho_{p(T)^n}(z)$ lies in D_t . Hence there is an element $a \in A$ such that $\rho_{p(T)^n}(z) = \rho_a(t^{-1})$. The association $z \mapsto a \mod \mathfrak{p}^n$ defines a homomorphism of $\Lambda_{p(T)^n} = \operatorname{Ker} \phi_{p(T)^n}^{\langle t \rangle}$ onto A/\mathfrak{p}^n . Hence the Tate-Drinfeld map gives rise to an exact sequence

$$(1) 0 \to R_n \to \Lambda_{n(T)^n} \to A/\mathfrak{p}^n \to 0$$

of A[G]-modules, where $G = \operatorname{Gal}(\overline{K}/K)$ and R_n is the set of $p(T)^n$ th roots of ρ (i.e., $\operatorname{Ker} \rho_{p(T)^n}$). By taking the limits, we obtain an exact sequence of $A_p[G]$ -modules

$$(2) 0 \to T_{\mathfrak{p}}(R) \to T_{\mathfrak{p}}(\phi^{\langle t \rangle}) \to A_{\mathfrak{p}} \to 0$$

and tensoring with k_p , we get an exact sequence

$$0 \to V_{\mathfrak{p}}(R) \to V_{\mathfrak{p}}(\phi^{\langle t \rangle}) \to k_{\mathfrak{p}} \to 0$$

where G acts on A_p and k_p trivially.

We will show that the sequence (3) does not split. To do this we introduce an invariant x, which belongs to the A-module $\varprojlim H^1(G, R_n)$. Let d be the coboundary map

$$d: H^0(G, A/\mathfrak{p}^n) \to H^1(G, R_n)$$

with respect to the sequence (1), and let $x_n = d(1)$. Let x be an element of $\underline{\lim} H^1(G, R_n)$ defined by the family $\{x_n\}$, $n \ge 1$.

From the exact sequence of A[G]-modules

$$0 \to R_n \to \overline{K} \stackrel{\rho_{p(T)^n}}{\to} \overline{K} \to 0,$$

we have an isomorphism $\delta: K/\rho_{p(T)^n(K)} \to H^1(G, R_n)$, since $H^1(G, \overline{K}) = 0$ by Hilbert's Theorem 90.

Proposition 2.1. (a) The isomorphism $\delta: K/\rho_{p(T)^n}(K) \to H^1(G, R_n)$ transforms the class of $t^{-1} \mod \rho_{p(T)^n}(K)$ into x_n .

(b) The element x is A-torsion free.

Proof. (a) follows easily from the definition of x_n and δ . To prove (b), suppose that $a \cdot x = \rho_a(x) = 0$ for some $a \in A$. Then

$$a \cdot t^{-1} = \rho_a(t^{-1}) \in \rho_{p(T)^n}(K)$$

for every n by (a). Let v be the discrete valuation on K. Then

$$v(\rho_a(t^{-1})) = v(t^{-1})q^{\deg a},$$

$$v(\rho_{p(T)^n}(\alpha_n)) = v(\alpha_n)q^{n\deg p(T)}.$$

But $\rho_a(t^{-1}) = \rho_{p(T)^n}(\alpha_n)$ implies that

(4)
$$v(\alpha_n) = v(t^{-1})q^{\deg a - n \deg p(T)}.$$

But for sufficiently large n, (4) implies that $v(\alpha_n)$ is not an integer, which is impossible.

Corollary 2.2. The exact sequence (3) does not split.

Proof. Exactly the same proof as in [6, 7], replacing \mathbb{Z}_p by $A_{\mathfrak{p}}$ and p by p(T) would give the result.

3. Local isogeny theorem

In this section, we will prove the following local isogeny theorem.

Theorem 3.1. Let K be a finite extension of $k_{\mathfrak{p}}$ and \mathscr{O} the ring of integers in K. Let v be the discrete valuation on K and t, $t' \in K^*$ with v(t) and v(t') > 0. Let $\phi = \phi^{(t)}$ and $\phi' = \phi^{(t')}$ be the corresponding Tate-Drinfeld modules over K. Suppose that there exist a, $b \in A - \{0\}$ such that $\rho_a(t^{-1}) - \rho_b(t'^{-1})$ lies in \mathscr{O} . Then ϕ and ϕ' are isogenous if and only if $V_{\mathfrak{p}}(\phi)$ and $V_{\mathfrak{p}}(\phi')$ are isomorphic as $k_{\mathfrak{p}}[G]$ -modules.

Proof. The 'only if' part is trivial. To show the other direction, it suffices to show that there exist elements α , $\beta \in A$ such that $\rho_{\alpha}(t) = \rho_{\beta}(t')$ by Proposition 1.2. Let $\varphi : V_{\mathfrak{p}}(\phi) \to V_{\mathfrak{p}}(\phi')$ be a G-isomorphism. By Corollary 2.2, φ maps $V_{\mathfrak{p}}(R)$ into itself. After multiplying φ by some element of $A_{\mathfrak{p}}$, we may assume that φ maps $T_{\mathfrak{p}}(\phi)$ into $T_{\mathfrak{p}}(\phi')$. Then we have a commutative diagram

where $r, s \in A_p$. Let x and x' be the invariants in $\varprojlim H^1(G, R_n)$ associated to ϕ and ϕ' , respectively, given in the previous section. Then the commutativity of (5) shows that $r \cdot x = s \cdot x'$, that is, writing $r = (r_n)$ and $s = (s_n)$, with $\deg r_n < \deg p(T)^n$ and $\deg s_n < \deg p(T)^n$,

$$\rho_{r_n}(x_n) = \rho_{s_n}(x_n')$$

in $H^1(G, R_n)$. Therefore $\rho_r(t^{-1}) = \rho_s(t'^{-1})$ in $\varprojlim K/\rho_{p(T)^n}(K)$ by Proposition 2.1. Let

$$z = \rho_a(t^{-1}) - \rho_b(t'^{-1}) \in \mathscr{O}.$$

Then

$$\rho_{sa-rb}(t^{-1}) = \rho_{sa}(t^{-1}) - \rho_{rb}(t^{-1}) = \rho_{s}(\rho_{b}(t'^{-1}) + z) - \rho_{rb}(t^{-1})$$
$$= \rho_{b}(\rho_{s}(t'^{-1}) - \rho_{r}(t^{-1})) + \rho_{s}(z).$$

Write $u=sa-rb=(u_n)$, with $\deg u_n<\deg p(T)^n$. Since $\rho_s(t'^{-1})-\rho_r(t^{-1})=0$ in $\varprojlim K/\rho_{p(T)^n}(K)$ and $\rho_a\rho_b=\rho_b\rho_a$, there exists $\alpha_n\in K$ such that

$$\rho_{u_n}(t^{-1}) = \rho_{p(T)^n}(\alpha_n) + \rho_{s_n}(z), \qquad v(\alpha_n) \le 0.$$

Suppose that $u = (u_n) \neq 0$. Then for all sufficiently large n,

$$\gcd(u_n\,,\,p(T)^n)=p(T)^k$$

for some fixed k < n. Then there are c_n , $d_n \in A$ such that

$$c_n u_n + d_n p(T)^n = p(T)^k.$$

Hence

$$\begin{split} \rho_{p(T)^k}(t^{-1}) &= \rho_{c_n u_n + d_n p(T)^n}(t^{-1}) \\ &= \rho_{p(T)^n}(\rho_{c_n}(\alpha_n) + \rho_{d_n}(t^{-1})) + \text{integral} \\ &= \rho_{p(T)^n}(\beta_n) + \text{integral}, \quad \beta_n \in K. \end{split}$$

Then $\rho_{p(T)^k}(t^{-1} - \rho_{p(T)^{n-k}}(\beta_n))$ is integral, and so $t^{-1} - \rho_{p(T)^{n-k}}(\beta_n)$ is integral for all large n, which is impossible. Therefore u = 0. Hence sa = rb and $\rho_s(z) = 0$ in $\lim_{n \to \infty} K/\rho_{p(T)^n}(K)$.

Then

(6)
$$\rho_{s_n}(z) = \rho_{p(T)^n}(\beta_n).$$

Let k = v(s), the valuation of s in k_p . Then $gcd(s_n, p(T)^n) = p(T)^k$ for $n \ge k$. Hence there exist a_n and b_n in A such that $a_n s_n + b_n p(T)^n = p(T)^k$. From (6) we have

$$\begin{split} \rho_{p(T)^{k}}(z) &= \rho_{a_{n}s_{n} + b_{n}p(T)^{n}}(z) = \rho_{a_{n}}(\rho_{s_{n}}(z)) + \rho_{p(T)^{n}}(\rho_{b_{n}}(z)) \\ &= \rho_{a_{n}}(\rho_{p(T)^{n}}(\beta_{n})) + \rho_{p(T)^{n}}(\rho_{b_{n}}(z)) \\ &= \rho_{p(T)^{n}}(\rho_{a_{n}}(\beta_{n}) + \rho_{b_{n}}(z)). \end{split}$$

Therefore $u = \rho_{p(T)^k}(z) = 0$ in $\varprojlim K/\rho_{p(T)^n}(K)$. The proof is complete if we show that u is a root of ρ_c for some $c \in A$. Let $\mathfrak P$ be the maximal ideal of $\mathscr O$ and the residual class degree of $\mathscr O/\mathfrak P$ be m. Since $p(T) \in \mathfrak P$ and

$$\rho_{p(T)^n}(X) \equiv X^{q^{n \deg p(T)}} \pmod{(p(T))},$$

we have

$$\rho_{p(T)^m-1}(u) \equiv 0 \mod \mathfrak{P}.$$

Let $u'=\rho_{p(T)^m-1}(u)$. Then v(u')>0. Since u'=0 in $\varprojlim K/\rho_{p(T)^n}(K)$, there is a sequence $\{\delta_n\}$ in K with $u'=\rho_{p(T)^n}(\delta_n)$. Since v(u')>0, we have $v(\delta_n)>0$. In this case it is easy to see that

$$v(\rho_{p(T)^n}(\delta_n)) \to \infty$$
 as $n \to \infty$.

Hence $u' = \lim \rho_{p(T)^n}(\delta_n) = 0$, and we are done.

Remark 3.2. The j-invariant j_t of $\phi^{(t)}$ is defined to be $j_t = g(t)^{q+1}/\Delta(t)$. It is shown in [3] that

$$j_t = \frac{1}{t^{q-1}} + \text{power series in } t^{q-1}$$
.

Hence j_t is nonintegral iff v(t) > 0.

Remark 3.3. (a) The proof of Theorem 3.1 is quite similar to that of the classical case except the use of the assumption that $\rho_a(t^{-1}) - \rho_b(t'^{-1})$ lies in \mathscr{O} . The comparison is shown in the following table:

Elliptic curve case	Drinfeld module case
q , q'	t^{-1} , t'^{-1}
$v(q), v(q') \in \mathbf{Z}$	$a, b \in A$
$\alpha = q^{v(q')}/q'^{(v(q))}$	$z = \rho_a(t^{-1}) - \rho_b(t^{-1})$
root of unity	torsion points of ρ

In the elliptic curve case, for each element $q \in K^*$, there is a naturally associated integer v(q), the valuation of q. The fact that $\alpha = q^{v(q')}/q'^{v(q)}$ is a unit in $\mathscr O$ is used in the proof. In our case, there is no natural element of A associated to an element $t \in K$, however, we need some elements a and b in A, which make $z = \rho_a(t^{-1}) - \rho_b(t'^{-1})$ to be integral in order to prove that

- (i) sa = rb,
- (ii) z is a torsion point of ρ .
- (b) The condition that $\rho_a(t^{-1}) \rho_b(t'^{-1})$ lies in \mathscr{O} is not necessary if 0 < v(t), v(t') < q. Indeed, in the proof we showed that

$$\rho_{s_n}(t^{-1}) - \rho_{s_n}(t'^{-1}) = \rho_{p(T)^n}(\alpha_n)$$

for some $\alpha_n \in K$ with $\deg r_n$, $\deg s_n < \deg p(T)^n$. Then

$$v(\rho_{r_n}(t^{-1})) = v(t^{-1}) \cdot q^{\deg r_n} > -q^{1+\deg r_n} > -q^{n \deg p(T)'}$$

and

$$v(\rho_{s_n}(t'^{-1})) = v(t'^{-1})q^{\deg s_n} > -q^{1+\deg s_n} \ge -q^{n\deg p(T)}.$$

Thus

$$v(\alpha_n)q^{n\deg p(T)} = v(\rho_{r_n}(t^{-1}) - \rho_{s_n}(t'^{-1})) > -q^{n\deg p(T)}$$

since $v(\alpha_n)$ is an integer, $v(\alpha_n) \ge 0$. Then $\rho_{p(T)^n}(\alpha_n)$ lies in \mathscr{O} , as does $\rho_{r_n}(t^{-1}) - \rho_{s_n}(t'^{-1})$. Hence one may take $a = r_n$, $b = s_n$ for any n.

- (c) The existence of the condition prevents one from getting the global isogeny theorem. Thus one may ask: "Do there exist a and b so that $\rho_a(t^{-1}) \rho_b(t'^{-1})$ lies in $\mathscr O$ only assuming that v(t), v(t') > 0 and $V_{\mathfrak p}(\phi)$ and $V_{\mathfrak p}(\phi')$ are G-isomorphic?"
- Remark 3.4. One might be able to replace A by a more general function ring B to get the similar result. But there are some problems to be resolved primarily because B is not a principal ideal domain. For example,
- (i) One should consider a family of Tate-Drinfeld modules $\phi^{(b)}$ for each ideal class (b) of B.
- (ii) To each $\phi^{(b)}$ one must replace the Carlitz module by the sign normalized rank 1 Drinfeld module $\rho^{(b)}$, which is defined over the Hilbert class field of B. Hence we need more restrictions on the complete field K to make $\rho^{(b)}$ Galois invariant.
- (iii) One must define invariants of Drinfeld modules of rank 2 on B to get the analogue of Proposition 1.4.

REFERENCES

- 1. S. Bae and P. L. Kang, On Tate-Drinfeld modules, Canad. Math. Bull. (to appear).
- 2. E. Gekeler, Zur Arithmetik von Drinfeld Moduln, Math. Ann. 262 (1983), 167-182.
- 3. _____, On the coefficients of Drinfeld modular forms, Invent. Math. 93 (1988), 667-700.
- 4. D. Hayes, Explicit class field theory for rational function fields, Trans. Amer. Math. Soc. 189 (1974), 77-91.
- 5. S. Lang, Isogenous generic elliptic curves, Amer. J. Math. 94 (1972), 861-874.
- 6. _____, Elliptic functions, 2nd ed, Graduate Texts in Math., vol. 112, Springer, New York, Berlin, and Heidelberg, 1987.
- 7. J. P. Serre, Abelian \(\ell-\)-adic representations and elliptic curves, Benjamin, New York and Amsterdam, 1968.

Department of Mathematics, Korea Advanced Institute of Science and Technology, Taejon, 305-701, Korea

HONGIK UNIVERSITY, JOCHIWON, CHUNGCHUNGNAMDO, 339-800, KOREA