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EXISTENCE OF A NONTRIVIAL SOLUTION
TO A STRONGLY INDEFINITE SEMILINEAR EQUATION

B. BUFFONI, L. JEANJEAN, AND C. A. STUART

(Communicated by Barbara L. Keyfitz)

Abstract. Under general hypotheses, we prove the existence of a nontrivial

solution for the equation Lu = N(u), where u belongs to a Hilbert space H ,

L is an invertible continuous selfadjoint operator, and N is superlinear. We

are particularly interested in the case where L is strongly indefinite and N is

not compact. We apply the result to the Choquard-Pekar equation

-Au(x)+p(x)u(x) = u(x) f    U <'y\ dy,        we//'(R3),  w/0,
J*> \x-y\

where p e L-°°(K3) is a periodic function.

1. Introduction

Let H be a real Hilbert space with scalar product (•, •) and norm || • ||. We
consider in H the equation

(1.1) Lu = N(u),        u^O,

where L: H —► H is an invertible continuous selfadjoint operator and AMs a

superlinear operator whose properties are given in the next section. We suppose

that o(L) n K+ ^ 0. Denoting by //+ and //_ the eigenspaces of L corre-

sponding to a(L) n R+ and <t(L) n R_ , respectively, there exists S > 0 such
that

(1.2) Mu e H+: (Lu, u) > S\\u\\2

and

(1.3) Vwe//_ : (Lu, u) < -8\\u\\2.

We call L strongly indefinite if the dimensions of H+ and //_ are infinite. The

equation (1.1) has been considered in some recent papers [1, 5-8] (see also [3,

4, 9-11] for related problems). In this article we give a new existence theorem

for (1.1). The proof given is simpler and the theorem can be applied to treat
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a larger class of nonlinearities. In particular, we can handle an equation of the

form

(1.4)      -Au(x)+p(x)u(x) = u(x) f    U(-y\dy,        u e HX(R3),  u ^ 0
,/e3 I* - y\

(the function p e L°°(R3) is periodic), which is referred to in the solid-state

physics literature as a Choquard-Pekar equation. Note that the linear part of

(1.4) is in general strongly indefinite. Due to the fact that the nonlinear part is

not compact, the "linking theorems" of Benci-Rabinowitz and their generaliza-

tions, which played in [5-8] a crucial role in the discussion of (1.1), cannot be

used. They require, indeed at a deep level, the compactness of the nonlinearity.

2. The general result

We suppose that there exists tf> e C2(H, K) such that

(HI) N = V(p.
(H2) lim|MHO(<7K")/IMI2) = 0 and 3p>2, Vu e H : (N(u), u) > pcp(u).
(H3) cf> is convex and (p(u) = 0 =>■ u = 0.

(H4) 3K,C>0 such that Vw e H :  \\N(u)\\ < K(N(u), u) + C.
(H5) If there exists a bounded sequence {«„} c H such that

Lun - N(un) —> 0   and    lim inf( yV(w„), u„) > 0,
n—»oo

then there exists u ^ 0 with Lu = N(u).

It follows from (H2) that 0(0) = 0, /V(0) = 0, and the function

4>(tu)/tp,      t>o,

is increasing in t for all u e H. Together with (H3), this implies that

Vw ̂  0 :  <p(u) > 0.

Finally, if N is compact then (H5) holds. Indeed, if {«„} satisfies the con-

ditions of (H5), passing to a subsequence, we can suppose that N(u„) —> w .

Therefore Lun -* w and un —► L~xw := u . Clearly Lu = N(u) and u ■£ 0.

Theorem 2.1. Under the hypotheses (HI) to (H5), there exists u e H such that

Lu = N(u) and u ^ 0.

The idea of the proof is to find a nontrivial critical point of the function

J(u) = \(Lu, u) - <p(u).

The first step is a kind of Lyapunov-Schmidt reduction. Let P denote the

orthogonal projection onto //+ .

Lemma 2.1. There exists g e CX(H+ , //_) such that

(2.1) Vio e //_ : w ^ g(v) => J(v + w) < J(v + g(v)).

Moreover,

(2.2) Lg(v) = (I-P)N(v + g(v)).

Proof. For a given v e H+ , the function fi, defined on //_ by

fv(w) = {(Lv ,v) + {{Lw , w) - 4>(v + w)
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is strictly concave and lim||u;||_00 f(w) — -oo . Hence there exists g(v) e //_

verifying (2.1). Since g(v) is a critical point of fi,, it satisfies (2.2). Finally,

the implicit function theorem shows that g e CX(H+, //_). Indeed, g(v)

is the unique w satisfying Lw - (I - P)N(v + w) = 0. The derivative of

the left member with respect to w is the operator defined on //_ by dw —>

Ldw - (I - P)N'(v + w)dw . This operator is selfadjoint; indeed,

(Ldw -(I- P)N'(v + w)dw, dz)

= (Ldw, dz) - (N'(v + w)dw , dz)

= (Ldz, wz) - (N'(v + w)dz, dw)

= (Ldz -(I- P)N'(v + w)dz, dw)

for all dw, dz e //_. Since

(Ldw - (I - P)N'(v + w)dw , dw)

= (Ldw - N'(v + w)dw, dw)

< (Ldw, dw)   by the convexity of tp

<-S\\dw\\2   by (1.3)

for all dw e //_ , we can conclude that its inverse exists and is bounded.

Let us introduce the function F defined on //+ by F(v) = J(v + g(v)).

The next lemma allows us to restrict our attention to the critical points of F .

Lemma 2.2.  Vw e//+:  \\VF(v)\\ = \\VJ(v + g(v))\\.

Proof. The relation (2.2) is equivalent to (/ - P)VJ(v + g(v)) = 0. Hence we

have for dv e H+:

(VF(v), dv) = (VJ(v + g(v)), dv) + (VJ(v + g(v)), g'(v)dv)

= (VJ(v + g(v)), dv)

and so \\VF(v)\\ <\\VJ(v + g(v))\\. Conversely, for du e H,

(VJ(v + g(v)),du)

= (VJ(v + g(v)), Pdu) + (VJ(v + g(v)), (I - P)du)

= (VF(v), Pdu)

and so ||VF(«)|| > \\VJ(v + g(v))\\.

Proof ofi the theorem. The main ingredient in the proof is a version of the well-

known mountain pass lemma in which the Palais-Smale condition is not as-

sumed [2, p. 943]. In order to use this result on F we shall prove that

(1) F(0) = 0;
(2) there exist r, a > 0 such that

Vv 6 //+ :  ||u|| < r => F(v) > 0 and \\v\\ = r => F(v) > a;

(3) there exists v e //+ such that F(v) < 0.

The first point is a direct consequence of g(0) - 0. The first part of (H2) and

(1.2) imply the existence of r, a > 0 such that for all v e H+:

\\v\\ < r=> \(Lv, v) -tp(v) > 0

and

||t;|| = r =» \(Lv , v) - <p(v) > a.



182 B. BUFFONI, L. JEANJEAN, AND C. A. STUART

Now (2.1) implies F(v) > J(v), which proves the second point. Fix v e H+

with Hull = 1. There exists t > 0 such that F(tv) < 0 (and so the third
point holds). Indeed, consider a sequence {/„} such that tn —► oc. Setting

un — tnv + g(t„v) and wn = m„/||m„|| , we have ||ua„|| = 1 and so, passing to

a subsequence, w„ -* w = w+ + W- , where w± e H± . The subsequence can

be chosen so that one of the following cases occurs: \\g(tnv)\\/tn —► +oc or

\\g{tnv)\\/tn —► k > 0. In the first case, for n sufficiently large, we get

2F(tnv) = 2J(tnv + g(tnv))

<t2„(Lv,v)-8\\g(t„v)\\2     by (1.3)

<0.

In the second case, r„/||w„|| -» p = (1 +k2)~xl2 > 0 and so w = pv + W- ^ 0.

Hence
0 < 4>(w) < lim inftj>(w„),

n—*oo

and there exists no such that (j>(w„) > \<p(w) for all n > «0. Also

tf>(u„) = (j>(\\u„\\wn) > IKII^u;,,)       by (H2)

> x2tP„ti>(w)

for n > «o since we may assume \\un\\>tn>l. Thus for n > no,

2F(tnv) = 2J(un) < t2„(Lv , v) - tpncj>(w)

and so F(tnv) < 0 for n sufficiently large.

Applying the mountain pass lemma, we see that there exists a sequence

{vn} c H+ such that lim„_+00F(u„) = c > 0 and VF(v„) -> 0. Setting

un = vn + g(v„), we have lim„^oo J(un) = c > 0 and VJ(un) —> 0 by

definition of F and Lemma 2.2. Taking a subsequence, we can assume that

\J(un) - c\ < l/n and ||V7(w„)|| < l/n . Now

(N(un) , Un) = (L«„ , Un) - (VJ(un) , Un)

= 2J(u„) + 2<p(un) - (VJ(u„), un)

<2{c+l-) + 2-(N(u„),un) + ^-,

therefore

W„„),„.)<J£I(2c+l + !!M),

and so

r5||w„||<||Lw„||<i + ||/V(M„)||

<- + C + /:(/V(w„), w„>   by(H4)
AJ

« p - 2 \        n        n   )

This implies that {un} is a bounded sequence. Finally

(N(U„) , U„) = 2J(U„) + 2<f>(U„) - (VJ(Un) , Un)

>2(C_I)_!M
\      n)        n
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and therefore liminf„_0O(/V(w„), un) > 2c > 0. The conclusion now follows

from (H5).

3. Example

We shall now apply the general theory developed in §2 to prove the existence

of a weak solution for equation (1.4). The Hilbert space H considered here is

the Sobolev space //'(M3). The operator

5:0(5)cL2(l3)^L2(l3),

defined by

D(S) = /72(R3)   and   Su = -Aw + pu

with p e L°°(K3) periodic, is selfadjoint. Its spectrum is purely continuous,

bounded from below and o(S) n E+ ^ 0. We suppose that p is such that

0 g a(S). We associate with S the operator L defined on H by

(Lu,v)= /  {VwVu +puv}dx,    Mu,veH.
.AR3

L is selfadjoint, continuous, invertible and cr(L)nR+ ^ 0 (the relation between

S and L is discussed in [3]).
In order to study the nonlinear part, we need the following remark. For

w e L4/3(R3) n L2(K3), w > 0, set

Jb? \x - y\

We have

/(*)=/ T^dy+f J^Ldy
J\x-y\<\  \x - J*] J\x-y\>X  \x ~y\

< ll"lb(RM / rn—7Mdy\
(3.1) jyi*-y|<l \x-y\2      J

+ ii"ii^/3(R3)W      TT—^dy]
(J\x-y\>X \x      y\ J

< Cmax{\\u\\Li{m, UmIIl^rs)}.

Hence for all u, v e H, we obtain

/ lu(x) [ ^\dy\v(x)dx

(3.2) < llMtAllii^CmaxdlMll^KS), IMli..A3(R3)}

(3.3) <C||w||3||u||,

and therefore there exists N(u) e H such that

(N(u),v)= f  \u(x) j  JLM-dy}v(x)dx.
Jw I       Jw \x-y\     J
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The problem (1.4) consists now in finding we//, w ̂  0, such that Lu = N(u).

In this aim, we define for u e H

...      Iff  u2(x)u2(y)
^M) = 4 /    /       lr    v     dxdy.

4 Jw Jw    \x - y\

It remains to check the hypotheses (HI) to (H5). Thanks to (3.1), we have

tp(u) < ||M||i2(R3)Cmax{||u||i4(R3), ||M|lis/3(RJ)} < C||w||4 < oo.

Moreover, tf> e C2(H, R), V</> = N, and

(N'(u)v,z)= f   f  u2(y)v(x)z(x) + 2u(y)v(y)u(x)z(x)dxd^

JwJw \x-y\

The hypothesis (H2) is also easy to check.

Lemma 3.1. We have for all u, v e H

t    t  u(x)v(x)u(y)v(y)dxdy^0

Jw Jw        \x - y\

and

it f »yvy     v>
{JwJw    \x-y\ J

</   /   ^^dxdyl   (  V)X)v2{y) dxdy.
JwJw?   \x - y\ JwJw   \x - y\

Proof. Consider the bilinear form a on CrJ°(R3) that is defined by

/   /   z(x)w(y)
a(z,w)= /    / v\   dxdy.

JwJw   \x-y\

Clearly a is symmetric. For w e Cq°(R3) let

Jw \x -y\

be the corresponding Newtonian potential. Then g e C2(R3) and

-Ag(x) = 4nw(x)   VxeR3

and there exists A > 0 such that

\g(x)\ < A\x\~x    and    \Vg(x)\ < A\x\~2       V|x| > 1.

Hence,

a(w , w) — /   w(x)g(x)dx
Jw

= -k I S{x)Ag(x)dx = ^- [ \\7g(x)\2dx>0.
4n yR3 47t 7R3

Also since a is positive definite and symmetric on Cq°(R3) , it follows that

\a(w , z)\ < a(w , w)l/2a(z , z)1/2.

It is easy to conclude, using the density of C0°°(R3) in //'(R3) and (3.1).
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We deduce from Lemma 3.1 that (N'(u)v, v) > 0 for all u,v e H. Con-

sequently cp is convex. Moreover (f)(0) = 0 => u = 0 and (H3) is verified. For

w, v e H, we have

,,,„ ,     ..       f   f  u2(y)u(x)v(x)  ,    ,
\(N(u),v)\=   /    / iy    „■       dxdy

Jw Jm?       \x - y\

tt f uyuydx   V",f f .W)      iw
" {JwJw    \x-y\ J     [JwJw    \x-y\ J

<(N(u), u)x/2(N(u), u)x/4(N(v),v)x/4   by Lemma 3.1

= (N(u), u)3'4(N(v),v)['4

<C(N(u),u)i'4\\v\\   by (3.3).

Hence

\\N(u)\\ < C(N(u), u)3'4 < C(N(u) ,u) + C

and (H4) is proved. Finally, let us consider a bounded sequence {u„} c H

such that Lu„-N(u„)-+0 and Hminf„^00(jV(w„), u„) > 0. If

lim sup /       u2ndx = 0,    VR > 0
n^°°yewJy+BR

(Br denotes the open ball of radius R centered at the origin), then by a result

by Lions [13, Lemma 1.1] un —* 0 in Lq(R3) for all q e ]2, 6[ and, therefore,
(N(un), un) —» 0 by (3.2), which is a contradiction; otherwise, passing to a

subsequence, we get

3R < oo,     (y,)cl3 s.t. lim inf /        uldx > 0.
"^°°   Jy„+BR

Using the periodicity of p and translating each un, we can find R < oc and a

sequence {w„} such that

Lit„ - N(itn) —> 0   and    lim inf /   u2ndx>0.
n^°° Jbr

Passing to a subsequence, we have it„ -^ u, and the compact inclusion

HX(BR) c L2(BR) shows that u / 0. Since A/(w„) — ./V(w), taking the limit in

Lun - N(u„) —> 0, we obtain Lw = N(u). To establish that N(itn) -* A/(w),

set

^=[ w^"rJw \x - y\

and define / similarly with w„ replaced by w. For v e H,

|(7V(w„) - JV(H) , u)| <   / (tin - u)fiv dx + \\ti„\\ IK/, - /)U||L:(R3).

Since fiv e L2(R3), we need only prove that lim,,.^ ||(/„ -/)u||L2(R3) = 0. By

estimates like (3.1), there exists K > 0 such that \f„(x)\ < K Vx e R3 and
V« e N. Also for all R > 0

|/B(*) - /(X)| < (47T/?)'/2||w2 - W2!!^,^,.^) + ^ — J        ||W2 - M2||£4/j(rj,

< K {Rl/2\\tin - u\\LHB{XyR))\\tin + U\\ + /r'/4(||W„||2 + ||W||2)}
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Vx e R3 and Vaz e N. Since the inclusion Hx(B(x,R)) c L4(B(x, R)) is

compact, this shows that the subsequence tin can be chosen so that f„(x) —*

f(x), Vx e R3. Then by dominated convergence we can conclude that

lim ||(/«-/>||z.2(R3) = 0.
n—>oo *    '
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