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Abstract. It is shown that any u-complete Banach lattice, with an order semi-

continuous norm containing an isomorphic copy of /oo , contains an almost

isometric copy of /oo • It is also proved that any Fenchel-Orlicz space (resp. the

subspace of finite elements of any Fenchel-Orlicz space) generated by an Orlicz

function not satisfying the suitable A2-condition contains an almost isometric

copy of /oo (resp. Co).

1. Introduction

Two Banach spaces X, Y are said to be (1 + e)-isometric provided there

exists a linear isomorphism T : X —> Y such that ||r|| ||r~'|| < 1 + e. By

scaling we can arrange that T is a (1 + e)-isometry if

IWU<||rx||y<(l+e)||x||x

for any x € X. We say that a Banach space X contains an almost isometric

copy of Y if for any e > 0 there exists a subspace Z in X such that Z , Y

are (1 + e)-isometric.
Note that Krivine [Kr] proved that if a Banach space X contains l[j 's (1+e)-

uniformly for some e > 0, 1 < p < oo, then it also contains them almost

isometrically. For p = 1 or p = oo, this result goes back to James and for

p = 2 to Dvoretzky. Let us recall that the well-known result of James [J]

shows that a Banach space X contains an almost isometric copy of cq (or l\)

whenever it contains an isomorphic copy of Co (resp. l\).

In this paper we show a similar result for /<*, -copies; however, we restrict

ourselves only to special Banach spaces.

Note also that, as far as we know, for 1 < p < oo it is unknown whether or

not any Banach space isomorphic to /,, contains a subspace almost isometric to

lp . This is known as the "distortion problem" [LP].

In the sequel X denotes a Banach space; R, R+, and Re+ stand for the

reals, nonnegative reals, and extended (by +oo) nonnegative reals. In what

follows (fi, X, fi) denotes an arbitrary u-finite measure space. For the sake

of simplicity we will consider only nonatomic and purely atomic (the counting)
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measure. L°{fi, X) denotes the space of all (equivalence classes of) strongly

X-measurable functions defined on Q. with values in X.

A map O : X —► R+ is said to be an Orlicz function if O(0) = 0, O is
continuous at 0, lower semicontinuous on X , even, and

(*) O is bounded on any ball in X,

(**) inf{0(x) : ||x|| = r} —» oo   as   r—>oc.

Given an arbitrary Orlicz function O we define a functional 7<j> : L°{fi, X) —>

R% by

W) = [ ®{f{t))dft,
Jn

which is even and convex, 7^(0) = 0, and for any / e L°{fi, X) the condition

I^{Xf) = 0 for any X > 0 yields / = 0.
The Fenchel-Orlicz space L^(fi, X) generated by an Orlicz function <& is

defined as the set of all functions / e L°{fi, X) such that I®{Xf) < oc for

some X > 0 depending on / (cf. [T2] and in the scalar case also [KR, Lu, M]).

The subspace £*(//, X) of L?{fi, X) (called the subspace of finite ele-

ments) is defined by

E*(ii ,X) = {fe L(t'{fi, X) : I<t,{Xf) < oo for any X > 0}.

The spaces L° and E® can be equipped with the Luxemburg norm

||/|| =inf{e>0:/*(//«) <1}

as well as with the Orlicz norm

||/||° = sup {| (f(t), g{t))dfi : g e L°{fi, X*),  I*.{f) < lj ,

where X* denotes the dual space of X and G>* is the complementary function

to <J> in the sense of Young, i.e.,

0*(x*) = sup{(x, x*) - <D(x): x e X}

for any x* e X*. It is well known (cf. [N] and in the scalar case also [KR,

RR]) that

||/||° = inf{k-i{l+l<i>(kf)):k>0}.

Furthermore, (L°(/i, X), \\ • \\) is a Banach space (cf. [T2] and in the scalar

case also [KR, Lu, M]).
We say that an Orlicz function O satisfies the ^-condition for all x e X (at

infinity) [at zero] if there are positive constants K and C such that 0(2x) <

K<P(x) for all x e X (for x e X satisfying O(x) > c) [for x e X satisfying

O(x) < c].
An Orlicz function <t> satisfies the suitable A2-condition if it satisfies the

A2-condition for all x e X when fi is nonatomic infinite, the A2-condition

at infinity if fi is nonatomic finite, and the A2-condition at zero if fi is the

counting measure (cf. [RR]).
It is known (cf. [H] and in the scalar case also [K, Tl, T2]) that any Fenchel-

Orlicz space L®{fi, X), with the Luxemburg norm, containing an isomorphic

copy of /oo contains also an isometric copy of /^ .
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However, the Orlicz space {L®(fi, R), \\ • ||°) need not contain an isometric

copy of /oo whenever it contains an isomorphic copy of 1^ (this follows from

the criteria for rotundities of L*(/x, R) equipped with the Orlicz norm (cf.

[Tl, RR]). It will be proved in this paper that in the case of the Orlicz norm

the Fenchel-Orlicz space L®{fi, X) contains an almost isometric copy of /oo

whenever it contains an isomorphic copy of l^ .

Recall that a Banach lattice X is said to be a-complete if every order

bounded sequence in X has a supremum. A c-complete Banach lattice X

is said to have an order continuous norm (an order semicontinuous norm) when-

ever x„ | 0 implies ||x„|| -> 0 (resp. 0 < x„ f ■* > x e X, implies ||x„|| -* ||x||).

2. Results

We start with the following

Theorem 1. Let E be a a-complete Banach lattice with an order semicontinuous

norm. If E contains an isomorphic copy of 1^, then it contains an almost

isometric copy of l^ .

Proof. From the well-known result of Lozanovskii [L] it follows that the norm

in E is not order continuous whenever E contains an isomorphic copy of

/oo ■ Since E is a-complete (by the assumption), in virtue of the result of

Ando [A] (cf. also [KA, p. 382; LT, p. 7]) it follows that there exists an order
bounded sequence (uk) of mutually disjoint positive elements in E satisfying

c - inf„ ||w„|| > 0.
Assume that 0 < un < x e X holds for all n e N and put

K„ = sup <   y^Uj   :weff

for n e N. Since {K„) is a nonincreasing sequence satisfying c < K„ < ||x||,

it is convergent and c < K = linin-.oo Kn < \\x\\.

Let 0 < e < 1 be fixed. Take 0 < 6 < 1 < r\ such that d/n > 1 - e. Now
pick k\ in such a way that Kk] < r\K. It follows from the definition of K„

that for a certain k2 > k\ , we get

k2-\

J2 ui   > 6Kkl > 6K.
i=k,

We can construct, by the induction, an increasing sequence {k„) in N such that

k„+\-\

(1) y  ^   >6K,
i=k„

(2) Kkn<nK.

Now consider the sequence (x„) of positive and pairwise disjoint elements,

where
k„+\-\

xn =   y {r}K)-lUj.

i=k„
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For each 0 < £ = (£„) e /oo , we put

T(Z) = suplyZ>x':nGN\ ■

The supremum exists because E is er-order continuous and
n

y^x^mr'xm^.
;=1

Since T : /£, —> E+ and T is linear, it extends uniquely to a linear operator

T from /oo into E.

If cf = (£„) e /oo , then the order semicontinuity of the norm and (2) yield

||T(0|| < ||7(K|)|| = ||r(|£|)||
n n

=  lim   y\&\Xi   < H^HooSup  Vx,

<o^-%jao<iiOx>.
Furthermore, by (1)

\\n\\>\Zn\\\Xn\\>drl\Zn\>{l-mn\

for all « e N. Consequently,

(i-e)iiao<ira<ii£iioo
for any cf e /oo . This finishes the proof.

Note that Fenchel-Orlicz spaces are not isomorphic to Banach lattices in

general. Because of this we are interested in the problem of almost isometric

copies of /oo as well as Co in these spaces. In order to present our results we

first need to prove some auxiliary lemmas.

Lemma 1. If an Orlicz function <1> does not satisfy the suitable ^-condition,

then there exists a sequence (/„) of functions with pairwise disjoint supports and

such that H/, ||° = 1 for any n e N and /$(/,) —* 0 as n —> oo.

Proof. It is known (cf. [H, K, Tl]) that if <I> does not satisfy the suitable

A2-condition, then there exists a sequence (g„) in L*(/z, X) with pairwise

disjoint supports and such that I<&{gn) -* 0 and ||g„|| = 1 for any n e N. We

have ||g„||° > 1, whence defining /, = g„/||g„||° we obtain \\f„\\° = 1 and

0 < /*(/,) < /*(£„) - 0, i.e., W„) - 0.

Lemma 2. For any f e Lq>{fi, X) and 3 > 0 we have ||/||° < 1 + 8 whenever

h(f)<S.
Proof. Under the assumptions we have

||/||° = infJr'a +/*(*/)) < 1 +/*(/) < 1 +d.
k>0

Theorem 2. If $ is an Orlicz function on X not satisfying the suitable A2-

condition, then for any e > 0 there exists a (1 + e)-isometry T of lx into

{L?{fi, X), || • ||°) such that Tc0 t E<b{fi, X).

Proof. Take an arbitrary e > 0. Let (/„) be the sequence in L®{fi, X) with

pairwise disjoint supports such that

/♦(/«) <2-"e   and   ||/n||° = 1
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for any n e N, which is built as in the proof of Lemma 1. Define an operator

T : /oo - L*{n, X) by U = EZi Znfn for any { = ({„)€/«,. We have by
the orthogonal additivity of /<&

oo oo

Wcf/UcfUoo) = yi^nfn/KWoo) <£>(/„) < B.
n=\ n=\

Thus, from Lemma 2 it follows that

Hr£H0<(i+8)||Oo

for every cf e /«,. Since ||Tcf ||° > ||<f„/,||° = |<f„| for any n e N, we have

ra°>iicfiioo.

This means that T is an (1 + e)-isometry. Note that Ten = f„, where e„

denotes the sequence of real numbers whose «th term is one and the rest are

zero. We have f„ = gn/\\gn\\0, where I^(gn) —> 0 as n —► oo and ||g„|| = 1 for

n e N. Hence I<j>{Xgn) = oo for any X > 1 and « e N large enough. Thus, it

follows that /„ £ E9{fi, X) for n e N large enough. This finishes the proof.

Theorem 3. If 4> is an Orlicz function on X not satisfying the suitable A2-

condition, then for any e > 0 there exists an operator T : l^, —> L<t>{fi, X),

which is a (1 + e)-isometry in the case of the Luxemburg norm as well as in

the case of the Orlicz norm. Furthermore, T restricted to Co acts (1 + e)-

isometrically to E(/i, X) with respect to both norms in E(fi, X).

Proof. Note that the A2-condition is equivalent to the A/-condition for any

/ > 1 . Note also that in view of conditions (*) and (**) an Orlicz function

<I> satisfies the suitable A2-condition for some constant c > 0 if and only if it

satisfies this condition for an arbitrary constant c > 0. Therefore, if O does

not satisfy the A2-condition at infinity, then for any e > 0 we can choose a

sequence (x„) in X and a sequence (An) in E such that

(3) cD((l+e)x„)>2"+,e-1cI)(x„),

(4) 2-"-[e<Q>{xn)fi{An)<2-"E

for any n e N. Note that in the case of a nonatomic measure we can get (4) in

the form ®{x„)fi{A„) = 2~"e .
Now, let T be an operator defined by

oo

Tc; = J2tnX„XA„
n=\

for any £ = (&,) in /«,.

If £ = ««) e /oo, then

oo

/*(^/ll^l|oo)<E0(-X")^/1'')^e'
n=\

i.e., Tl€l?<ji,X).
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Taking any cf = (cf„) e Co and any X > 0 we can choose m e N such that

M€n\ < 1 for n > m. Hence

m—\ oo

I»{kTZ) = £ <D(Acf„x„)MA) + £ <P(Acf„x„)MA)
n=l n=m

m— 1 oo

< £0(A£Bx„)^n) + £*(*«)^i.)

«=1 «="!

m—1 oo

< y <s>{xznxn)fi(An)+ey2-n<™,
n=\ n=m

i.e., T{ e £*(/*, X) for any cf e c0 .
Moreover, the right inequality in (4) yields

||r<f/||cfiur= inffc-'u+Mm/iia*))
^>o

<1 + /*(r<J/||^||00) <l+e,

whence

\\n\\<\\n\\°<^ + e)moo

for any cf e /oo •

On the other hand, for 0 < e < 1 and some n e N, applying (3) and the left

inequality in (4), we get

7o((l + 2e)rcf/||cf||00) ><D((1 +e)xn)fi(An)

>2"+i£~[<i>{xn)fi{An)>l,

which yields

Iircf||°>||r^||>(i+2e)-,||cf||00

for any <f e /oo • This finishes the proof.

Added in Proof. Recently, E. Odell and T. Schlumprecht have answered the

distortion problem negatively.
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