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INVARIANT SUBSPACES OF TOEPLITZ OPERATORS
WITH PIECEWISE CONTINUOUS SYMBOLS

VLADIMIR V. PELLER

(Communicated by Palle E. T. Jorgensen)

Abstract. Sufficient conditions are found for the existence of nontrivial in-

variant subspaces for Toeplitz operators with piecewise continuous symbols.

The results are obtained by estimating the norm of the resolvents.

1. Introduction

This paper can be considered as a continuation of the papers [7, 8] where

Toeplitz operators with continuous symbols were considered. Here we consider

the same questions in the case of piecewise continuous symbols.

Recall that a subspace L of a Banach space X is called invariant (hyperin-

variant) for an operator T on X if TL c L (RL c L for any operator R

commuting with T). It is called nontrivial if L / {0} and L ^ X. The inves-

tigation of invariant subspaces is one of the most important tools in operator

theory (see [10]).
The question of the existence of a nontrivial invariant subspace for an arbi-

trary operator on Hilbert space (as well as for an arbitrary Toeplitz operator)

remains open.

Given a bounded function tp on the unit circle T, the Toeplitz operator Tv

on the Hardy class H2 is defined by

T,f = V+ff,        fieH2,

where P+ is the orthogonal projection from L2 onto H2. The function tp is

called the symbol of T9 .
In [7] it was shown that if tp e C(T), tp ̂  const, the modulus of continuity

top satisfies

(i) f^MLdt<00,
Jotlogl/t

and there exists a Jordan Lipschitz arc V in C such that tp(T)nJncf ^ 0 and

tp(T)r\(cf\J) = 0 for some open set cf, then T9 has a nontrivial hyperinvariant

subspace.
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In [8] it was shown that if T is a C2-smooth curve, then (1) can be replaced

by a weaker condition

(2) /    , '\\  dt <oo.
Jo tlogl/t

It was also proved in [8] that (2) can be replaced by the condition

^\<p(n)\ <oo,

«ez

where tp(n) is the «th Fourier coefficient of tp . In [8] several other results on

invariant subspaces of Toeplitz operators were obtained.

Note that earlier in [3, 4] the existence of nontrivial invariant subspaces was

established under stronger assumptions on the symbol tp .

In this paper we find similar conditions in the case of Toeplitz operators with

piecewise continuous symbols.

2. Preliminaries

2.1. Toeplitz operators. Let PC denote the set of piecewise continuous func-

tions on T that have finitely many jumps. For the sake of convenience we

always assume that for tp e PC

tp(C) = <p{-\Q,       CeT,

where

tp(+\Q =  lim tp(eitQ,        q>l->(Q = lim tp(ei'Q.
i—O- r->0+

If tp e PC and tp has a jump at C e T, we denote by Ir the interval

(3) /c = [p(-)(C),*(+)(C)].

Then the essential spectrum

Oe(T9) = {k e C : Ty - kl is not a Fredholm operator}

admits the description

oe(T<p) = tp(T)u{Jlc,

where the union is taken over all jumps C, of tp .

Consider now the curve tp* obtained from tp by adjoining the intervals /{ ,

where C ranges over the jumps of tp . Then for k £ ae(Tv) the operator

Ty - kl is invertible if and only if the winding number wind^ tp* of tp* with

respect to k is zero.

For any k $. ae(T,f) we have

ind(Tv - kl) = - wind^*,

where for a Fredholm operator T

def
ind T = dim Ker T - dim Ker T*.

The same results also hold for piecewise continuous symbols, which can have

infinitely many jumps (see [2]). We refer the reader to [1, 2, 6, 9, 11] for more

detailed information on Toeplitz operators.
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The above description of o(T9) can be reformulated in the following form.

Let k £ g>(T); then Tv - kl is invertible if and only if tp - k admits a repre-

sentation

tp - k — \tp - A|exp/a,

where a is a real-valued function in PC such that

|a(-)(0-a(+)(C)|<7r

for any jump (.

2.2. The Lyubich-Matsaev theorem. To prove the existence of nontrivial in-

variant subspaces we need the following result due to Lyubich and Matsaev

[5].

Theorem. Let T be an operator on a Banach space and T a smooth arc on the

plane. Assume that there is an open set cf such that a(T) n cf — T n cf / 0 .

Let

M(c5)=fsup{||(A/-r)-1|| :kecf, dist(k,T)>8}.

If

/ loglogM(cS)6((5 < co,
Jo

then T has a nontrivial hyperinvariant subspace.

2.3. Uniform polynomial approximation. In what follows we make use of the

following theorem due to Jackson (see [12]).

Theorem. Let tp e C(T). Then

distz.oc (tp,3°n)< const co? ( —— J ,

where &n is the set of trigonometric polynomials of degree at most n .

3. Existence of invariant subspaces

In this section we obtain sufficient conditions for a Toeplitz operator with

piecewise continuous symbol to have a nontrivial hyperinvariant subspace.

Let tp be a function in PC. We define the modulus of continuity (o9 as

follows. Let f i,..., (m De tne JumPs of / and Tx, ... ,Tm the complement-

ing arcs to ii, ... ,im- Then / is continuous on each Yj, j = 1, 2, ... , m ,

and the modulus of continuity (Oy is defined by

cof(S) = max <o„|r (<J),
X<j<m

where

ojv\Tj = s\xp{\tp(Q - tp(x)\ :C,reTj,  |f - t| < 6}.

Recall that given tp e PC, to each jump c; of tp there corresponds the

interval /^ defined by (3).
The following theorems are the main results of the paper.
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Theorem 1. Let tp e PC and £ be a jump of tp . Suppose that 1^ <£ <p(T) and

(4) [jpV>dt<00.
Jotlogl/t

Then T9 has a nontrivial hyperinvariant subspace.

Theorem 2. Let tp e PC and £ be a jump of tp . Suppose that there is an open

set cf such that
cfnlc^0   and   tp(T) n (cf \/c) = 0 .

Suppose also that

(5) f^'2dt< oo.
Jo  tlogl/t

Then T9 has a nontrivial hyperinvariant subspace.

To prove the above theorems we need a quantitative version of the Devinatz-

Widom theorem (see [1, 11]). That theorem claims that a Toeplitz operator Tu

with a unimodular symbol u (i.e., \u(Q\ = 1 for almost all C in T) is invertible

if and only if u can be represented in the form

(6) u = exp i(a + fi + c),

where a and fi are bounded real-valued functions, c eR, ||a||oo < rc/2, and

B is the harmonic conjugate of /S (see [13]). We need the following estimate

for ur-'H.

Lemma 1. Let u be a function defined by (6), where a, f} e ReL°°, c e R,

Halloo < n/2. Then
||77'|| < constem™/p,

where p = n/2 - ||a||oo •

Proof. Clearly, without loss of generality we can assume that c = 0. Put

h = exp±(B + i]J).

Then h is an outer function invertible in H°° and Tu = TxljTei«Tn . So T~x =

Ti/nT~xTr, which implies

\\T~X\\ < 111/All   II/2II   IIT""'!! = ^ll/?ll*IIT'_lllII -* m    II — II '/"lloolK'NoolMpi,, II — c II * e„, li-

lt remains to estimate || T~} \\. We have

Ranges'" c {eid : -n/2 + p < t) < n/2 - p}.

Put e = sin p . Then

Rangeeein C {eew : -n/2 + p < 6 < n/2 - p}.

It is easy to see that

||1 -£<*'"Hoc = |1 - Eei{n/2-p)\ = cosp.

We have reexp(,«) = /- Tx_eexp(ln) and \\Tx_Eexp{in)\\ = cosp < 1 . Therefore

l|7"xp(„»U< 1-cos/a'
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which implies
,,rr. i sin/? 1
rd,-1 < -,—— < c°nst - ■ D

II    exp(ia)H -   1 -COS/A  ~ /9

In the proof of the above theorems, an important role will be played by the

function v defined on [0, sup^>0<y?)((5)] by

(7) u(s) = sup{t: co9(t) < s}.

Proof of Theorem 1. Let cf he an open set such that

cfn/c/0,       cfntp(T) = 0,

and cf\Ir is disjoint with /^ for any jump £ .

Consider first the case when ae(T9) ± o(T9). Let k e o(T9)\oe(T9). Then

either Ker(7; - kl) ± {0} or Ker(7; - kl*) + {0} and both Ker(r^ - kl)

and (Ker(T9 - kl)*)1 are hyperinvariant subspaces of T9, one of which is

nontrivial.
Suppose now that ae(T9) = a(T9). In this case T9 -kl is invertible for any

k e cf\Ir (see §2.2). Let us estimate the resolvent (T9 - kl)~x .

It follows from the invertibility of Tv-kl that tp-k admits a representation

(8) tp -k = \<p -k\e\pivx,

where Vx e PC, vx has jumps at the jumps of tp , and |v]+)(c;) - v[~'(cj)| < n

for any jump £ of tp (see §2.2).

It is easy to see that such Vx can be represented as

(9) vx = fx + gi,

where fx e C(T), gxePC, \\gx\\oo < n/2.
Moreover, it is also clear that for k e cf\Ir, the modulus of continuity cof.

admits the estimate

(10) cOfx(S) < const (^^(S).

Note also that |gj+)(cj) - g[~\^)\ is the angle at which the interval /^ is seen

from the point k.

We have

(11) <P - * = hx exp i(f + gx)hx,

where hx is an outer function such that \hx\2 = \<p - k\. We have

(12) II^II^II^JI-II^^II-II^,,,^!!-

Obviously

(13) II^i/aJI-11^11 = II 1/I?-A||loo< const 1/6,

where 5 = dist(A, /{).

Let us estimate || T'^ l{A+gx] \\. Clearly

(14) */2-Ualloo>^.       kec?\IL,

for some constant c.
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By Jackson's theorem (see §2.3)

dist^ (fix, &>n) < const co fl (^-jj < dto9 (^rj

for some constant d. Let nx be the smallest integer for which

doif I -TT ) ^ o S ■
\nx+l)     2

By the definition of v we have

(15) n^HcJj2d)-

So there exists a polynomial Px in £P„X such that

(16) ||/i-ft||oo<y.

Obviously ||ft||oo < const • \\fx\\oc < const.

Let Qx = -ft. Then Qx e <?ni and & = ft - ft(0) • We have

/a+ £a = <* + /? + <:,

where a = gx + fi- Px , fi = -Qx, c = ft(0). It follows from (14) and (16)
that

n     .. ed
2-IHIoo<y-

We can now apply Lemma 1 and obtain

(17) ll^,A+&)||<^exp||C2,|U.

It is well known (see [13]) that

IIC&lloo = Hftlloo < COnSt lOg A!^.

Thus it follows from (12), (13), and (17) that

,        const
\\T,lx\\<-p-nx,

which together with (15) yields

,        const       1

ll>-All-    s2   v(c8/2d)'

Now it is easy to see that the hypotheses of the Lyubich-Matsaev theorem

(with T = I^ncf) will be satisfied if we show that

(18) floglog-^zdSKoo.
Jo v{°)

But this follows from the following lemma proved in [7].

Lemma 2. Inequalities (4) and (18) are equivalent to each other.

Let us proceed to the proof of Theorem 2.

Proof of Theorem 2. The proof is analogous to that of Theorem 1. As in The-
orem 1 we can assume that cre(7'?,) = o(Tv) and tf\Ir is disjoint with /^ for
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any jump £. Then every k in cf\Ir is in the resolvent set and we can ob-

tain the factorization (8), the representation (9), the factorization (11), and the

estimates (12) and (13).
The only problem that can arise in this case is that inequality (10) can fail

under the hypotheses of Theorem 2. Indeed, tp is allowed now to take values

in I[C\cf, which can lead to a distortion of the modulus of continuity of fix as

k tends to /j. However it is easy to see that in this case the following estimate

holds:
... ^ const

<0fS$)< —j- oif(S).

So by Jackson's theorem (see §2.3) we can find a polynomial Px of degree

nx such that

||/, - ftlU < constat (^_) < in, (^ )

for some constant d . It follows that nx can be chosen as the smallest integer

for which

which is equivalent to nx < n/v(c82/2d).

Then the proof repeats the arguments used in the proof of Theorem 1, which

leads to the estimate
i        const 1

llJf-ill-    s2   u(cS2/2d)'

So the hypotheses of the Lyubich-Matsaev theorem will be satisfied if we

show that

(19) [loglog-jjjrddKoo,
Jo v\° )

which is equivalent to (5) by the following lemma.

Lemma 3. Inequalities (5) and (19) are equivalent to each other.

The proof of Lemma 3 is completely analogous to the proof of Lemma 2 (see

[7]).
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