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INTEGRABILITY OF RECIPROCALS OF THE GREEN'S FUNCTION
FOR ELLIPTIC OPERATORS: COUNTEREXAMPLES

M. CRISTINA CERUTTI

(Communicated by Barbara L. Keyfitz)

Abstract. We construct examples of elliptic operators for which the set of

points where the reciprocal l/g(x, •) of the Green's function is not locally

integrable in a dense set of points.

Introduction

This paper deals with Green's functions for second-order linear strongly el-

liptic operators in Rn, in nondivergence form, with bounded measurable co-

efficients, in a smooth domain D. More precisely we will consider elliptic
operators of the form

(0.1) L= Yai}(x)Dl,
ij'l

where Djj - d2/dxidxj, the functions ay are defined on some bounded do-

main D c 1" and satisfy the condition X\£\2 < E" y-i *tj(*)Zi(j < Al£l2
\/x e D and Vc; = (cji, ... , £„) e 1" for some 0 < X < A, and au(x) - aji(x).

If the coefficients fly e C(D) at least, it is well known that the Dirichlet

problem

(0.2) (l*—f*D.
K I u - 0 on dD

with / e LP(D) for some finite p > n/2 has a unique strong solution u e

W20^"(D) n C(D) (see, e.g., [8]). Also a result of Pucci and Aleksandrov (see

[1, 11]) states that sup^lwl < C||/||i,->(/)). Therefore the functional / -+ u(x),
x e D, is a bounded linear functional on Ln(D) for each x and by the Riesz

representation theorem, there exists a unique Green's function for the operator
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L in D, g(x, •) e Ln>("-X)(D), such that

"(•*) = / g(x, y)f(y) dy,
Jd

(0.3) a"
||g(*,-)ll/,«A<-i,(m=   sup       g(x,y)f(y)dy<C(X,n,d\amD).

f£L"(D) Jd
ll/ll=i

If the coefficients are not continuous, it is still possible to give a definition of

a Green's function, as we will see in §1, even though in this case uniqueness is

known only in a few cases (see [5]).

In the study of such solutions a priori estimates on u and its derivatives

with constants independent of the regularity of the coefficients are particularly

important because they may be carried through to the limit.

Evans [6] and Lin [9] showed respectively that the gradient and the second

derivatives of a solution u to the Dirichlet problem (0.2) are integrable to a

small power. Their results have in common the fact that they can be obtained

from the property that if g(x, y) is a Green's function for L, then l/g(x, •)

is integrable to some small power (see §1). It is evident from their proofs that

there is a strict relation between the integrability of the derivatives of u and that

of 1/g, in the sense that the better the latter one the better the first. Therefore

a natural question that arises from these considerations is whether it is possible

to improve the theorem on the integrability of l/g. In this paper we show that

the answer is negative and that the Green's function can be quite singular. In

fact, in general l/g is not globally integrable (as was shown by Trudinger in

an unpublished result, which we state and prove in §11), and in §§III and IV we

construct examples of operators for which l/g is not even locally integrable.

More precisely in §111 we construct an example in the unit ball B = Bx(0) in

which 0 is a point of Lebesgue continuity for the coefficients of the operator L

but l/g is not integrable in any neighborhood of 0. In §IV we construct an

example of an operator L in B for which for all points yo in a set of positive

measure E c B , l/g(x, y) is not integrable in any neighborhood of yo .

I. Preliminary results

We are going to extend the concept of Green's function to the case in which

the coefficients are not necessarily continuous, starting with the following defi-

nitions.

Definition 1. A regularization {akj(x)}, i, j = I, ... , n and Ac = 1, 2,..., oo,

of the coefficients of L, is a collection of smooth functions such that:

(i) for each pair ij, akj —> ajj a.e. in D and uniformly on compact subsets

of D\E, where E is the set of points of discontinuity of a,j;

(ii) for each ac , {akj(x)} satisfies (0.1) with the same constants as {ajj(x)}.

The operator Lk = J2l j=i au(x)Dfj W1^ De called a regularization of the

operator L.

Observe that a regularization of L can be obtained, for example, through

convolution of the coefficients of L with a smoothing kernel.

Suppose that the coefficients of L are not continuous and consider some

regularization Lk of L. Let Lkuk - -fi in D, uk - 0 on dD, and gk(x, y)
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be the corresponding Green's functions. Because of (0.3) for every x e D

there exists a subsequence, which we will still call gk , such that gk(x, •) —'

g(x, •) weakly in L"l(n~X)(D). Through a diagonalization process we can define

g(x, y) for x e Q"xlD (where Q" is the subset of points of K" with rational

coordinates) and then, because of the equicontinuity of {uk}, extend it to D.

Observe that this process constructs a Green's function but says nothing about

the uniqueness of g.

We are now going to recall the definition and some results about adjoint

solutions.

Definition 2. An adjoint solution to an operator L in D is a function o e

LXoc(D) such that for every smooth domain F with F C D, u e C2(F),

u — 0, and |V«| = 0 on dF , we have JF vLudx = 0.

The next theorem regards integrability properties of adjoint solutions; in par-

ticular, it states that nonnegative adjoint solutions belong to the Muckenhoupt

class Aoo (for a definition see, e.g., [2]). This implies, in particular, integrabil-

ity of small powers of reciprocals of Green's functions in domains that do not

contain the pole.

Theorem 1.1. Let o bea nonnegative adjoint solution to L in D and let F be

an open set such that F c D. Then for some p > 0, p depending only on X,

A, and n, o e AP(F).

The above theorem was proved for an operator with continuous coefficients

by Bauman in [2] and shown to hold independently of the regularity of the

coefficients by Fabes and Stroock [7].

Finally let us state Evans's and Lin's theorems.

Theorem 1.2 (Evans [6]). Let v > 0 be an adjoint solution to L in a neighbor-

hood of Bi and u e C2(BX), u = 0 on dBx, and set f = Lu. Then

(i)

/   o\Vu(x)\2dx < C\\f\\2L„{Bi)\\u\\L„nn->HBl);
JBt

(ii) there exists e = e(X, A) such that JB |Vm|£ dx < C\\f\\2L„,By).

Theorem 1.3 (Lin [9]). Let u be a solution to (0.2) z'az Bx with fi e Ln(Bx) and

cp = 0. Then there exists d — d(X, A) such that

( \ '/2

/    \D2u\ddx<C\\f\\Ln(B[),     where \D2u\ = ( V \D\)U\2 J      .
JBu2 \iyJ=x J

II. Lack of integrability of the reciprocal

of a Green's function: the global case

By looking at the proofs of Theorems 1.2 and 1.3 we notice that if it were

possible to prove that JB G,x , dx < C(X, A, az) < oo , we could prove L1 esti-

mates for the gradient of u and improve the estimates for the second derivative

of u . Unfortunately when the coefficients are not continuous the Green's func-

tion can be quite singular, as we will see with the following counterexamples.

In what follows Br = Br(0), unless otherwise specified.
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Theorem 2.1 (Trudinger). There exist 0 < X < A and an elliptic operator

L = YHt, ;=i bjj(x)D2j in Bx with ellipticity parameters X and A such that

l/GL,Bt(x, •) £ Lx(Br), fior r < 1, where GiyBx(x,y) is a Green"s function

for L in Bx and x £ Br.

Proof. Observe that if u is any C2 function on Bx (except possibly on a

closed set of points of measure zero) and Hu = [D2jU]" , , is the Hessian

matrix of u with eigenvalues Cj(x) (i = 1, ... , n), given any elliptic oper-

ator L with ellipticity parameters X and A, then Lu = Yl ,=i aij(.y)D2jU =

trace(A(y)Hu(y)) = YU GCcKOO , where A(y) = [aiJ{y)]ni j=1 is the matrix

of the coefficients of L and A < a,■(>>)< A. Vice-versa, given A < a,-(y) < A,

Lu = 52"=1 a,(y)C,(y) is an elliptic operator acting on u, with coefficients

aij(y) — 5Z!t=i Qik{y)ak{y)Qjk{y) (depending on u) and ellipticity parameters
A and A.

Also, given u and L,let Cf(y) and C~(ja) be respectively the nonnegative

and the negative eigenvalues of Hu(y) and Lu = Y"i=x ai(y)Ci(y) ■ Now define

the operator L, in such a way that

(2.2) lu = Y(*>(y) + i)c,+(y) + Y ^Y-cjiy) ■

L is clearly an elliptic operator with parameters A/2 and A + 1 .

Moreover we can write

(2.3) Lu = Lu + y(y)\D2u(y)\,

where \D2u(x)\ = {Y"iyj=i \D2jU(x)\2}x'2 and

y(y) = {Y \CW\ + E ^lc7(y)i) /i^2«(y)i

satisfies 0 < c(A, A, aj) < y(y) < l/c(X, A, aj) , for y e Bi . Now consider the

function o(x) = \x\~s - 1 for |jc| < 1 and let L„ he the operator defined by

Lvv -AYCf+XY C(+ for some 0 < X < A and where C+(y) and C~(y) are

the eigenvalues of Hv(y). Since DjjO(x) = -5|jc|_'J_2{r5(j,-(5-l-2)x,x;7l-x:|2}, it

is easy to see that Hu(x) has eigenvalues -s\x\~s~2 with multiplicity (aj - 1)

and j(5-r-l)|x|_J_2 with multiplicity 1, so that if we choose s < [(aj-1)A/A]-1 ,

then Luv = -s\x\-s~2{(n - 1JA - (s + 1)X} < 0 for x ^ 0.

Now let u — -v and let Lv he the operator associated to Lu and u in the

way described in (2.2) and (2.3). We will show that Z„ satisfies the hypothesis

for the operator L in the statement of the theorem. From now on let L = Lu

and Gl,b,(x, y) be a Green's function for this operator in Bx, as defined

before.
Define

,  ,     f«> \x\>e,
uE(x) = <        ,.,

[ac\x\2 + be,        \x\<s,

where ae and bs are chosen in such a way that aer2 + be\r=e — u(e) and

£[aer2 + bs]\r=e = j-r[u(r)]\r=e ■ (In particular, a£ = se~s~2/2 > 0.)
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Observe ue e Cx'x(Bi)f]L°°(Bi) has bounded weak second derivatives, and

letting A(x) be the matrix of the coefficients of L

{Lu, \x\ > e,

and   2ae trA(x) > 0.

2aetrA(x),    \x\ < e,

Choose Xo with |jco| > e • Then recalling the definition of L

v(x0) =-u(xo) = /  GLyBl(x0,y)Lue(y)dy
JBi

= GLyBl(x0,y)2aetrA(y)dy+ GLyBl(x0, y)Lu(y)dy
J\y\<e Je<\y\<X

>/        GLyBl(x0,y)Luu(y)dy+ GLyBl(x0,y)y(y)\D2u(y)\dx
Je<\y\<X ■Ae<|y|<l

>C f        GLyBi(x0,y)\D2u(y)\dy.
Je<\y\<X

In other words Je<M<x GLyBl(x0, y)\D2u(y)\dy < Cu(x0).

If JBr Gl   L    , dy < C for some r < 1, then from Theorem 1.2 it follows

that for e < r,

( ) l/2

f \D2u(y)\x'2dy<\ f        GLyBl(xo,y)\D2u(y)\dy\
Jr>\y\>e [Jr>\y\>e )

( 1 l/2

x    /       r-7r-^Ady\    ^Cv^l,2>
[Jr>\y\>e LrL,J?,(X0, y) J

which is clearly impossible for s > 2aj - 2 since \D2u(x)\ ~ C|x|-5"2. So the
theorem is proved if we choose 2n - 2 < s < (n - 1)A/A and appropriate A

and A.

Corollary 2.3. For the operator L in Theorem 2.1 we also have that there exists

a p < 1 such that (l/GLyBi(xo, ■))" i Lx(Br), for every r < 1.

Proof. Since j > 2aj - 2, there exists q > 2 such that s > qn - 2. Let

p = l/(q - 1); if $Br(llGLyBx(xo, •))"dy < C we would have

/        \D2u(y)\l">dy < I /        GLyBl(x0,y)\D2u(y)\dy)
Jr>\y\>e [Jr>\y\>e J

Jr   (    ;    ydyr"
[Jr>\y\>E \Gl,B,(X0, y) ) J

<Cv(x0)l/q.

But because of the choice of q , we have (s+2)/q > n and therefore \D2u(x)\x/q

~ C\x\~(s+T)lq is not integrable on Be as e —> 0.



130 M. C. CERUTTI

III. Lack of integrability of the reciprocal

of a Green's function: the local case

We may wonder if a weaker kind of estimate holds, such as that for almost

every x e D, there exists r > 0 such that |Vm| 6 L1 (Br(X)). As before, if we

could prove that

(a) for a.e. x e D, there exists r > 0 such that 1/Gl,b,(xo, •) e Lx(Br(x)),

with xo fi Br(x),

then the above property would follow again from the proof of Theorem 1.2.

Again we will see in Theorems 3.2 and 3.3 that property (a) for a Green's

function does not generally hold. In Theorem 3.3 we will construct an example

of an operator L in Bx with Green's function g for which the set E = {z e

Bx\l/g(x, ') fi Lx(Br(z))  Vr and x fi BJ has positive measure.

We first prove, in Theorem 3.2, a particular case of Theorem 3.3, precisely

that Lebesgue continuity points for the coefficients of L may be in E. We
should point out the reasons why we think it is important to state and prove

this theorem separately. First of all, when we first became interested in property

(a) we had just learned of some regularity results proved by Caffarelli, namely,

"weak C1 « " estimates for solutions in a neighborhood of a point of Lebesgue

continuity for the coefficients of L (see [4]). Therefore we thought that if

property (a) held there was a good likelihood it held at those points. Moreover

we think this simpler case may clarify better the technique used to construct

both counterexamples.

We will need the following lemma.

Lemma 3.1. A sufficient condition for fn[f(x)]~p dx < oc for all p < 1 is that

there exists a constant c such that for every measurable £cil, fEf(x)dx >

c\E\2 . Moreover if JQ [/(x)]_1 dx < oc, then JEf(x)dx > c\E\2, fior some

constant c independent ofi E.

Proof. To prove the first statement let Ex = {x e Q\f(x) < X} and let Ex =

{x e a\l/f(x) > X} . Then X\EA\ > fEi f(x)dx > c\Ex\2 , which means \Ek\ <

CX. Therefore, \Ex\ < C/X, which implies

/ -^-— dx= [      -J— dx + p rXp-X\EX\dX
Jcif(x)P Ja^ fi(x)P y Jx '  *'

/OC

Xp~2 dX<oc   for all p < 1.

For the second part of the theorem, observe that

lEl = J/M"27W*dx

4Lnx)dxY '{lm"*)"'HLmixT'■
Theorem 3.2. There exists an elliptic operator L = Y"i /=i aij{x)D2- defined on

the unit ball Bx = Bx (0), with coefficients a,j bounded and measurable on Bx ,

and Lebesgue continuous at the origin such that fior any ball Br = Br(0) with

r<l, 1/Gl,b,(x, •) fi Lx(Br), where GLyBs(x,y) is a Green's function for L

in Bx and x fi Br ■
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Proof. For each Br(xo) let LryXo = Y"iyj=iaij[{x-Xo)/r]D2j where the ay are

the coefficients for L in Trudinger's operator and x € Br(xo). Then clearly

if GLrXQ(x,y) is a Green's function for LTyXo in Br(x0),  l/GLr,,0(x, •)  fi

Lx(Br>(xo)), for r' < r where x fi Br'(xo).

To actually prove the theorem, let {xk} be a sequence of points such that

\xk\ = i/k for k = 2,3, ... , let rk = 1/5ac2 , and set Bk = Bfk(xk).
Then define L as follows:

\A inBi\\J?=2Bk

where LTk, Xk are the operators constructed above and A is the Laplace's oper-
ator.

We claim that L satisfies the theorem. First of all its coefficients are Lebesgue

continuous at the origin. To see this, let ajj indicate the coefficients of L and

akj the coefficients of LrkyXk = Lk . Then tfy(O) = <5y and for any r > 0,

/ \aij(x) - Sij\" dx < [ \akj(x) - 5u\n dx
Jb, A J,        Bk

<C(A,aj)   Y   \Bk\<C{h,n)j^--   Y   Yn-
k>X/r-X V '    k>X/r-X

Therefore

^-J \au(x)-durdx<C(A,n)ir^;   Y    fr•
i   n jBr \        )   k>x/r_x

which tends to zero with r.

We now need to prove that letting GLyB] (x, y) be a Green's function for L

in 5, , we have l/GLyBl(x, •) fi Lx(Br) for r < 1, Br = Br(0), and x fi Br, .

We will use the following notation: if B = Br(xo), then Bs = Bsr(x0).

Fix a* > 0; then for some Ac, Bk c Br. Let V and L^ be the operator

obtained by regularizing the coefficients of L and Lk respectively, with a kernel

supported in the ball of radius 1/5^ . Moreover let G'(x, y) and GJk(x, y) be

the Green's functions for V in Bx and for L?k in Bk .

Let Xo € Bx\Bk  and Xi  e B^\Bk   .   We can assume, without loss of

generality, that Gj(x0,y) — GLyBi(x0,y) and C7£(x,, y) — Gk(xx, y) weakly

in L"/("-X)(Bk). For j > 2k the coefficients of V and of L[ coincide in Bxk12.
Assume the following claim (to be proved later).

Claim. There exists a subsequence of {Gj(xo,y)} and a subsequence of

{Gjk(xx,y)}, such that G[(xx, y)/Gj(x0, y) > C forall y e Bxkl%, with C
depending at most on X, A, aj , and rk .

We will show that it implies the theorem.

Call the two subsequences again {Gi} and {Gk} and assume that

/ _d-l_<C
JBr GLyBl(xQ,y)
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Then clearly also Jb\i%[Gl,b, (xo , y)]-1 dy < C, and for measurable E c Bxkl%
k

Lemma 3.1 implies that JE Giysx(xo ,y)dy> C\E\2 ; then

/ Gk(xi ,y)dy= lim / C^(x, ,y)dy= lim / ffi*1' y\&(x0, y)dy
Je j^°°je   k j-~ocjEGJ(xo,y)

> C lim / CW(x0 ,y)dy = C f GLyB] (x0, y) dy > C\E\2;
j->oo JE JE

and that then  L\n[Gk(x, y)]~x dy < C for all p < 1, which was shown to be
"k

false in Corollary 2.4.

Finally let us prove the claim. Let Oj(y) = Cr{(xi, y)/Gj(xo, y) in Blk/2;

this is a quotient of adjoint solutions defined in [2] as a normalized adjoint
solution by Bauman who also shows that a Harnack's inequality holds for Vj in

Blk,s. Also, by Theorem 1.1 both Gi(x0,y) and GJk(xx, y) are Ax weights

as functions of y in Bk and, therefore, for a fixed e > 0 we can find a =

a(X, A, az , Ac) such that \Ej\>(l- e)\Blk/2\ where

Ej= \ze B\12 a f    Gi(xQ,y)dy< Gi(x0, z) < - f    C7>(x0, y)dy 1I -^ aV J

U lz e Blk/2 aJBi/2 G[(xi ,y)dy< GJk(xx, z) < lj    G{(xx ,y)dy\.

Now let E = f|2i Uy^i\Ej De trie nm SUP °f the sets Ej 's. Then also |jE"| >

(1 - e)|5^2|. By taking e small enough this guarantees that there exists z0 e

Bk' , which belongs to E and therefore to infinitely many Ej . In other

words there exists a subsequence of {GJ} (which will be called again Gj)

such that (/-'(xo, zq) ~ fB>/2 Gj(xo, y) dy and the corresponding C7((xi, z0) ~
k

/„i/2 GJk(xx ,y)dy. Because of Harnack's inequality for normalized adjoint so-
k

lutions (see [2]), we can replace z0 with any y e Bk% and get

Gj(xx,y) >c!BfGi^>y)dy
Gi(xo, y) ~     Ln Gi(x0 ,y)dy'

"k

Moreover observe that JBm Gj(x0, y)dy < C\\Gi(x0, •)lli,»/(B-i)(B'A2) < C;

by the doubling condition and the maximum principle fB>/2 C7j((xi, y)dy >

C(A, Aj)r^ for x e Bk    and, in particular, for xo .
The proof is now complete.

Theorem 3.3. There exists an elliptic operator L = Yi j=i au(x)Dfj defined

on the unit ball Bx - Bi(0), with coefficients a%j bounded and measurable

on Bx, fior which a Green's function GiyB](x, y) exists, with the property, if

E = {z e BX\1/GL B](x, •) fi Lx(Br(z)) Vr < d(z,dBx) and x fi BJ, then

\E\>0.
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Before proving the theorem we are going to need the following.

Lemma 3.4. For every e > 0, there exists a sequence ofi open cubes {Qj}JLx c Bx

such that

(i) Qi n Qj = 0 for i?j;
(ii) U>i Qj w dense in Bx;

("i) EmIG!/I<«;
(iv) rTze centers of the Qj's are aeAzse z'aj /?■ \ (J^, Q/.

Proof. Consider the set R of points of Bx with rational coordinates; then
R c Bx, R is dense in 5i, and /? is countable. Let {Xj}~, be an enumeration

of the elements of JR. For fixed e , let

rj = (e/con)x/nmm(l/2i,d(Xj,dBx)),

where o>n is the volume of the AJ-dimensional unit ball, and let Bj = Brj(Xj).

Then clearly (J/^i •#/ is dense in Bx and

oo oo p     °°    /  X   \J

U^Eftis^E^ s..
j=l j=X " 7=1   V       7

Let A = U~, 5,. Then ^ is open and can therefore be expressed as a countable

union of nonoverlapping cubes. These cubes satisfy (ii) and (iii).

To prove (iv), let x e #i\U%i Qj and let us assume that there exists an

open ball around x , Br = B,(x), such that no one of the centers of the Qj's

belongs to Br. Consider then Br/2; if there are only finitely many Qj's that

intersect Br/2 then since x fi Qj for every j, we can find a neighborhood of

x that does not intersect any Qj, violating the density of \JJLX Qj. If infinitely

many Qj intersect Br/2 then since all the centers are outside Br, all of these

cubes will have sides > rc„/2 with cn a constant depending on dimension. But

this last fact violates (iii).

Proof of Theorem 3.3. In order to construct the operator L let Bj he the open

balls inscribed in the cubes Qj in the above lemma. Then let

f Lj   in Bj,

I A     inBx\[J%2Bj

where Lj is the operator associated to the ball Bj in the way described at the

beginning of the proof of Theorem 2.4. Set C = Bx \ (jJLx Qj.
We claim that C c E.
To see this let z € C and Br(z) be a ball centered at z with radius r <

d(z, dBx). Then by (iv) of the lemma, there exists Zj, center of some Bj,

with Zj e Br(z). Then letting G(x, y) = Gl,b,(x , y) be a Green's function

for L in Bx and Gj(x, y) a Green's function for Lj in Bj by an argument

analogous to the one in the proof of Theorem 2.4, one shows that 1 /Gi, b, (x, •)

is not integrable over Br(z).

The author wishes to thank Professor Eugene B. Fabes for many helpful

discussions about the contents of this paper.
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