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THE HAYMAN-WU CONSTANT

KNUT 0YMA

(Communicated by Clifford J. Earle, Jr.)

Abstract. The Hayman-Wu constant is at least n2 .

Let D be the open unit disc and T its boundary. The length of a curve K

is denoted \K\. The Hayman-Wu theorem says that there is a constant C such

that if f(z) is univalent in D and L is any line then |/-1(L)| < C (see [3]).

The Hayman-Wu constant is the least possible value of C . Its numerical value

is unknown, but in [4] it is proved that C < 4n. It has been conjectured that

C = 8 J0 dx/Vl + x4 (see [1]); however, we will prove

Theorem.  C >n2.

Flinn proved in [2] that if f(D) contains one component of C\L then

\f~l(L)\ < n2. Our example shows that this is the best possible result in this

case. The proof uses an elementary fact about harmonic measure: If / is a

subarc of T and 0 < c < 1 then the level curve co(z, I, D) = c is a circular

arc through the endpoints of / meeting T\I at an angle of en .

Let n+ and n~ be the upper and lower half planes respectively. If / is

an interval of the real line and 0 < e < 1 then let C/, e be the circle centered

in n+ meeting R at the endpoints of / such that the (least) angle between

C[yE and R is e. We define Q,e n n+ = S/jE. Let Q/>E be the unbounded

component of C\(5/>e U SiyE/2). Two lemmas are needed.

Lemma 1. For z £ I, a>{z) — a>(z, 5/£, Q/,E) < \ + e.

Proof. Without loss of generality / equals [0, 1 ]. If we use the transformation

g(z) = l/z- 1, we may assume that Q/,E = {re"1': r > 0, -n + e < <t> < n+e/2}

and that / = R+ . Then co(z) is given by the formula

<o(re'+) = (jt + e/2 - r»/(2?r - e/2).

Therefore, co{z) = {n + e/2)/(2n - e/2) < \ + e for z e R+ .

Lemma 2. For every 3 > 0 there exist numbers b > 0 and e > 0 such that if

I is a subarc of T of length less than b and K is a crosscut in D connecting
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the endpoints of I satisfying co(z, /, D) < \ + e for every z £ K, then \K\>

\I\{\-8)n/2.

Proof. K lies outside the convex curve co(z, I, D) = j+e. If |/| and e are

small then this curve is almost a half circle whose diameter is almost |/|. A

routine but tedious calculation shows that

\co{z ,I,D) = \ + e\> (sin(|/|/2))(7r - |/| - 2en).

Proof of the theorem. If 3 > 0 choose e as in Lemma 2. Define Iq = [0, 1]

and d = diam(C7i e/2). For k £ Z let /' = /,} + 2kd. The circles Qi £/2

are disjoint. Let R\IJ^ = U«^m> where the intervals Jkl are disjoint. Choose

closed intervals I2 c IJ Jk  such that:

(i)   sil ,e/2 n si},e/2 = 0 for m^n;

(»)    Sli ,e/2 n SI'n,e/2 = 0  for a11  ™ .   » 1

(iii) Each compact subset of C intersects only finitely many /^ ;

(iv)   |lJ42nJ^|> 17^1/3^/ for all m.

We can obtain (iv) by choosing each I2 small. Let R\(IJ/^ U/1) = \JJ„ .
Continue the construction inductively.

Renumber the set {/£,} = {/„}. Define S„ = 5/„,£ and let On be the inside

of Cjn ]£. Define Q = (IJ 0„)un~ . The domain Q is simply connected and the

boundary of Q equals (\JSn)L)E where E c R. This is a Jordan arc, which is

locally rectifiable since |5„|/|/n| = constant. Therefore co{z, £■, Q) = 0 since

\E\ — 0 by (iv). It follows that if f(z) maps D conformally onto Q then

Z\f-l(Sn)\ = 2n.
By comparison <y„(z) = a>(z,S„,Q.) < co{z, S„, Q/„,£). Therefore, by

Lemma 1, wn(z) < \ + e for z £ In. Choose f(z) such that /(0) = -ia

where a is so large that co„(-ia) < b for all n . The constant b comes from

Lemma 2. /-1(/„) is a crosscut in Z> connecting the endpoints of f~l(S„).

Lemma 2 shows that \f~\In)\ > |/~1(^'n)l(l -8)n/2 . This proves the theorem

since

|/-'(R)| = ^ \f-ldn)\ > E l/"'^)!^ " W2 = «2d - «*)■

Conjecture.   C = n2.
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