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CERTAIN GAMES, CATEGORY, AND MEASURE

SLAWOMIR solecki

(Communicated by Andreas R. Blass)

Abstract. For A C 2W and X C a> consider an infinite game F(A, X) in

which two players I and II choose c„ € {0, 1} . cn is chosen by I if n e X

and by II if n e co\X . I wins if (c0 , cx, c2 ,...)€ A . We analyze connections

between A and the family of all sets X C co for which I has a winning strategy

in Y{A , X). Certain similarities and differences appear if one formulates these

connections in the language of category and of Lebesgue measure.

1. Notation

The set of all natural numbers is denoted by co. Each natural number is the

set of its predecessors. For any set X by 2X we denote the set of all functions

from X to 2 = {0, 1} and by &(X) the set of all subsets of X. There is
a canonical correspondence between the elements of &(X) and 2X : a subset

of X corresponds to its characteristic function. If j e 2X and Y c X, then

j\Y denotes the restriction of / to f. For Fc 2X (resp., F c &(X)) and

Y C X let F\Y = {f\Y: j e F} (resp., F\Y = {A n Y: A e F}). If j e 2n
then [/] = {ge2": g\n = j}, and if F c 2" then [F] = \JfeF[f]. By XAY
we denote the symmetric difference of X and Y and by |A"| the cardinality

of X.
Mostly we will deal with 2a and 2P(a) for a < co. 2W is naturally equipped

with the product measure of measures on 2 assigning weight j to both points

from 2. This product measure is denoted by X and is called Lebesgue mea-

sure. By the same letter we denote the measure on 3°(w) obtained by pulling

back X from 2W. X, stands for the inner measure. We also have a natural

metric on 2a, a < co, defined by the formula d(fi , f2) = 2~" where n -

sup{/c < a: fi\k = j2\k} for fi ^ f2. Again, by the same letter we de-

note the metric on 9°(a) obtained by pulling back d. The metric d on 2"

(resp., &(a)) induces a metric on Jf(2n) (resp., 3tf(&(a))), the family of all

compact subsets of 2a   (resp., 3°(a)), by Hausdorffs formula

d(Fx, F2) = max \ sup d(f, F2), sup d(f, Fx) )
[feFt feF2 J

where d(j,F) = inf{d(j, g): g e F].
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2. Introduction

Given A c 2™ and X c co let us consider the following infinite game with

perfect information T(A, X) (cf. [1, 3]). Players I and II choose c„ e 2 =

{0,1}, n e co. If n e X then c„ is chosen by I and if n e co\X by II. We

say that I wins if (cn, cx, c2, ...) e A .
Define TA = {X e £P(to): I has a winning strategy in Y(A, X)}. By a

winning strategy for I we mean a function tp: 2<w >-> 2 such that if cn , n e co,

are chosen so that c„ = tp(co, ... , cn-x) for n e X (if 0 e X, cq = <p(0)),
then (co, cx, c2, ...) e A, i.e., no matter how II plays, if I plays according to

tp , then I wins. A winning strategy for II can be defined similarly.

Obviously the bigger A is the more games T(A, X), X c co, are won by

I, i.e., the bigger TA is. We will try to make this statement more precise. In

[1, Theorem 1.4] Balcerzak and Roslanowski implicitly proved the following

theorem. (Their Theorem 1.4 states more or less the same as Corollary 2.2

here.)

Theorem 2.1. If A c 2W contains a set of second category possessing the Baire

property then there exist k e co and a partition {Xn: n e co} ofi to\k into finite

sets such that {k U \Jn€YXn: Y c co infinite } c TA . If A is residual, we can

put ac = 0.

From this the following two corollaries can easily be drawn.

Corollary 2.1. If A contains a set of second category with the Baire property, so

does TA. If A is residual, then TA is residual, too.

Corollary 2.2. If A is residual, then TA contains an infinite fiamily of disjoint

subsets.

The above results estimate the size of TA provided the size of A in terms

of category is known. In this paper we investigate the size of YA assuming

that we know how big A is in terms of Lebesgue measure. In particular, we

prove that the result analogous to Corollary 2.1 holds. On the other hand, by

an example we show that the result analogous to Corollary 2.2 is false. This

answers a question of Balcerzak and Roslanowski posed in [1, Problem 1.5(a)].

Additionally we prove that if F is closed so is YF and the mapping F h-> re-

considered as a mapping from Jf(2C0) to f%(3P(co)) does not increase the

distance.

3. Some combinatorics

Let Ac2a where a < to. We define a set Ac £P(cx) (the operation : is

denoted by the same symbol for various a) by the formula

X e AiffBF' C A(F'\X = 2X & V/i, f2 e F'

(fi ±j2^ suP{ac 6 a: fi\k = j2\k} e X)).

We say that F' witnesses X e A . Notice that such an F' is closed. Sometimes

we write AT instead of A .
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Lemma 3.1. Let Fx,F2c2n, new. Then d(Fx, F2) < d(Fx, F2).

Prooj. By symmetry it is enough to show that for any X e FX\F2 there is

jeFx\F2 with d(X,F2) <d(j,F2). If d(X, F2) = 2~k , then min XAY < k

for any Y e F2. Let F' c Fx witness X e Fx . There is j e F' such that

f\(k + l)^g\(k+l) for all g e F2. If not, there would exist Y e F2 with
Y = X n (ac -h 1) whence min XAY > k , a contradiction. For this / we have

d(f,F2)>2~k.   D

The next lemma seems to be interesting in its own right.

Lemma 3.2. Let F c2", neco. Then \F\ = \F\.

Proof. Put (/,, f2) = max{Ac e n: fi\k = j2\k}.

Claim. For any F c 2" , if f e 2n\F then \(F U {f}fi\ > \F\ + 1.
Assume we have proved the claim. An obvious corollary of it is that if

F, Fx c 2" and F n Fx = 0 then \(F U Fxfi\ > \F\ + \FX\. We also have

2" = 2" and 0 = 0 . Therefore

\2*\ = \{FU(2"\F)y\>\F\ + \2*\-\F\

whence |F| < |F|. And on the other hand

|F| = |(0UFn > |0| + |F| = |F|.

Prooj oj the claim. Let Fk = {g e F: g\k = j\k} U {/}. Let X c n he such

that for each ken, X\k is maximal with respect to the inclusion in Ffc . Such

a set exists because for any Y maximal in F/c+x there exists Z d Y maximal

in Ft (Z = T or Z = Tu {ac}) . Therefore X can be constructed inductively

with respect to ac starting from n and ending at 0.

We show that X e (Fu{j})~\F . Obviously, X e (Fu{j})~ as Fu{f} = F0

and X = X\0 e F0. Assume X e F and let F' c F witness this. Define

p = max{(/\ g): geF'}.
Case 1. p e X. There exist gx, g2 e F' with p - (g\, g2) and gx\p =

gi\P = f\P\ but then f\(p + 1) = gt\(p +1) for some / e {1,2}, whence
(fi, gi) > P + I , which contradicts the definition of p .

Case 2. p d- x. We will apply the following fact: if Y e Fl and Y e F2
and there is Ac e n such that k - (gx, g2) for any gx e Fx and g2e F2, then

Y U {Ac} e (F1 U F2y. Let F^= F'n Fp . Then X\p e F . Let F2 c Fp+X

witness X\p = X\(p + 1) e Fp+X . Notice that j\p = g\p for any g e Fx l)F2,

f\(P + I) * g\(P + I) for ^eF'.and f\(p + 1) = g\(p + 1) for geF2,i.e.,
P = {gx , gi) for any gx e Fx , g2 e F2. ThereforeJX\p)l){p} e (FxuF2fc

Fp , which contradicts the maximality of X\p in Fp .   □

We summarize this section in the following proposition.

Proposition 3.1. Ij F c 2W is closed then F is closed, too. The mapping f mF

from Jlr(20}) to JF(^P(co)) does not increase the distance, i.e.,  d(Fx, F2) <

d(Fx, F2) jor Fx,F2e Jf(2w). Moreover, X(F) = X(F) jor F e Jf(2").

Proof. For fi,j2e 2a put (/, , f2) = sup{Ac e co: fi\k = f2\k}. Let

& = {H e 3?(2"): Vaa 6 co(3fi , f2 e H(fi , f2) = n

^\/jeH3j'eH(j,j') = n)}.
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Clearly 31 C Jf(2w) is closed. Let tf>: 3?(2W) i-» 3(w) be defined by tp(H) =
{n e to: 3/i, fi2 e H(fx, f2) = n]. Clearly <p is continuous. It is easy to see that

F = 4,(31 n{H e 3?(2W) :HcF}). (If F' c F witnesses X e F then F' is
closed; moreover, F' e 3Z and X = qb(F').) Since 3?n{H e 3f(2w): H c F}

is compact and </> is continuous, F is compact.

C/fli/n. Let F c 2W be closed. Then PdlFI"] = F .

Prooj oj the claim. Let X e F\n, i.e., there is Xx e F with Xx x~\ n = X.

But then if F' c F witnesses Xx e F then F'|« witnesses X e F\n . So

F\ncF\n and fCiI^l c fCil^W = F.

Now, let X e (XtiiFki], i.e., X n aa e F\h for each n e to. The set

r = {F': 3n e coF' c F|n and F' witnesses X n n e F\n} with the relation
f < pn iff /r' _ F"\n for some n e co, for F', F" e T, constitutes an

infinite tree each level of which is finite. By Konig's lemma there exists an

infinite branch, i.e., a sequence F'n e T,  n e co, with F'n < Fn'+1 .   Then

F' = n^LjFt'] C F and F' witnesses X e F . Thus the claim is proved.

Now assume that Fx, F2 are closed. Since Fx, F2 are closed, we get

d(Fx, F2) = limd(F\n, F^n) < limd(Fx\n , F2\n) = d(Fx, F2)
n n

by the claim and Lemma 3.1. If F is closed, we get

X(F) = lim \F\n\/2n = lim \F\n\/2" = X(F)
n n

by the claim and Lemma 3.2.   □

4. YA

Lemma 4.1. Let A c2w. Then X e A if and only if co\X e YA .

Proof. (=») Let F' witness X e A . We have to find a winning strategy tp for

I in the game Y(A, co\X). Let cr e 2" for some new. If [a] n F' = 0 or

az 6 X, let p(er) be anything, e.g., 0. If [o]nF' ^ 0 and « e C(A\X, let /e F'
be such that / e [cr] n F'. Put fp(cr) = /(«). The choice of F' ensures that I

uses only the second rule in a play. Therefore we have [(co, . ■ ■ , c„)] n F' ± 0

for any new. Since F' is closed, (co, cx, c2, ...) e F' c A .

(<=) Let (? be a winning strategy for I in T(A, w\X). Let F' = {j e

2C0:\/n e w\Xj(n) = <p(f\n)}. It is easy to check that F' C A and F' wit-

nesses X e A .   □

Theorem 4.1. Let F c 2W be closed. Then YF is closed and the mapping

FnTf from Jf(2w) to J^(3>(w)) does not increase the distance.

Proof. Since n: 3>(w) i-> 3>(to) defined by n(X) = w\X is a distance preserv-
ing homeomorphism, we obtain the conclusion by Proposition 3.1 and Lemma

4.1.    □

Point (ii) in the next theorem is a measure counterpart of Corollary 2.1. A

weaker result was proved by Roslanowski in [4, Lemma 5.6]. It was shown there

that if F is closed and X(F) > 0 then YF ̂  0 .
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Theorem 4.2. (i) If A c 2W is the intersection oj an open set and a closed set,

then YA is Fa, thus measurable, and X(YA) = X(A).

(ii) For any Ac20} we have Xt(YA) > XM) ■

Prooj. If A is as in (i) then we can find an increasing sequence of compact

sets F„ C A so that for any compact F c A there is n e w with F c F„.

Notice that for each X e YA there is a compact set F c A with X e YF.

(Take simply F witnessing w\X e A.) Thus YA = U^Lo^f,, whence YA is
F„ by Theorem 4.1. Notice also that the sequence YFn is increasing. Since the

mapping n defined in the proof of Theorem 4.1 preserves Lebesgue measure,

we get

X(YA) = limAfTVJ = UmX(Fn) = lim A(F„) = X(A)
n n n

by Lemma 4.1 and Proposition 3.1.
If A is arbitrary, pick a sequence of closed sets F„ c A, n e w, so that

lim„ X(Fn) = X,(A) ■ Then YFn c TA and (ii) follows from (i).   □

We now draw a corollary which shows that a very weak form of Corollary

2.2 holds for Lebesgue measure, too.

Corollary 4.1. Let A c 2m be ofifiull measure. Then YA contains two disjoint

subsets.

Proof. By Theorem 4.2 we have X(YA) = 1 . Since the mapping n defined in

the proof of Theorem 4.1 is measure preserving, there is X e n(YA) n YA , i.e.,

X e YA and w\X eYA.   □

It is obvious from the proof that the above corollary holds for A c 2W with

X*(A)>\-
Now we show that in general we cannot find three pairwise disjoint sets in

YA even if X(A) = 1 . This proves that Corollary 2.2 is not true for Lebesgue

measure and answers Balcerzak and Roslanowski's question from [1].

Example. Let

^(/€2-:lim^<W:^ = 1>i=a.
{ n n 2J

By Borel's normal number theorem (see [2, Theorem 1.2 or Theorem 6.1])
X(A) = 1. Take three pairwise disjoint sets Xx, X2, Xt, c w . There is

i e {1,2,3} with liminf„|X, n «|/aj < 1/3. Then Xt £ YA. Indeed, II
playing always 0 in Y(A , Xj) forces liminf„ |{ac < aa: Ck = l}|/« < 1/3 where

(co, cx, c2, ...) is an output of a play. Thus (cn, C\, c2, ...) <£ A .
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