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THE HAYMAN-WU CONSTANT

KNUT gYMA

(Communicated by Clifford J. Earle, Jr.)

ABSTRACT. The Hayman-Wu constant is at least 72 .

Let D be the open unit disc and 7 its boundary. The length of a curve K
is denoted |K|. The Hayman-Wu theorem says that there is a constant C such
that if f(z) is univalent in D and L is any line then |f~'(L)| < C (see [3]).
The Hayman-Wu constant is the least possible value of C . Its numerical value
is unknown, but in [4] it is proved that C < 4z . It has been conjectured that

C=38 fol dx/V1+ x* (see [1]); however, we will prove
Theorem. C > n2.

Flinn proved in [2] that if f(D) contains one component of C\L then
|f~'(L)| < n?. Our example shows that this is the best possible result in this
case. The proof uses an elementary fact about harmonic measure: If I is a
subarc of T and 0 < ¢ < 1 then the level curve w(z, I, D) = ¢ is a circular
arc through the endpoints of / meeting 7'\/ at an angle of cx.

Let ITt and IT- be the upper and lower half planes respectively. If I is
an interval of the real line and 0 < ¢ < 1 then let C; . be the circle centered
in IT* meeting R at the endpoints of I such that the (least) angle between
Cr,. and R is e. We define C; ,NIIT =S, .. Let Q; . be the unbounded
component of C\(S;,:US; ). Two lemmas are needed.

Lemma 1. For zel, w(z)=w(z, Sy ¢, Q) < +E.

Proof. Without loss of generality I equals [0, 1]. If we use the transformation
g(z) =1/z—1,we may assume that Q; . = {re’®: r >0, -n+e < ¢ < n+¢/2}
and that / = R*. Then w(z) is given by the formula

w(re'®) = (n +¢/2 — ¢)/(2m — ¢/2).
Therefore, w(z) = (7 +¢/2)/(2n — ¢/2) < § + ¢ for z € R*.

Lemma 2. For every 6 > 0O there exist numbers b > 0 and ¢ > 0 such that if
I is a subarc of T of length less than b and K is a crosscut in D connecting
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the endpoints of I satisfying w(z, 1, D) < 1 +¢ forevery z € K, then |K| >
[I|(1 =d)m/2.

Proof. K lies outside the convex curve w(z, I, D)= % +e¢. If |I| and ¢ are
small then this curve is almost a half circle whose diameter is almost |I|. A
routine but tedious calculation shows that

lw(z, I, D)= %‘+ g| > (sin(|1|/2))(m — |I| — 2¢m).

Proof of the theorem. 1f 6 > 0 choose ¢ as in Lemma 2. Define I} = [0, 1]
and d = diam(Cy, ;). For k € Z let Il = I} + 2kd . The circles Criep
are disjoint. Let R\UZ} = U J)}, where the intervals J;! are disjoint. Choose
closed intervals I2 c {JJ! such that:

(1) Spz e2NSp gp=2 for m#n;

(i) Sp ¢2NSp o =2 forall m, n;

(ii1) Each compact subset of C intersects only finitely many I,f ;

iv) |UIZnJL|>1|JL1/3d forall m.

We can obtain (iv) by choosing each I? small. Let R\(UIZ UI}) =UJ2.
Continue the construction inductively.

Renumber the set {IX} = {I,}. Define S, =S, . and let O, be the inside
of Cj, ;. Define Q = (| O,)UIl~ . The domain Q is simply connected and the
boundary of Q equals (|JS,)UE where E C R. This is a Jordan arc, which is
locally rectifiable since |S,|/|I,| = constant. Therefore w(z, E, Q) =0 since
|E| = 0 by (iv). It follows that if f(z) maps D conformally onto Q then

YIS =2m.
By comparison w,(z) = w(z, S,, Q) < w(z,S,, Q,.). Therefore, by
Lemma 1, w,(z) < §+¢ for z € I,. Choose f(z) such that f(0) = —ia

where a is so large that w,(—ia) < b for all n. The constant b comes from
Lemma 2. f~!(I,) is a crosscut in D connecting the endpoints of f~!(S,).
Lemma 2 shows that |f~!(1,)| > |f~'(Sx)|(1 =J)n/2. This proves the theorem
since

SR =S 2 Y1 SN = 0)m /2 = m2(1 - 6).
Conjecture. C = n2.
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