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OF SEVERAL VARIABLES
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(Communicated by William W. Adams)

Abstract. Let P(X) be a product of k linear forms in r variables Xx, ..., X,

as given by

k

P(XX,..., Xr) = Y\(ajX Xx +■■■+ ajrXr + dj),
j=x

Reajj > 0, ReiSj + Y/aji) > 0.

Suppose that fi = (0X , ... , fir) is an r-tuple of nonnegative integers. Con-

sider the zeta function

Z(P,fi)(s)='£i---'£nK.-n?'P(nl,...,nrrs,       Res>r-±1E1,
ni = l       n, = \

where \fi\ = fii + ■ ■ ■ + fir ■ Z(P, fi)(s) has an analytic continuation in

the whole complex plane and it is regular at s = 0, -1,-2,..., -m, ... .
In this paper, we shall compute the explicit values of Z(P, fi)(s) at 5 =

0, -1, —2, ... , -m , ... and express them in terms of finite sums of poly-

nomials in Bernoulli numbers.

1. Introduction and notation

Let P(XX, ... , Xr) be a polynomial of r variables with positive coefficients

in the real number field R and c; = (cji, ... , £r) e C" with |c;(| = 1, c;, / 1 .

In [1], Cassou-Nogues considered the zeta function Z(P, i;)(s) associated with

P and c; as follows:

oo oo

z(p, o(5) = J2 nn)-sc = E ■• E p(nx >•■•> "r)-^,' -«,"' •
n€Nr «i = l        nr=\
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52 MINKING EIE

She obtained among other results that the special values of the continuation of

Z(P,Q(s) at nonpositive integers is given by

Z(P,ct)(-m)=R(Pm)(ct).

Here
R(Pm)(T) = E Pm(n)T"

n€N'

is a formal power series. Also in [1], R(Pm)(i;) is expressed as a finite sum of

numbers of the form X(Pm)/(l - £i)Ql • ■ • (1 - £r)ar, where a, is a nonnegative

integer and \a\ > 0. Obviously, the formula for Z(P ,£,)(-m) did not work

for the case when some £,■ = 1.

Let Z(P)(s) = z3neNr P(n)~s ■ In an effort to get a similar formula for

Z(P)(-m), Cassou-Nogues in [2] used two different ways to investigate this

problem for certain kinds of polynomials. In particular, she considered those

polynomials P with P(XX, ... , Xr) = C,X,W' + • • • + CrX?' + R(XX ,...,Xr),

where R(X) is a combination of monomials X°[ ■ ■ ■ X"r satisfying z2l=i ir ^

1. However no explicit formula for Z(P)(-m) was obtained except for the
special case r = 2 and P(X, Y) = Xm< + Ym> + Xa> T"2.

It is clear that the evaluation of Z(P)(s) at nonpositive integers is equiva-

lent to finding the asymptotic expansion of the series Y,neNr e~P(-n)' at t = 0.

Fractional powers may appear in the expansion and it makes the whole process

more complicated.

On the other hand, Shintani [ 12] decomposed the Dedekind zeta function Ck
of a totally real number field K into a finite sum of zeta functions Z(P)(s) as

defined above with

k k

P(X) = JILj(X) = \[(ajXXx + ■■■ + aJrXr + dj),        a}i > 0, dj > 0.
j=\ j=x

Let Y(s) be the gamma function defined by Y(s) = J0°° ts~xe~' dt, Res > 0.

Then for Re 5 > a*/ac , we have the integral expression

zMsms)]* = r... r(h-tky-le-^dti...dtk
[   )(S)[  [S)i       Jo        Jo     (eH,.r]-l)...(<?M*.r]_i)  '

Here [D, T] = <5.f. + • • • + drtr and [At, T] = autx +■■■ + akjtk .
With the above formula, Shintani was able to express Z(P)(-m) in terms

of coefficients of power expansions of certain functions. It turned out that

these coefficients are products of Bernoulli polynomials. On the other hand, the

author obtained an explicit formula for the values at nonpositive integers of a

zeta function associated with a polynomial [3].

In this paper, we shall consider a more general kind of zeta function

Z(P, fi)(s) defined by

z(p,p)(s) = e^E"?'"'"^"1'---'"')"*'    Res>r-jr^-
n, = X       nr-X

Here fi = (fix, ... , /3r) is an Muple of nonnegative integers and P(X) =

rj*=1 Lj(X), Lj(X) = (fl/,Xx + ■ ■ ■ + ajrXr + Sj), Reajt > 0, ReLj(n) > 0 for

«6N'.
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To state our main result, we let Jm he the linear extension of C[XX, ... , Xr]

to C satisfying

jrn{X^...X^)=f[C(-ai) = (-l)^fl-^\-
(=1 i=lW+l>

Here Bo, Bx, B2, ... , Bp , ...  are Bernoulli numbers defined by

t A BptP
^7 = E^"'        \t\<2n.
e< - 1     ^-t  pi

p=0

For w = 0, we let /°(c) = c. We can now give our main theorem.

Main Theorem. Let Z(P, B)(s) be the zeta function defined as above. Then

Z(P, B)(s) is an analytic function of s for Res > (r + \fi\)/k and it has

an analytic continuation to the whole complex plane which is analytic except

possible poles at s = j/k, j < (r + \B\), where s is a nonnegative integer or

zero. Furthermore, the special value ofi Z(P, f})(s) at nonpositive integers is

given by

Z(/\/?)(-m) = ±E    E    jr~"   I X*Pm(X)dXh-..dXjf   .

Here in the second summation, {jx, ..., jp} ranges over all subsets ofi {1, ..., r).

The domain of integration Aj(Xjt,..., Xjp) is realized as a p-simplex in Rp

defined by Lj(X) > 0, Xjt < 0, ... , Xjp < 0, by assuming that the coefficients
of Lj(X) are positive real numbers (see Proposition 6 fior the precise meaning of

the integral).

Remark. When Lj(X) has real coefficients, then Aj(Xjl, ... , Xjp) is indeed

a p-simplex. When p = 0, the term Jr[X^Pm(X)] resulted easily from our

calculation as we shall see.

Concerning the rationality of the values of Z(P, B)(s) at nonpositive inte-

gers, we have the following corollary.

Corollary. Suppose that k is an algebraic number field over the rational number

field Q flAjfl* P (as given before) is a polynomial function over k. Then fior any

integer m with m>0, Z(P, fi)(-m) e k.

2. The integral formula of Z(P, f})(s)

From now on, we use the following notation:

Aj = [aXj, ... ,akj],    D = [SX, ... ,8k],     T = [tx, ... , tk],

U = [ux, ... ,uk],    uk = l-ux-uk_x,       dU = dux---duk_x,

k k

[Aj, T] = E a'j(' >        [aj . u] = E a'VM<'
1=1 7=1

k k

[D,7J = E<*<7"        [D, l7] = E<5/"m
i=i (=1

|7"| = h + • • • + tk,        Lj(X) =ajiXi + --- + ajrXr + Sj.
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Proposition 1. For Res > \B\ + r, we have

*»O0 /»oo

Z(P,fi)(s)Y(s)k=        •••/    (ti---tky-le-lD>Tx
Jo        Jo

r        oo

XII   Y,nfe~[Ai'T]ni   dtx-dtk.
7=1 [n;=l

Proof. For Re 5 > 0 and positive integers aji , ... , nr, we have

*

Atf1 • • • Aif' ]J(n +flyi«i + • • • + ajrnr + Sj)~sY(s)k

j=i
/•OO /-OO

= /    •■•/   {ti-tkY-^-n*
Jo        Jo

k

x JJexp{-(a;iAZi -|-\- ajrnr + 8j)tj)dti ■■■dtk.

j=i

Our assertion then follows from the monotone convergence theorem with which

we can perform a term-by-term integration.

Proposition 2. For Res > (\B\ + r)/k, we have

Z(P,B)(s)Y(s)k= r tks~ldt I (ui---uk)s-le-lD'V]t
Jo Je

r oo

xII Y,nfe~"jlA"U]t du-
7=1   [«7=1

Here E is the standard simplex in Rfc_1 defined by

f Ui, ... , uk_x >0,

\   1 - «i-Uk_i > 0.

Proof. The proof follows from Proposition 1 and the following changing of

variables which map (R+)k onto (R+) x E:

ti = tui, ... , tk_i = tuk_x,        tk = tuk;

k-X

(ui, ... , uk_i) eE,        Mfc = l-EM'-
(=i

Our assertion is true for Res > \B\ + r.

Note that the function

r oo

TJ   tfiJ+iJ-nfije-iAj,U]t
7=1  L nj=l

is a rapidly decreasing function of t when 0 < t < oo. Consequently, the

integral on the right-hand side is convergent for Re5 > (\B\ + r)/k. Thus the

formula holds for Res > (\B\ + r)/k .
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Remark. For 0 < t < 2n and positive integer p , we have

$'g- = (£)'(i+gT).
With a term-by-term differentiation, we get

Hence the series r/+1 £~ j Atpe-"' is a regular function of t at f = 0.

3. The analyic continuation of Z(P, fi)(s)

Let

(1) F(t;U) = tM+'e-lD-wf[} £ n0Je-«j[Aj,U]t I
;=1    1"; = ! J

and

(2) 7(5, 0 = —L y («! • • ■ uk)s-lF(t; U)dUi — duk_x.

Then we can rewrite Z(/>, /?)(s)r(s) as

/•OO

z(7»,^)(j)r(j)= /   tks-w-r-xi(s,t)dt.
Jo

F(t; U) is a continuous function in ux, ... , uk_x and a rapidly decreasing
function in t, and the measure

T(ks)(ui ■ ■ ■ uk)s~x dui-- duk_i

T(s)k

is a bounded measure on the standard simplex E (see the following Remark).

Thus I(s, t) is a holomorphic function in 5 and a rapidly decreasing function

for 0 < t < oo. Hence Z(P, B)(s)Y(s) has only possible simple poles at

5 = j/k> j <r + \B\, ;'£Z, with Z being the set of integers.

Remark. The measure r(Acs)(wi • •■w/t)-s_1 rfwi ■■■duk_i/Y(s)k is the well-
known classical Dirichlet measure. It is well defined for Re 5 > 0 and has

its analytic continuation for all 5.

Proposition 3. Let the power expansion of F(t; U) at t = 0 be Y,°l0 t'F(U).
Then

(-l)mm\
Z(P, p)(-m) =-£-Gkm+m+r(-m),

with

Gt(s) = r(s)k_x I (ux-uky-lFi(U)dux--duk_x,       Res >0.
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Proof.

fX .'oo
Z(P,fi)(s)Y(s)=      tks-W-r~xI(s,t)dt+       tks-W-r~xI(s,t)dt

Jo Jx

= f tks-M-'-1 JE t'Gi(s)\ dt + r tks-W-r~xI(s, 0 dt

=£7—tW—:+rtks~m~r^ii(s,t)dt.
j^ks-\fi\-r + t     Jx

The integral on the right-hand side is convergent for any s, so the right-hand

side is a meromorphic function in 5, which gives the analytic continuation

of Z(P, _B)(s)Y(s). For 5 = -m, the residue of the right-hand side is

{-Gkm+\p\+r(-m) ■ But as Y(s) has a simple pole at 5 = -m, it forces Z(P,iB)(s)

to be regular at s — -m and

^^Z(F, fi)(-m) = X-Gkm+m+r(-m).

It follows that

(-l)mm\
Z(P, B)(-m) = ^—£-Gkm+m+r(-m).

4. The explicit formula

Applying the formula

(3) E^-"' = 4r + El"1)P^T;'^        0<><2,r,f~> tP+x     f^(j+P+l)-j\

we get the following power series expansions for 0 < t < 2n:

00

th + l y^ nfiie-ndA,,U]t

(I  ) "l = 1

ft! ^(-l)0>Bj+p,+x[Ax,Uyt^+x

~ [Ai, U]P<+X + f^ (j + Px + l)-J\

00

tPr+X y^ nPre-nr[Ar,U)t

ft! ^(-l)^BJ+Pr+i[Ar,UVt^^

-[Ar,U]P^+j^ (j + pr+l).j\

(lr+x) e-P^.fC-iy^^.
7=0 J'

Gkm+\p\+r(s) is an integration over E of the coefficient of tkm+^+r in the

product of series (Xi), ... , (2Zr), (2Zr+x). So it is a finite linear combination of
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integrals of the form

(4)

Ha(S) = z^-jpr /"(«,...uky-x[Ax, ur ■■■[Ar, ur[D, cr- du{ ■ ■ ■ duk.xY(s)k~x JE

with a, > 0 or a, = -ft - 1 (i - 1, ... , r), ar+x > 0, and £i=i Kl =
Acm . More precisely, the general terms in Gkm+\^+r(s) can be divided into the

following two types of integrals:

,4=^ [f=|(al + ft + l)a,!j    ar+1!

where a = (ai, ... , ar, ar+x) is an (r + l)-tuple of nonnegative integers, and

(2) sa«-«v(-i)*-^ [ni(B,^yw] ^f

1 /  (Ml---^r1Mg+l, ^1^' •••Mr, £/]"'[*>, C/]^'fl-C
XT(s)k-x JE [Ai,U]^...[A9,U]P^

Here in the summation, a = (aq+x, ... , ar, ar+x) ranges over all (r - q + 1)-

tuples of integers satisfying \a\ = km + ft H-h ft + o .
In our propositions which follow, we shall devote ourselves to the evaluation

of Ha(s) at 5 = —m for various a's appearing in the summation of Gkim+\p\+r

and combine them to yield the Bernoulli numbers associated with polynomials

as given in the main theorem.

Proposition 4. Let Ha(s) be the integral as defined in (4). Then

A:       0< ^     ,,/ Al(a, + A+l)a,!      a>+1!   ""(   ^
0<a, ,...,ar+i<m;  |a|=/cm Li=l J

= Jr[X'Pm{X)].

Proof.

f,    E    ..,i(«„r.y
■l-L        ^^ a/,-! • • • at;!
;=1 au+-+akl=a, " Kl

x V -r+xKSl)^---(Sk)^Aa{s)
*-^ Ctir+l    • • ■ Q/,,4.1

with

^(') = n^J^«r^"I--X+**"l^«"^«*-i-

Here bx = axx + aX2 + ■ ■ ■ + aXr+x, ... , bk = akx + ak2 + • • • + akr+x . Note that

Y(s + bx)---Y(s + bk)

n[>       Y(sy~xY(ks + \a\)

and

[(-!)(*-■)- Wk-Xk(km-\a\)\
Aa(-m) = l[   l> (m-bi)\---(m-bk)\       U - °x' "• ' °k ~ "*'

{ 0   otherwise.
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In our cases, we have bx + ■■■ + bk — \a\ - km. Hence it forces bx = b2 =

■ ■ ■ = bk = m when Aa(-m) is not zero. For such cases, we have Aa(-m) —

(-l)km~m(m\)k~x . Our assertion then follows from the multinomial expansion

of Xl*Pm(X) and our definition of Jr[X^Pm(X)].

For the remaining cases, we have to find the value of s = -m of

1       f (ux---uky-x[Aq+x,U]a^---[Ar, Uf'[D, Uf^dU
Y(s)k~x JE [Ax, U]^ + x---[Aq,U]^+x

which is a linear combination of

1        r      us+b,~l ■■■us+bk~l dU

with bx H-\-bk = aq+x H-1- ar+x = km + q + fii -\-1- ft . First we observe
the following facts concerning G( fi; b).

(1) The integral in G(P; b)(s) as a function of 5 has a pole at s = -m of
order at most Ac - 1 arising from integration around the vertices of E .

(2) If there are more than one bj in {bx, ... , bk) which are greater than

am, then the order of the pole at s — -m for the integral will be less than

ac - 1. By considering the fact that r(s)fc_l always has a pole at 5 — -m of

order k - 1, we conclude that G(/?; b)(-m) = 0.
With the above considerations, it suffices to consider the case when b} >

m + 1 for exactly one j. In the following proposition, we suppose that 0 <

bi, ... , /jjt-i < tn and bk > m + I . To determine the explicit value of

G(B; b)(-m), we need the usual notation of partial differential operators. Let

Also a! = oi!• • • a^-i! if a = (ax, ■ ■ ■ , o-k-x) ■

Proposition 5. For b = (bi, ... ,bk) with \b\ = km + \B\ + q, 0 < bx, ... , bk_x
< m, and bk > m + I, we have

ai+-+a,+i=m-b   [7=1 i=l   v        ""      ' J'_

ft(ft + |a/|)!(-l)l^.l(^-m-l)!

l\   ft!«f;+1    (bk-m-l-\aq+i\)\-

Here a, = (an, ... , ak_Xyi) (i = 1, ... , q + 1) And m - b = (m - bx, ... ,

m-bk_x).

Proof. When 0 < bx, ... , bk_x < m and bk > m+1, the integral in C7(/J ; b)(s)
has a pole of order Ac - 1 at s = -aw arising from integration around the

vertex (ux, ... , uk_x, uk) = (0, ... , 0, 1). Also the integrations around other

vertices result in poles with order less than k - 1 .   By the regularity of the
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integral [3]

G(fi; b)(-m) = the coefficient of u^ ■ ■ ■ u^k~l of the function

[Ai, U]-^~x ■■■[Aq, c/]-^-'(l -ui-«fc_,)b"-m-1

expanded at Mi = • • • = uk_x = 0

= (nrrbjyZ),n"b{^' > ̂ r*1-1 ■ • • t^«> u^q~l

x(l-«,-w*-1)*^m-1}«1=...=^1=o.

By Leibniz's rule for partial differential operators, we have

^-±_Dm-b[[Ax, C]-^-1 ■ •• [Aq, U]-^~x(l -ux-uk_x)b*-m-x]

= E „,    \     x HlViAi.U]-*-1
*-^ ,  Qi! • • -Qfl+l'     -1-1

ai-1—•+a,+i=m-b ^ L(=l J

xDa«+'(l -M,-Mfc..)6*-'"-1.

Replace [.4,, C] by aij-wi -\-hflfc-i juk-x + akj{l ~ u\-- uk-x) ■ Then

an elementary calculation yields our values for G(fi; b)(—m).

The following lemma is needed in our proof of the next proposition.

Lemma. Let fi be a continuous function on [0, oo) , bx, ... ,bq nonnegative

integers, and E(h) the simplex defined by

0<MiH-\-uq<h,        ux, ... , uq>0, h>0.

Then

/     (u\l ■ ■ ■ ubqq)f(ui H-\-uq) dux ■ ■ ■ duq
JE(h)

Ii I       Ai I fh
-fr-•••*«•-     A mtbx+...+bq+q-xdu

(bx + --- + bq + q-l)\Jo

Proof. The lemma follows from a change of variables and the definition of a

ftfunction of several variables.

Proposition 6. Let Rj(X) = Yfi=q+X OjiXj + 5}■ (j = 1, ... , Ac). Then

f Xf)Pm(X)dXx---dXq

b   7=1 7'       a,+■■■+<*,+, =m-b 7=1 i=l   X *'       '

,= 1    ft-a/c,

Here b ranges over all k-tuple nonnegative integers (bx, ... ,bk) satisfying

0 < bx , ... , bk_x < aw, \b\ = km + \B\ + 1, flAtfl" bk > m + 1 . /l/so ay =

(ay, ... ,ak_Xyj)   (j = 1, ... ,q+ 1).
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Proof. Rewrite the integral as

e   n^n^w*^1
0<bi,...,bk_,<mi=q+X j=\ v JJ    J

r d k-X

x / \Xf' WaixXx +■■■ + a]qXq)m-b>Lk(X) dXi-- dXq.
JAk{X,...,Xq) j=l ._j

Now let Xj = -UiRk(X)/aki   (i = I, ... , q). Then Ak(Xx, ... , Xq) is trans-

formed into the standard o-simplex Eq defined by

E" : «i > 0, ... , uq > 0,   1 - Mi-uq > 0.

Consequently, we have

, 1 k-X

/ UXf \{{ajiXi + --- + ajqXq)m-b'Lk(X)dXi---dXq
Jj\k(X,...,Xq) J=1 -_j

«     /        1    \A^; + 1 /•      « k~X   /     n    ii n     u   \m~hJ

-n(-£)  ^»"/,n"?'n(-r--^)
x (1 - Mi-uq)m dui ■ ■ -duq .

Note that
(\ m-b.

-ejiUl_..._Ei±Uq)
a~k\ akq  V

A       «)tl / \       <*kq J

y     {r~bj)] i(ak>-akiux)a"-(ak«-a"uqY«

x (-\)"j^'(ux + --- + uq)"i«+<.

Hence we have

.     q k—\  / \ m-b,

ln^n(^.t)    c-..--«.r*,-^

=   e   fnn(^r-^) (->)'-'
ai+...+a^m-b V=l 7=1  V *'       7 7"/

X   /   tt,,+|a,l-"!<£+|a'l(l-K|-U,)"1

X (Mi -I-h Uq)^""+^ dux    -dUq.

By our lemma, the integral is equal to

[UU(Pi + \ci\y-]'n\(bk-m-\)\
bk\

Combining the previous propositions, we get the following proposition, which

is precisely what we needed.
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Proposition 7. With notation as above, we have

(-irAw!Eft!-ft!(-i)^+-^ [n ^f+tI ^[i=q+X   a' + P'+ X  J      Q!'-+1-

A,   7=l/=9+l      -"'

' fc   .

= /r"«     [/ X*Pm(X)dXi---dXq   .
j=xJb.k(X,...,Xq)

Here a ranges over all nonnegative integers (aq+i, ... ,ar, ar+x) such that

\a\ = km + Ift1 + a in the first summation, and the relation between b and

a is

b = (bi,...,bk)=[ E ai" ■ • •' E ak> )
\i=q+X i=q+X        J

if ai = aXi + ■ ■ ■ + akl■ (i = q + 1, ... , r + 1).
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